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I.1 - Context
■ Computation of the Radar Cross Section of 3D objects covered by multiple layers of materials
■ Requires highly accurate solution of harmonic Maxwell’s equations in an unbounded domain
■ Objects may be electrically large + Materials may have large permittivity/permeability

⇒ Requires to solve large and sparse linear systems of equations Ax = b

The current domain decomposition method is difficult to scale :

■ Increase in the number of sub-domains

⇒ Convergence is slower

■ Increase in the size of the sub-domains

⇒ Increase in computational complexity

We need to investigate an alternative method : multigrid methods.
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I.2 - Fundamentals on AMG

Multigrid benefits from both direct and iterative methods :

■ ν iterations of a smoother M damp the large eigenvectors.

■ The remaining small eigenvectors are projected onto a coarse space defined by P.

Accordingly, the two-grid error propagation matrix is

ETG :=
(

I − M−1A
)ν

︸ ︷︷ ︸
Smoother

·
(

I − P
(

PT AP
)−1

PT A
)

︸ ︷︷ ︸
Coarse Correction

·
(

I − M−1A
)ν

︸ ︷︷ ︸
Smoother

Toward an AMG method for the indefinite Helmholtz equation - R. Falgout, M. Lecouvez, P. Ramet, C. Richefort 18th CMCIM - 04/16/24 4



I.3 - Multigrid applied to Laplace
(Laplace Problem) ⇔

{
−∆u = f on Ω = [0, 1]

u|∂Ω = 0
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■ Eigenvalues are positives → Usual smoothers are perfectly appropriates

■ The Near Kernel Space is smooth → Convenient assumption for building interpolation

■ The matrix A is s.p.d. ⇒ xopt = P(PT AP)−1PT Ax = argmin
x̃∈Range(P)

||x − x̃ ||A
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I.3 - Multigrid applied to Helmholtz
(Helmholtz Problem) ⇔

{
−∆u −k2u = f on Ω = [0, 1]

u|∂Ω = 0
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■ Eigenvalues are both positives and negatives → Necessary to find an adapted smoother

■ The Near Kernel Space is oscillatory → Interpolation rules are difficult to design

■ The matrix A is not s.p.d. ⇒ xopt = P(PT AP)−1PT Ax ̸= argmin
x̃∈Range(P)

�����: not a norm
||x − x̃ ||A
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II. Smoother for both positive and negative eigenvalues

In the indefinite case, large eigenvalues can be either positive or negative

→ Chebyshev Polynomial Smoother built on normal equations will be considered
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Figure 1: Spectrum of q(A2) := I − p(A2)A2
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III.1 - Theory for SPD matrices
Let A and M be SPD matrices. The theory1 provides the definition of the ideal interpolation operator

P∗ :=

(
I − S

(
ST AS

)−1
ST A

)
RT ,

based on orthogonal coarse / fine variables selection operators R / ST (RS = 0). In particular,

µM(P∗, e) = min
P

max
e ̸=0

µM(P, e), with µM(P, e) =
∥(I − PR) e∥2

M

∥e∥2
A

.

The optimal theory2 provides the optimal interpolation operator P# such that

Range(P#) = span ({w1, . . . ,wnc}) , with Awi = σiMwi and σi ≤ σi+1.

Ideal and optimal theories can coincide for a particular choice of R# and S# so that

P# = P∗ =

(
I − S#

(
ST

#AS#

)−1
ST

#A
)

RT
# (1)

1
On Generalizing the AMG Framework - Robert D. Falgout and Panayot S. Vassilevski (2003)

2
Optimal Interpolation and Compatible Relaxation in Classical Algebraic Multigrid - Brannick et al. (2018)
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III.2 - Interpolation rules for oscillatory problems
1 Define Tκ the set of κ test vectors such that

Tκ :=

 | |
qm(A)p1 · · · qm(A)pκ

| |

 , with pi := random vector (n)
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III.3 - Interpolation rules for oscillatory problems
1 Define Tκ the set of κ test vectors such that

Tκ :=

 | |
qm(A)p1 · · · qm(A)pκ

| |

 , with pi := random vector (n)

2 Let coarse and non-coarse variables selection operators respectively be

R̂T = [ Rf Ic ]T , Ŝ = [ If − RT
f ]T , RS = 0

where each row sparse row of ri is defined as follows

∀i ∈ F , ri = argmin
r

κ∑
j=1

(Ti,j − r · TCi ,j)
2 (ri row of Rf )
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III.3 - Interpolation rules for oscillatory problems
1 Define Tκ the set of κ test vectors such that

Tκ :=

 | |
qm(A)p1 · · · qm(A)pκ

| |

 , with pi := random vector (n)

2 Let coarse and non-coarse variables selection operators respectively be

R̂T = [ Rf Ic ]T , Ŝ = [ If − RT
f ]T , RS = 0

where each row sparse row of ri is defined as follows

∀i ∈ F , ri = argmin
r

κ∑
j=1

(Ti,j − r · TCi ,j)
2 (ri row of Rf )

3 Approximate the ideal interpolation operator column-wise by

P̂:,i := (I − SX T
i (XiST AT ASX T

i )−1XiST AT A)R̂T
:,i .

where Xi corresponds to a non-zero pattern constraint matrix for the i th column of P̂.
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IV.1 - The problem of the classical coarse correction
We illustrate the problem of the coarse correction with a shifted 2D Laplacian problem :

(Ln − αIn)x = b ,with n = 100

We plot three curves which correspond to
■ v1 - The smallest eigenvector of the matrix (Ln − αIn)

■ P
(
PT P

)−1
PT v1 - The L2-projection of v1 onto Range(P)

■ P
(
PT AP

)−1
Av1 - The coarse correction applied to v1
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IV.1 - The problem of the classical coarse correction
We illustrate the problem of the coarse correction with a shifted 2D Laplacian problem :

(Ln − 0.6252In)x = b ,with n = 100

We plot three curves which correspond to
■ v1 - The smallest eigenvector of the matrix (Ln − 0.6252In)

■ P
(
PT P

)−1
PT v1 - The L2-projection of v1 onto Range(P)

■ P
(
PT AP

)−1
Av1 - The coarse correction applied to v1
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IV.1 - The problem of the classical coarse correction
We illustrate the problem of the coarse correction with a shifted 2D Laplacian problem :

(Ln − 1.4352In)x = b ,with n = 100

We plot three curves which correspond to
■ v1 - The smallest eigenvector of the matrix (Ln − 1.4352In)

■ P
(
PT P

)−1
PT v1 - The L2-projection of v1 onto Range(P)

■ P
(
PT AP

)−1
Av1 - The coarse correction applied to v1
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IV.1 - The problem of the classical coarse correction
We illustrate the problem of the coarse correction with a simple model problem :

(Ln − 1.7102In)x = b ,with n = 100

We plot three curves which correspond to
■ v1 - The smallest eigenvector of the matrix (Ln − 1.7102In)

■ P
(
PT P

)−1
PT v1 - The L2-projection of v1 onto Range(P)

■ P
(
PT AP

)−1
Av1 - The coarse correction applied to v1

0 10 20 30 40 50 60 70 80 90

−0.5

0

0 10 20 30 40 50 60 70 80 90

−0.5

0

Toward an AMG method for the indefinite Helmholtz equation - R. Falgout, M. Lecouvez, P. Ramet, C. Richefort 18th CMCIM - 04/16/24 18



IV.1 - The problem of the classical coarse correction

Let P be a n × 1 interpolation operator whose range approximates a small eigenvector v1 as follows

Range (P) =

v1 +
∑
j>1

ϵjvj

 .

Define p1 the “eigenvector pollution” of v1 such that

p1 := v1 − P(PT P)−1PT v1 = −
∑
j>1

ϵjvj .

This eigenvector pollution produces an “eigenvalue pollution” δ1 so the damping factor of v1 is

vT
1 Ev1 = 1 − λ1

λ1 + δ1
with δ1 :=

∑
j>1

ϵ2
j λj ≥ 0.

A s.p.d : δ1 ≥ 0 ⇒ 0 < vT
1 Ev1 < 1 The coarse correction never amplifies the error
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IV.1 - The problem of the classical coarse correction

Let P be a n × 1 interpolation operator whose range approximates a small eigenvector v1 as follows

Range (P) =
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Define p1 the “eigenvector pollution” of v1 such that
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1 Ev1 < 1 The coarse correction never amplifies the error

Toward an AMG method for the indefinite Helmholtz equation - R. Falgout, M. Lecouvez, P. Ramet, C. Richefort 18th CMCIM - 04/16/24 22



IV.1 - The problem of the classical coarse correction

Let P be a n × 1 interpolation operator whose range approximates a small eigenvector v1 as follows

Range (P) =

v1 +
∑
j>1

ϵjvj

 .

Define p1 the “eigenvector pollution” of v1 such that

p1 := v1 − P(PT P)−1PT v1 = −
∑
j>1

ϵjvj .

This eigenvector pollution produces an “eigenvalue pollution” δ1 so the damping factor of v1 is

vT
1 Ev1 = 1 − λ1

λ1 + δ1
with δ1 :=

∑
j>1

ϵ2
j λj .

A indefinite : −1 < vT
1 Ev1 < 1 ⇒ δ1 ≥ − 1

2λ1 ⇒ The coarse correction may amplify the error
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IV.2 - Alternative coarse correction

The shape of the coarse correction vector is correct when pi is small, only the direction is wrong
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Hence, coarse correction vectors still provide information on the near-kernel space!

Toward an AMG method for the indefinite Helmholtz equation - R. Falgout, M. Lecouvez, P. Ramet, C. Richefort 18th CMCIM - 04/16/24 24



IV.2 - Alternative coarse correction
For each multigrid cycle m:

1 Create the coarse correction subspace

Wm =
[
P(PT AP)−1PT Ar (0), . . . ,P(PT AP)−1PT Ar (m)

]
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IV.2 - Alternative coarse correction
For each multigrid cycle m:

1 Create the coarse correction subspace

Wm =
[
P(PT AP)−1PT Ar (0), . . . ,P(PT AP)−1PT Ar (m)

]
2 Construct the operators involved in the below generalized Arnoldi relation

AWm = ZmHm,

where Range(Zm) = span{Aw1, . . . ,Awm} and Hm is an m × m Hessenberg matrix.
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IV.2 - Alternative coarse correction
For each multigrid cycle m:

1 Create the coarse correction subspace

Wm =
[
P(PT AP)−1PT Ar (0), . . . ,P(PT AP)−1PT Ar (m)

]
2 Construct the operators involved in the below generalized Arnoldi relation

AWm = ZmHm,

where Range(Zm) = span{Aw1, . . . ,Awm} and Hm is an m × m Hessenberg matrix.

3 Approximate the solution in the coarse correction subspace in a proper-norm

x∗ = argmin
x̃∈Range(Wm)

||b − Ax̃ ||2 = WmH−1
m Z T

m b
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IV.2 - Alternative coarse correction
For each multigrid cycle m:

1 Create the coarse correction subspace

Wm =
[
P(PT AP)−1PT Ar (0), . . . ,P(PT AP)−1PT Ar (m)

]
2 Construct the operators involved in the below generalized Arnoldi relation

AWm = ZmHm,

where Range(Zm) = span{Aw1, . . . ,Awm} and Hm is an m × m Hessenberg matrix.

3 Approximate the solution in the coarse correction subspace in a proper-norm

x∗ = argmin
x̃∈Range(Wm)

||b − Ax̃ ||2 = WmH−1
m Z T

m b

Downside of euclidean minimization : Eigenvalues are squared

⇒ vT
1 EWm v1 = 1 − λ2

1

λ2
1 + δ1

with δ1 :=
∑
j>1

ϵ2
j λ

2
j .
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 1 cycle - (Ln − 0.6252In)
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v1 P(PT AP)−1PT Av1 W1H−1

1 Z T
1 Av1

Range(W1) = span
({

P(PT AP)−1PT Av1

})
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IV.2 - Alternative coarse correction
For each multigrid cycle m:

1 Create the coarse correction subspace

Wm =
[
P(PT AP)−1PT Ar (0), . . . ,P(PT AP)−1PT Ar (m)

]
2 Construct the operators involved in the below generalized Arnoldi relation

AWm = ZmHm,

where Range(Zm) = span{Aw1, . . . ,Awm} and Hm is an m × m Hessenberg matrix.

3 Approximate the solution in the coarse correction subspace in a proper-norm

x∗ = argmin
x̃∈Range(Wm)

||b − Ax̃ ||2 = WmH−1
m Z T

m b

Downside of euclidean minimization : Eigenvalues are squared

⇒ vT
1 EWm v1 = 1 − λ2

1

λ2
1 + δ1

with δ1 :=
∑
j>1

ϵ2
j λ

2
j .
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IV.2 - Alternative coarse correction
For each multigrid cycle m:

1 Create the smoothed coarse correction subspace

Wm =
[
q(A)νP(PT AP)−1PT Ar (0), . . . , q(A)νP(PT AP)−1PT Ar (m)

]
2 Construct the operators involved in the below generalized Arnoldi relation

AWm = ZmHm,

where Range(Zm) = span{Aw1, . . . ,Awm} and Hm is an m × m Hessenberg matrix.

3 Approximate the solution in the smoothed coarse correction subspace in a proper-norm

x∗ = argmin
x̃∈Range(Wm)

||b − Ax̃ ||2 = WmH−1
m Z T

m b

Downside of euclidean minimization : Eigenvalues are squared

⇒ vT
1 EWm v1 = 1 − λ2

1

λ2
1 + δ1

with δ1 :=
∑
j>1

(
q(λ2

j )

q(λ2
1)

)ν

ϵ2
j λ

2
j .
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 1 cycle - (Ln − 0.6252In)
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v1 P(PT AP)−1PT Av1 W1H−1
1 Z T
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Range(W1) = span
({
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 1 cycle - (Ln − 0.6252In)
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 2 cycles - (Ln − 0.6252In)
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v1 P(PT AP)−1PT A · ETGv1 W2H−1
2 Z T

2 A · ETGv1
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({
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})
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 5 cycles - (Ln − 0.6252In)
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v1 P(PT AP)−1PT A · (ETG)
4 v1 W5H−1

5 Z T
5 A · (ETG)

4 v1

Range(W5) = span
({

q(A)2P(PT AP)−1PT Av1, . . . , q(A)2P(PT AP)−1PT A · (ETG)
4 v1

})
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 1 cycle - (Ln − 1.4352In)
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 2 cycles - (Ln − 1.4352In)
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 5 cycles - (Ln − 1.4352In)
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 1 cycle - (Ln − 1.7132In)

0 10 20 30 40 50 60 70 80 90

−0.2

0

0.2

α = 2.68

v1 P(PT AP)−1PT A · ETGv1 W1H−1
1 Z T

1 Av1

Range(W1) = span
({

q(A)2P(PT AP)−1PT Av1

})

Toward an AMG method for the indefinite Helmholtz equation - R. Falgout, M. Lecouvez, P. Ramet, C. Richefort 18th CMCIM - 04/16/24 39



IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 2 cycles - (Ln − 1.7132In)
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IV.2 - Alternative coarse correction

Approximation of the smallest eigenvector v1 after 5 cycles - (Ln − 1.7132In)
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V. Conclusion

With no assumption on the underlying geometry, we designed :

1 A smoother for indefinite problems that damps the desired proportion of eigenvalues.

2 Interpolation rules that propagates the oscillatory smallest eigenvectors.

3 An alternative coarse correction based on Krylov outer iterations.

Topics of further research :

1 Enable Chebyshev nodes for disjoint intervals to avoid normal equations.

2 The sparsity of the interpolation operator has to be improved drastically.

3 Reduce the number of SpMv.

A paper is in progress...
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Thanks! Any questions?



Appendix - Numerical Experiment

2D Helmholtz problem with absorbing boundary conditions, discretized with 10 points / wavelength
(i.e., kh = 0.625).

■ Number of smoothing steps ν := 2.
■ Number of test vectors κ := 30.
■ Max number of interpolation points in the LSM set-up phase is 4.
■ Multigrid stops when the relative residual norm becomes lower than 10−6.
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Figure 2: Number of iterations following the wavenumber k
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Appendix - Numerical Experiment
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Figure 3: Number of iterations following the wavenumber k
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Appendix - Numerical Experiment
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Figure 4: Operators complexity following the wavenumber k - ϕ :=
∑

l nnz(Al )
nnz(A0)
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