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First-principles NMR of oxide glasses 
boosted by machine learning

Thibault Charpentier1

Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette cedex, France.

Abstract

Solid-State NMR has established itself as a cutting-egde spectroscopy for elucidating the structure of 
oxide glasses thanks to several decades of methodological and instrumental progresses. First-principles 
calculations of NMR properties combined with molecular dynamics (MD) simulations provides a powerful 
complementing approach for the interpretation of the NMR data although they still suffer from limitations 
in terms of size, time and high consumption of computational resources. We address this challenge by 
developing a machine-learning framework to boost predictive modelling of NMR spectra. We use kernel ridge 
regression techniques (least-square support vector regression and linear ridge regression) combined with 
the smooth overlap of atomic position (SOAP) atom-centered descriptors to efficiently predict NMR 
interactions: the isotropic magnetic shielding and the electric field gradient (EFG) tensor. As illustrated in this 
work, this approach enables the simulation of MAS and MQMAS NMR spectra of very large models (more 
than 10000 atoms) and an efficient averaging of NMR properties over MD trajectories of nanoseconds for 
incorporating finite temperature effects, at computational cost of classical MD simulation. We illustrate these 
advances on sodium silicate glasses (SiO2-Na2O). NMR parameters (isotropic chemical shift and electric field 
gradient) could be predicted with an accuracy of 1 to 2% in terms of the total span of the NMR parameter 
values. To include vibrational effects, an approach is proposed by scaling the EFG tensor in NMR simulations 
with a factor obtained from the time auto-correlation functions computed on MD trajectories. 

Introduction

Glass are ubiquitous materials in our modern life because of their low-cost but good performances 
for a high diversity of usage.1–5  Glass indeed offers an infinite combination of compositions (but within a 
glass formability window) to match the properties of interest. The importance of glass has been recognized 
in 2022 by UNESCO declared as the International Year of the Glass.2 The fundamental challenge in glass 
science remains the establishment and the knowledge of the relationships between the composition-
structure to the properties for the design of new formulations for specific applications. To this aim, molecular 
dynamics (MD) is the reference technique for building atomistic structural models of glasses and calculating 
the properties of interest.6–9   Spectroscopic data are however needed to assess the MD structural models 
which have been mostly provided by neutron and X-Ray diffusion experiments for decades.10–12 In this regard 
and in the context of oxide glasses, NMR remains underexploited and has been generally limited to its ability 

1 Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette cedex, France. thibault.charpentier@cea.fr
2 https://www.iyog2022.org/
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of providing quantitative information on the structural motifs building the glass network (such as SiO4, AlO4, 
BO3, BO4 ) featuring the so-called short-range order (SRO). 

NMR has clearly proven over the two last decades to be a key spectroscopy for deciphering glass 
structure at various atomic length scale order (from short to intermediate range order).13–22 Beside the 
direction of development of advanced radio-frequency pulse sequences for manipulating NMR interactions 
with an extreme high degree of accuracy19, 21, a second direction was proposed with the introduction of 
accurate and robust DFT computation methodologies, based on the popular DFT-GIPAW method.23–25 These 
two directions are of course complementary but both address the essential difficulty encountered in studying 
amorphous materials such as oxide glasses: the chemical and geometrical disorder introduces broadening of 
the lines resulting in a strong overlap between NMR peaks which can persist despite usage of sophisticated 
2D high-resolution techniques. This spectral broadening is engendered by the NMR parameter distribution, 
a salient feature of glassy materials that cannot be ignored when fitting experimental data.16, 26–31 With the 
help of relationships established either from known crystalline samples or DFT computations, NMR 
parameter distributions can be inverted to a distribution of a geometrical parameter such as inter-atomic 
distances, bond lengths or bond-angle distribution (BAD).31–34 However such approaches are limited to simple 
glass compositions and are difficult to be extended when several parameters interplay. A direct link between 
a 3D structural model and the NMR spectrum that can provide such information is therefore necessary.

The continuous increase of computational resources combined with the efficiency and accuracy the 
DFT-GIPAW method35–37 has enabled its fruitful combination with MD so that a first-principles NMR approach 
has emerged as a new tool for investigating glasses.38–41 Within this framework, one can validate the 
interpretation of experimental data by prediction of NMR fingerprints of atomic species42, 43 or assess the 
quality of MD structural models with a direct comparison with NMR data.44–46 According to our own 
experience, modern computational resources enable GIPAW-DFT calculations with MD models up to ~800 
atoms to be performed. DFT inherently limits applicabilition to representative models of glass of several 
thousands of atoms (a standard size is 5000-10000 atoms for MD studies). In addition, investigations of 
dynamical effects (such as vibrations or diffusion of atoms) on NMR47–50 necessitates long MD trajectories of 
the order of ns to be considered. Consequently, the recent emergence of machine learning (ML) 
methodologies in atomistic modelling51 offers appealing perspectives for accessing larger system size and 
time scale. In solid-state NMR, kernel ridge regression (KRR) techniques were applied to predict NMR shifts 
in organic molecular solids by Paruzzo et al.52, and in organic molecules by Rupp et al.53 The first application 
to silicate glasses was provided by Cuny et al.54 using a neural network and by Chaker et al.55 in sodium 
aluminosilicate glasses with linear ridge regression (LRR). Gaumard et al.56 studied the performances of 
different kernel regression in zeolites. Recently, positions of cesium in clays could be refined by Ohkubo et 
al.57 by using predicted NMR chemical shifts predicted by LRR. In the context of amorphous molecular solids, 
Cordova et al.58, 59 combined MD and KRR-SOAP predicted shifts (ML-Shift),52 to match structural models to 
experimental MAS NMR spectra. In the context of oxide glasses where quadrupolar nuclei are predominant, 
prediction of the EFG tensor is needed.

For atomistic modelling by ML, the so-called atom-centered descriptors (ACD) play a central role. In 
the ML context, they were introduced in the seminal work of Behler et al.60 and Bartòk et al.61 The variety of 
descriptors that have been proposed in literature is too vast to be covered here (see for example in Refs62–

64). ACD must provide a faithful and symmetry adapted representation of the local environment of a central 
atom (chemically and geometrically): they must be invariant to translations and permutations, and  
equivariant to rotations and inversions in regards of nature of the property of interest. Indeed, for prediction 
of a scalar property (such as the isotropic magnetic shielding, a charge or an energy), they must be invariant.61 
In contrast, for tensorial properties (in our case the electric field gradient (EFG) tenso), they must respect the 
rotational properties of second rank tensors, as was first discussed by Grifasi et al.65 In this work, we have 
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chosen the popular smooth overlap of atomic positions (SOAP) descriptors which have extensively studied61, 

66–69 and shown to have excellent performances on NMR shifts prediction.52, 55, 56 

We present a fully-integrated methodology based on ML kernel tools (linear and kernel ridge 
regression, least-square support vector regression, kernel density estimation, dimensional reduction with 
incomplete Cholesky decomposition of the kernel Gram matrix) for the simulation of NMR spectra of 
structural models containing up to several thousands of atoms (calculations were performed on a standard 
workstation). Our strategy for building a database for ensuring a good transferability of the ML predictions 
(between various glass compositions and MD temperatures) is presented, as well as ideas for application to 
the study of the impact of local mobilities (vibrations, or diffusion of atoms) on the NMR spectrum. This opens 
appealing perspective for the investigation of ionic conduction in glasses by NMR. Sodium-silicate glasses 
Si2O-Na2O have been chosen as a representative model of oxide glasses: they contains both I=1/2 (29Si) and 
quadrupolar nuclei (23Na and 17O); one with a high local mobility (Na+). Experimental data were taken from 
previous studies27, 29.

Theory and Methods

SOAP descriptors for representing the local environment

To represent the local environment of an atom, the SOAP descriptors were chosen.61, 66 They are 
constructed from the expansion of the smoothed atomic density 𝜌𝑖(𝑟)of a central atom i as:

𝜌𝑖(𝑟) = ∑𝑗∈𝑁𝑖 𝑔𝜎(𝑟−𝑟𝑖𝑗)𝑓𝑐(𝑟𝑖𝑗) = ∑𝜇,𝑛,𝑙,𝑚 𝑐𝑖,𝜇
𝑛,𝑙,𝑚𝑌𝑙𝑚(𝑟)𝑅𝑛𝑙(𝑟) (1)

𝑁𝑖is the set of atoms j that are in the neighbourhood within a cutoff radius 𝑟𝑐𝑢𝑡. 𝑔𝜎is a (3d) Gaussian function 

of width 𝜎and 𝑓𝑐(𝑟) = 1 2 𝑐𝑜𝑠 𝜋 𝑟 𝑟𝑐𝑢𝑡 + 1 is the function used to smooth the density at the cutoff 

radius. 𝑌𝑙𝑚(𝑟) are spherical harmonics (𝑟 = (𝜃,𝜙)are the polar and azimuthal angles) and𝑅𝑛𝑙(𝑟)are radial 
functions. 𝜇is an index that runs on the various atomic species (here, Na, Si and O). In this work, we employ 
real spherical harmonics (RSH) 𝑌𝑙𝑚(𝑟) and spherical Bessel functions 𝑅𝑛𝑙(𝑟) = 𝑗𝑙 𝛼𝑛𝑙 𝑟 𝑟𝑐𝑢𝑡 . 𝛼𝑛𝑙is the nth 
root of the Bessel function 𝑗𝑙(). This choice ensures that the  𝑅𝑛𝑙(𝑟)form an orthonormal set on the segment 

[0,𝑟𝑐𝑢𝑡](see section S4 of the ESI). With eqn (1), the local environment 𝜌(𝑟)of the central atom is represented 
by the set of parameters 𝑐𝜇

𝑛,𝑙,𝑚. For computations, the expansion eqn (1) is truncated to values 𝑛 ∈ [0,𝑁𝑚𝑎𝑥] 

and 𝑙 ∈ [0,𝐿𝑚𝑎𝑥]. Thus, (𝑟𝑐𝑢𝑡,𝑁𝑚𝑎𝑥,𝐿𝑚𝑎𝑥)which are called hyper-parameters, have to be optimized during the 
training of the ML algorithm. The 𝑐𝜇

𝑛,𝑙,𝑚are invariant to permutations of the neighbouring atoms and to 

translations, and they behave like a 𝑙-rank tensor under rotations. They represent the local environment of a 
central atom X in terms of two body interactions. Indeed, for Na2O-SiO2 glasses, the expansion on the index 𝜇
yields X-Si, X-O and X-Na terms.

For the prediction of the scalar isotropic magnetic shielding value 𝜎𝑖𝑠𝑜 (or equivalently, the isotropic 
chemical shift), we need rotation-invariant descriptors. The symmetry adapted descriptors are therefore 
reduced to 𝑐𝜇

𝑛,0,0values, which severally limits the number of descriptors for an environment that can 
contains around ten atoms (in practice 𝑁𝑚𝑎𝑥ranges from 2 to 12). To overcome this limitations in their 
seminal work, Bartòk et al.61 introduced the powerspectrum, a set of descriptors that combine the 𝑐𝜇

𝑛,𝑙,𝑚into 
a sum of rotationally invariant products:
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𝑝𝜇1,𝜇2
𝑛1,𝑛2,𝑙 = ∑𝑚 𝑐𝜇1

𝑛1,𝑙,+𝑚𝑐𝜇2
𝑛2,𝑙,−𝑚 (2)

The powerspectrum contains three body-terms which accounts for the distribution of angles around the 
central atom (i.e., Si-X-Si, Si-X-O, Si-X-Na, O-X-O, O-X-Na and Na-O-Na) as was explicitly shown in Ref.67 For 
tensorial properties of rank 𝜆(i.e., using the familiar notation in NMR 𝑇𝜆,𝑚), eqn (2) can be easily generalized 
to become equivariant:

𝑞𝜇1,𝜇2
𝑛1,𝑛2,𝑙1,𝑙2 𝜆,𝑚

= ∑𝑚1,𝑚2 𝜆,𝑚|𝑙1𝑚1𝑙2𝑚2 𝑐𝜇1
𝑛1,𝑙1,𝑚1

𝑐𝜇2
𝑛2,𝑙2,𝑚2

(3)

where 𝜆,𝑚|𝑙1𝑚1𝑙2𝑚2 are the Clebsh-Gordan coefficients. These descriptors, referred to as λ-SOAP, were 
introduced by Grifasi et al.65, generalizing thereby the SOAP powerspectrum to represent a tensorial quantity. 
One can easily recognise that eqn (2) is a special case of eqn (3) with the choice λ=0 (then l1=l2) In the case of 
EFG or chemical shift anisotropy (CSA, symmetric part) tensor, λ=2. The tensor (we consider only the EFG is 
this work) is then represented by 5-dimensional vector denoted 𝑉𝑚 in its spherical form (see section S6 of 
the ESI), which is the form which used in our LRR algorithms. Note that the dimension of λ-SOAP descriptors 
can be very high (in our case, from 102 to 104), thus necessitating a large dataset for training the LRR 
algorithm. 

Least-square support vector and linear ridge regression

The kernel ridge regression (KRR) is a generalization of the popular linear ridge regression (LRR) by 
introducing non-linearities through a kernel function which can be seen as a measure of the similarity 
between two environments, here denoted𝜒. For the isotropic magnetic shielding 𝜎𝑖𝑠𝑜(𝜒), the prediction is 
performed by a linear combination of similarities between the new environment 𝜒𝑛𝑒𝑤 and the training ones 
𝜒𝑖 as follows:

𝜎𝑖𝑠𝑜(𝜒𝑛𝑒𝑤) = ∑𝑖∈𝑡𝑟𝑎𝑖𝑛 𝐾(𝜒𝑛𝑒𝑤,𝜒𝑖)𝛼𝑖 (4)

where 𝐾(𝜒𝑖,𝜒𝑗) is the kernel function. In LRR, the kernel is the scalar product 𝐾(𝜒𝑖,𝜒𝑗) = 𝜒𝑖 ⋅ 𝜒𝑗. A standard 

choice is the Gaussian function (in this case KRR shares similarities with Gaussian Processes70)𝐾(𝜒𝑖,𝜒𝑗) = 𝑒𝑥𝑝

{−𝜃(𝜒𝑖−𝜒𝑗)
2}where 𝜃 is a (hyper-)parameter that needs to be optimized. Note that considering all points in 

the dataset, eqn (4) can be rewritten in a matrix as 𝛿 = 𝐾𝛼. Consequently, the determination of the 
regression parameters 𝛼(i.e., the training phase) are obtained from  𝛼 = (𝐾 + 𝜖𝐼)−1𝛿. 𝜖is the ridge-
parameter that controls the norm of the regression parameters 𝛼in order to prevent the ML predictor to 
overfit the training data. 𝜖has therefore to be optimized from a second set of independent data (the 
validation set) in order to ensure a good transferability of the ML prediction to new data (the testing set). 

Because of the high dimensionality of the training set, the resolution of the linear system eqn (4) can 
be cumbersome. The idea of the least-square support vector regression (LSSVR)71 is to use a reduced set of 
representative data, denoted 𝜉 , generally referred to as the inducing points or the landmark points.  
Restricted to this small set, the inversion of the kernel matrix (𝐾 + 𝜖𝐼)−1is then tractable. From a NMR 
perspective, it can be easily understood that many environments in the database are similar (and thus their 
NMR parameters are also very close), so that fewer points are necessary to support the linear regression eqn 
(4) (the support vectors). Mathematically, the kernel matrix is then approximated by 𝐾𝜒,𝜒 ≈ 𝐾𝜒,𝜉𝐾−1

𝜉,𝜉 𝐾𝜉,𝜒 with 
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𝑁𝜉 ≈ 103 whereas 𝑁𝜒 ≈ 105in our study. This is the Nyström approximation. Resolution of eqn (4) then only 
requires the diagonalization of𝐾𝜉,𝜉, as detailed in Ref.71,  but the determination of the regression parameters 
𝛼 proceeds so as to accounts for all samples of the training set. To determine the inducing points 𝜉𝑖 from the 
training set, we found that the incomplete cholesky decomposition (ICD) of the kernel matrix 𝐾𝜒,𝜒

72 was very 
efficient and informative as will be discussed below.

Concerning the EFG tensor, it was predicted in spherical form using the λ-SOAP descriptors eqn (3) 
with a linear ridge regression (LRR):

𝑉𝑚 = ∑𝜇1,𝜇2,𝑛1,𝑛2,𝑙1,𝑙2 𝛼𝜇1,𝜇2
𝑛1,𝑛2,𝑙1,𝑙2

𝑞𝜇1,𝜇2
𝑛1,𝑛2,𝑙1,𝑙2 2,𝑚

 (5)

Note that the summation over l1 and l2 is limited to values such that 𝜆 = 2,𝑚|𝑙1𝑚1𝑙2𝑚2 ≠ 0. In our work 
with Lmax=4, from the 25 (𝑙1,𝑙2)pairs, only 16 contributes in eqn (5).

NMR simulations with kernel density estimation

From DFT-GIPAW computations or ML predictions, the NMR parameters 𝑥 = (𝛿𝑖𝑠𝑜,𝐶𝑄,𝜂𝑄) for each 

atom (here 29Si, 23Na, and 17O) are obtained. A simple approach for simulating the NMR spectrum consists in 
summing the individual NMR spectra for each atom. This would be however quite ineffective and time-
consuming. As was discussed in earlier works,41, 73 a better strategy for glasses consists in first reconstructing 
the NMR parameter distribution. The latter can of course be multi-modal if various species are present; in 
this case, a clustering algorithm can advantageously help to identify the speciations, an option which is left 
for future studies. Here a kernel density estimation (KDE)74 approach is adopted for building the NMR 
parameter distribution 𝑝(𝛿𝑖𝑠𝑜,𝐶𝑄,𝜂𝑄)on a 3d grid of pre-computed NMR spectra. In the case of silicon-29, 

quadrupolar parameters can be replaced by CSA values for an accurate modelling but here a simple 1d 
approach is adopted so that only 𝑝(𝛿𝑖𝑠𝑜)is considered (for the reconstruction of anisotropic/isotropic 2D 
correlation with KDE, see for example Ref41). In this work, we focus on MQMAS reconstruction of the two 
quadrupolar nuclei of interest, 17O and 23Na. 

In the KDE formalism, the value of the distribution is estimated for each grid point 𝑥𝑔 from the 

database points 𝑥𝑖 as:

𝑝(𝑥𝑔) =
1

𝑁𝑖
∑ 𝐾𝛴(𝑥𝑔−𝑥𝑖) (6)

where the kernel 𝐾𝛴 is chosen as a Gaussian distribution which shape and width is controlled by the 
covariance matrix 𝛴(also referred to as the bandwidth matrix) which calculated from the (training) 𝑥𝑖 points. 
This matrix is essential to account for the correlation effects that exists between the NMR parameters, as 
was observed in oxygen-17 MQMAS NMR of silicate glasses.27, 32, 33 To lower the computational cost of eqn 
(6), numerous strategies exist to reduce the number of distance evaluations, such as approximate nearest 
neighbour search based on graph.75 

From 𝑝(𝑥𝑔) and precomputed spectra on the 3d grid, the simulation of the MAS and MQMAS spectra 

can then be reduced to simple matrix multiplications. In the case of a MQMAS simulation, equations were 
given in Ref.41 The pre-computed spectra can optionally account for the finite pulse width effects (intensity 
and lineshape distortion) and finite spinning rate. Denoting 𝐼(𝜈;𝛿𝑖𝑠𝑜,𝐶𝑄,𝜂𝑄) the precomputed  spectra on the 

grid and neglecting offset effects so that 𝐼(𝜈;𝛿𝑖𝑠𝑜,𝐶𝑄,𝜂𝑄) ≈ 𝐼(𝜈−𝛿𝑖𝑠𝑜;0,𝐶𝑄,𝜂𝑄), only a 2d grid of (𝐶𝑄,𝜂𝑄) 
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parameters is necessary. Typical grids have the following resolution (boundary values depend on the 
nucleus): 𝐶𝑄0.1 MHz; 𝜂𝑄 0.05, and 𝜈(or equivalently 𝛿𝑖𝑠𝑜) 0.2 ppm.

This KDE approach underlines that in the specific case of glasses, the primary goal of the ML 
prediction is to reconstruct the NMR parameter distribution 𝑝(𝛿𝑖𝑠𝑜,𝐶𝑄,𝜂𝑄) from the set of environments 

generated with the MD model(s). Thus in addition to the quantification of prediction error for each point of 
the dataset, it is important to compare the reconstructed NMR parameter distribution from predicted ML 
values (and simulated NMR spectra) with the one computed from the DFT values. Accordingly, many (small) 
structural model are used to provide a set of sufficiently densely distributed point to estimate 𝑝(𝛿𝑖𝑠𝑜,𝐶𝑄,𝜂𝑄). 

The alternative of using larger models offered by ML prediction enables to investigate size effects (such a 
spurious correlation effect induced by the periodic boundary conditions in MD simulations).

Optimisation of the Hyper-parameters: k-Fold Cross-Validation

Beside the determination of the regression parameters in eqns (4) and (5), SOAP, kernel and ridge  
parameters need to be optimized. They are generally referred to as hyper-parameters (with respect to the 
regression parameters 𝛼in eqn (4)). We use a k-Fold cross-validation approach which consists in splitting the 
database into k subsets (in practice, k=5): the testing set, the validation set and the reminder subsets are in 
the training set. In LSSVR and LRR, the regression parameters are determined with the training set and the 
ridge regression parameter is optimized by minimizing the error on the validation set. Note that the inducing 
points are restricted to be in the training set. The reported error is computed with the testing set. In order 
to have each point tested, the procedure is repeated k-times by shifting the k-folds. With an initial random 
shuffling of the database points, the whole procedure can be repeated so that each point can be a testing 
points more than once, and it provides a robust value of the error standard deviation value. The 
(hyper-)parameters of the descriptors and kernel width are optimized in an outer loop. Two errors are 
reported: the mean absolute error (MAE) and root mean square error (RMSE). The latter is sensitive to 
outliers so that both values a complementary. 

Design of the NMR database

Structural models of Na2O-SiO2 glasses with %mol Na2O ranging from 10% to 50% (by step of 10%) 
were generated with classical MD simulations, as detailed in sections S1 and S2 of the ESI. For each 
composition, 20 independent small models of 300 atoms and 2 supplementary models of 600 atoms were 
generated for testing the transferability of ML algorithms to larger models when trained on small models. To 
investigate increase the geometrical diversity, structures were extracted at 300K, 1000K, (both forming the 
reference set), 1500K and 2000K. Long MD trajectories (up to 1 ns) were simulated to study the impact of 
vibrations on the NMR spectra. Additionally, for each composition a model of 14400 atoms was generated 
to demonstrate the applicability of ml-NMR simulations to very large system in short CPU times (here, ~2s).

Part of database was recently used for training a machine learning potential (MLP).76 Two  
compositions, denoted NS22.5 and NS43.1 (22.5 and 43.1 %mol Na2O, respectively) were chosen from this 
work ( ~700 atoms, see Table S2 of the ESI) for the comparison of the ml-NMR spectra with experimental 
data (29Si, 23Na and 17O).27 To this end, ab-initio MD simulations at 300K were performed (with CP2K77) for 
incorporating effects of vibrations at 300K in the NMR simulations through the computation. About 41 
structures were extracted every 50 fs to built a NMR database from the first 2ps of the trajectory. In the last 
10ps, 8 structures were extracted every 500 fs to check the accuracy of ML prediction.
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NMR properties, the magnetic shielding and electric field gradient tensors, were calculated with the 
DFT-GIPAW method23 as implemented in VASP (version 5.3.x).35 For referencing the NMR-GIPAW outputs σiso 

to isotropic chemical shifts values δiso of SiO2 (cristobalite and quartz), Na2SiO3 and α- and β-Na2Si2O5 were 

used but in a consistent approach with the MD models: for each system, a supercell of ~ 300 atoms was built, 
its geometry (atomic positions and unit cell parameters) was optimized with CP2K and the NMR-GIPAW 
values computed with VASP. Details are given in section S.3 of the ESI. Notably, the calibration parameters 
(α and σREF) of the linear regression 𝛿𝑖𝑠𝑜 = −𝛼(𝜎𝑖𝑠𝑜−𝜎𝑅𝐸𝐹) are given in Table S4 of the ESI.

Results and Discussion

Examination of the NMR database

We propose to examine the diversity of environments in the database be visualizing their respective 
NMR parameter distribution. For the quadrupolar nuclei, the NMR parameters were efficiently represented 
with the 2D distribution 𝑝(𝛿𝑖𝑠𝑜,𝑃𝑄) using the quadrupolar product 𝑃2

𝑄 = 𝐶2
𝑄 1 + 𝜂2 3 . Indeed, 𝑃𝑄 (in 

contrast to 𝐶𝑄and 𝜂) is invariant to both the orientation and the ordering principal values of the EFG tensor 
(𝑉𝑋𝑋,𝑉𝑌𝑌,𝑉𝑍𝑍). This parameter should be therefore be preferred to represent the EFG tensor strength than 
𝐶𝑄in glasses and during MD trajectories. As shown in Figure 1, the broadening effect with increasing the MD 
temperature is clearly seen on all data (resulting from a higher geometrical diversity). The aiMD data shows 
narrower distributions with more pronounced effect of correlation between the NMR parameters for oxygen-
17 (note the opposite sign of the linear correlation between NBO and BO). As MD and aiMD distributions do 
not overlap, it is therefore expected that MD data cannot predict well aiMD data. This also points out that, 
even if less accurate, classical MD produces more disordered structures thus more suitable for building 
database with high transferability (specialized database can be of course generated depending on the aim of 
the ML prediction). All datasets of the NMR database are given in Table S3 in the ESI.
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29Si 17O 23Na

Figure 1. 29Si, 17O and 23Na NMR parameter distributions of datasets from the database. MD-xxx (xxx=300K, 
1000K, 1500K and 2000K) are classical MD models, NS22.5 and NS43.1 are MLP models extracted from aiMD 
data at 300K. For 17O and 23Na, 𝑝(𝛿𝑖𝑠𝑜,𝑃𝑄) was calculated using KDE eqn (6).

Learning the isotropic magnetic shielding

For the prediction of σiso (or equivalently δiso), we performed a systematic grid search on the SOAP 
hyper-parameters as follows: 𝜎𝑆𝑂𝐴𝑃in [0.2, 1] Å (step 0.2Å ); 𝑟𝑐𝑢𝑡=3, 4, 5 and 6Å; 𝑁𝑚𝑎𝑥from 2 to 12, 𝐿𝑚𝑎𝑥 was 
fixed to 4. Details on the computation and optimization of the SOAP descriptors for the MD-300K and MD-
1000K datasets are given in sections S4 and S5, respectively, of the ESI. For each (𝜎𝑆𝑂𝐴𝑃,𝑟𝑐𝑢𝑡,𝑁𝑚𝑎𝑥) values, 

the Nyström size (denoted 𝑁𝜉) was incremented until the MAE has converged (denoted 𝑁𝑜𝑝𝑡
𝜉 ). 𝑁𝜉  strongly 

depends on the variety of environments present in the training set and 𝑁𝑜𝑝𝑡
𝜉

  can be therefore considered as 

a measure of the diversity of the database. An optimal value of 𝜎𝑆𝑂𝐴𝑃 of 0.4 Å was obtained for all studied 
nuclei (29Si, 17O and 23Na). Note that no attempt was made to a set different value for each atom. 
Representative MAE convergence curves are shown in Figure 2 using the MD-300K as training sets. We 
observe that increasing the number of radial  functions (to better captures the diversity of the environment) 

effectively requires an increase of 𝑁𝑜𝑝𝑡
𝜉 . The final optimal values that were determined from the dataset MD-

300K + MD-1000K (the sets used to built the final LSSVR predictors) are given in Table Error! Reference source 

not found. and convergence curves (MAE and RMSE) are shown in Figure 3. Note that a higher value of 𝑁𝑜𝑝𝑡
𝜉  

is necessary with this composite set versus the individual set (for example, 𝑁𝑜𝑝𝑡
𝜉 = 1200 for 17O in MD-300K 

and -1000K, see section S5 of the ESI) showing the complementarity of the two datasets. 
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Table 1. Parameters of SOAP descriptors 𝑐𝜇
𝑛,𝑙,𝑚 eqn.(1), 𝜎𝑖𝑠𝑜 mean absolute error (MAE) and root mean square 

error (RMSE) (with standard deviations values in parentheses).

atom σSOAP (Å) rcut (Å) Lmax Nmax
𝑁𝑜𝑝𝑡

𝜉

(MD-300K+1000K)
MAE (ppm) RMSE (ppm)

Si 0.4 5 4 4 2000 0.93 (0.02) 1.25 (0.03)
Na 0.4 5 4 6 1000 1.39 (0.02) 1.79 (0.03)
O 0.4 6 4 5 4000 2.25 (0.02) 3.15 (0.07)

29Si 17O 23Na

Figure 2. Convergence of 𝜎𝑖𝑠𝑜 MAE with respect to the Nyström size 𝑁𝜉and the number of radial functions 

(𝑛𝑅𝑎𝑑 = 𝑁𝑚𝑎𝑥) in the SOAP descriptors for the MD-300K training set (other SOAP parameters given in Table 
Error! Reference source not found.)

29Si 17O 23Na

Figure 3. Convergence of the 𝜎𝑖𝑠𝑜MAE with respect to the Nyström size 𝑁𝜉for MD-300K+1000K training sets 
(SOAP parameters given in Table Error! Reference source not found.)

Similarly to Figure 1, the selection of the inducing points 𝜉 by ICD  can be effectively visualized by 
examination of the NMR parameter distribution as shown in Figure 4. We first note the excellent prediction 
by LSSVR. Interestingly, ICD produces a distribution that differs from the original datasets by enhancing for 
example regions in the tails. Taking an as example 29Si data, clearly the Q(3) and Q(2) regions are significantly 
enhanced (which thus suggests a higher local structural diversity) versus the (more regular) Q(4) region. Note 
that the weak region Q(0) is well retained by ICD. These results also confirm that the SOAP descriptors 
combined with a kernel-ICD approach are providing an efficient procedure for extracting the representative 
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set of environments in a database. Attempts to force the selection of inducing points uniformly distributed 
on σiso did not improved the LSSVR predictions.

Figure 4. Distribution of isotropic magnetic shielding 𝜎𝑖𝑠𝑜values from MD-300K+1000K datasets,  inducing 
points selected by ICD and the LSSVR predictions. Distribution are normalized to the same area. Black boxes 
highlight the weak intensity regions well captured by ICD.

29Si 17O 23Na

Transferability test between the different training sets were performed and are reported in section S5 of the 
ESI. As expected, high-temperature sets gives better accuracy when tested on lower temperature than the 
opposite case. Transferability to larger systems (i.e. from 300 to 600 atoms) were also excellent and are 
illustrated in Figure 5.

29Si 17O 23Na

Figure 5. LSSVR versus DFT-GIPAW 𝜎𝑖𝑠𝑜 values for 29Si, 17O and 23Na in the 600 atoms MD datasets 
(300K+1000K). Training was performed on the 300 atoms data.

Learning the EFG tensor
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It would tempting to use LSSVR to predict the scalar quadrupolar parameters (𝐶𝑄,𝜂). However both 

quantities depend on the ordering of the eigenvalues of the EFG tensor and are therefore discontinuous. 
Effectively, they are very poorly predicted by LSSVR as shown in section S6 of the ESI. Other ML algorithms 
(not investigated here) that are robust to discontinuities (such as neural networks or random forests) could 
be better adapted but their investigation is out of the scope of the present study. Better LSSVR results are 
obtained for 𝑃𝑄(which is invariant to rotation) but still showing some discrepancies. For these reason, the 
option of predicting the full EFG tensor appeared as the best one.

Optimizations of λ-SOAP descriptors for 23Na and 17O EFG tensors are summarized in Figure 6. Despite 
contributions from long-range Coulombic interactions, the full EFG tensor is very well captured by the short-
range SOAP descriptors (with rcut ≥ 5Å). As was observed for LSSVR, increasing rcut requires a larger number 
of radial functions. For sake of simplicity and efficiency, values of Table Error! Reference source not found. 
were chosen (so that SOAP descriptors need only to be computed once for predicting the three NMR 
parameters). Such good performances of λ-SOAP can be understood as resulting from the correlation that 
exists between the short- and long-range contributions to the EFG, analogous to the Sternheimer 
approximation.78 Such correlations were observed in water for quadrupolar nuclei.79 With the MD-
300K+1000K datasets, LRR predictions MAE (RMSE) for the 17O and 23Na EFG components are 1.6 V/Å2 (2.0 
V/Å) and 0.8 V/Å2 (1.0 V/Å) respectively, representing ~1% of their respective total spans. Using the 600 
atoms MD models (300K+1000K), the same numbers were obtained showing therefore an excellent 
transferability, as shown in Figure 7. 23Na and 17O quadrupolar parameter distributions are very well 
predcited by LRR λ-SOAP as shown in Figure 8.

17O 23Na

Figure 6. Variations of the LRR λ-SOAP mean absolute error (MAE) of the EFG tensor components in the MD-
300K datasets.
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Figure 7. LRR λ-SOAP versus DFT-GIPAW EFG tensor components of the 600 atoms MD datasets 
(300K+1000K).

Figure 8. LRR λ-SOAP versus DFT-GIPAW NMR parameter distribution 𝑝(𝐶𝑄,𝜂) for the MD-300K+1000K 

datasets.

KDE simulation of the MAS and MQMAS NMR spectra

The original motivation for the ML prediction of NMR parameters was to enable the modelling of 
NMR spectra from structural models of large size (here, 14440 atoms) as with modern HPC resources DFT-
GIPAW typically addresses 800 atoms with VASP. All subsequent simulations were performed on a standard 
single processor (Intel CORE i7). Calculations for the large models took around 2 seconds; the most time 
consuming part was the calculation of the SOAP descriptors (see Figure S5 in the ESI). 23Na and 17O MAS NMR 
spectra (for the latter we show the isotropic projections of the MQMAS spectrum) are shown in Figure 9 
(MQMAS spectra are given in sections S8 and S9 of the ESI). 
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Focusing first on the 23Na NMR data and classical MD models, we observe a discrepancy between the 
large and small models spectra. This is indicative of the effect of the PBC on the structure of the small models 
but without impacting the transferability of the ML predictors (Figure 5 and Figure 7). The comparison with 
experimental data shows a good agreement, except for the width of the spectra which is due to an 
overestimated mean values of the quadrupolar coupling constant, as already observed.29 As will be shown 
below, accounting for short-times scale averaging by vibrations significantly reduce the discrepancies. 
Considering the 17O NMR data, we note a strong deviation of the MD NMR models spectra from the 
experimental data. This is due to approximate Si-O and Si-O-Si bond angle values predicted in classical MD, 
in contrast to aiMD (DFT) data which yields an excellent agreement in the position of the NBO and BO peaks 
(intensities differs because impact of MQMAS pulse sequence was not taken into account for sake of 
simplicity). Those simulated spectra can be useful for many purposes. One of them is the assessment of 
analytical models of NMR parameter distribution, such as the Gaussian Isotropic Model80, 81 (GIM) for fitting 
the 23Na NMR data for example. 

23Na 17O

Figure 9. ML simulations of 23Na (left) and 17O (right) MAS and isotropic (isotropic projection of the MQMAS 
spectra) NMR spectra of the SiO2-Na2O glasses from 10% to 50% mol. Na2O (denoted 10Na to 50Na). For 
purpose of comparison, experimental data from Ref.27 are shown (22.5% and 43.1% mol. Na2O, denoted 
NS22.5 and NS43.1 respectively). For 17O, ML simulations from aiMD structural models (aiMD-300K) are also 
shown.

To quantify the impact of atomic vibrations on the NMR parameters, we investigated the auto-
correlation functions of the two NMR interaction of interest in this work, 𝐺𝛿(𝜏) = ⟨𝛿(𝜏 + 𝑡0)𝛿(𝑡0)⟩𝑡0

 and 

𝐺𝐸𝐹𝐺(𝜏) = ⟨𝑉(𝜏 + 𝑡0)𝑉(𝑡0)⟩𝑡0
, calculated on MD trajectories at 300K. ⟨⟩𝑡0

 denotes the ensemble average 

that includes here the averaging over all initial times t0 and over all atoms. At short-time scale, 𝐺𝛿(𝜏) is a 
constant function (~1) at 300K, thus meaning a very minimal impact of vibrations. In contrast, 𝐺𝐸𝐹𝐺(𝜏)is 
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decaying on typical time-scale of vibrations (10-100 fs), with a stronger effect for 23Na, in contrast to 17O, as 
illustrated in Figure 10. After that first decay, the EFG time-correlation function reaches plateau that can be 
considered, in a first approximation, as the time-averaged EFG that really contribute to the NMR spectra 
(whereas the initial decaying part controls the relaxation times50 but this will be not discussed here). Using 
the plateauing value as a scaling factor of the frozen EFG tensors (we assume an isotropic scaling) vibrations 
can then be simply incorporated into the NMR spectra, as shown for 23Na in (left panel, dashed lines). This 
clearly improves the simulations (see especially 20Na). We note that for 40Na, the experimental width is still 
overestimated. Indeed, longer time-scale would be needed to account for the diffusion of Na atom at 300K 
(Na rich glasses show a higher Na mobility82). The time-scale of the MD simulations is still well below the 
typical Larmor period for 23Na ( here ~ 8ns at 11.7T). Interestingly, aiMD simulations gave very close curves 
for the EFG correlation functions, as shown in the section S10 of the ESI. This means that classical MD 
potentials are able to capture the vibrational averaging with a good accuracy.

23Na 17O

Figure 10. 23Na and 17O EFG correlation functions 𝐺𝐸𝐹𝐺(𝜏) = ⟨𝑉(𝜏 + 𝑡0)𝑉(𝑡0)⟩𝑡0
. In left and right panels, 

plateauing values used as EFG scaling factor for finite temperature simulations are indicated.

Conclusion

We have described in this paper new computational methodologies for modelling NMR spectra of 
oxide glasses, combining prediction of NMR properties by ML kernel methods with efficient simulations using 
KDE of the NMR parameter distribution. We have shown that the SOAP descriptors are very efficient and 
symmetry adapted for representing the local environment for the prediction of NMR interactions, be it a 
scalar (isotropic magnetic shielding value) or a matrix (the EFG second-rank symmetric tensor). Our strategy 
to build NMR database that embraces a sufficiently large variety of environments (in term of both 
geometrical and chemical disorder) was based on MD simulations at various temperatures and for various 
glass compositions. It was shown that small models were suitable to build ML predictors transferable to much 
larger systems (here, more than 10 000 atoms). Most representative environments could be extracted with 
incomplete Cholesky decomposition of the kernel Gram matrix of the dataset, providing an efficient tool for 
analysis of the database, as confirmed by the examination of the NMR parameter distributions. Appealing 
perspectives for an easy incorporation of finite temperature effects (vibrations) in NMR simulations were 
presented. Because of its fundamental importance in glass science, ML-NMR will clearly enable NMR 
investigations of melts (with high temperature NMR20) to be now more closely connected to MD simulations 
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by computation of the underlying correlation functions of NMR observations. The next step is the 
incorporation of NMR spectra as direct constraints in the reconstruction of 3d glass structure of glasses, in 
Reverse Monte-Carlo simulations widely used in glass science.11, 12, 83 
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