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TOWARD AN ALGEBRAIC MULTIGRID METHOD FOR THE1

INDEFINITE HELMHOLTZ EQUATION ∗2

ROBERT D. FALGOUT† , MATTHIEU LECOUVEZ‡ , PIERRE RAMET§ , AND CLÉMENT3

RICHEFORT‡4

Abstract. It is well known that multigrid methods are very competitive in solving a wide range5
of SPD problems. However achieving such performance for non-SPD matrices remains an open prob-6
lem. In particular, three main issues may arise when solving a Helmholtz problem : some eigenvalues7
may be negative or even complex, requiring the choice of an adapted smoother for capturing them,8
and because the near-kernel space is oscillatory, the geometric smoothness assumption cannot be9
used to build efficient interpolation rules. Moreover, the coarse correction is not equivalent to a pro-10
jection method since the indefinite matrix does not define a norm. We present some investigations11
about designing a method that converges in a constant number of iterations with respect to the12
wavenumber. The method builds on an ideal reduction-based framework and related theory for SPD13
matrices to improve an initial least squares minimization coarse selection operator formed from a set14
of smoothed random vectors. A new coarse correction is proposed to minimize the residual in an15
appropriate norm for indefinite problems. We also present numerical results at the end of the paper.16

Key words. Algebraic Multigrid, Helmholtz Equation, Linear Algebra, Indefinite matrix17

1. Introduction. The numerical simulation of various physical phenomena leads18

to potentially very large linear systems of equations written Ax = b in matrix form.19

These systems can be solved directly by a convenient factorization of A, or iteratively20

by computing and refining an approximation of the solution x starting from an initial21

guess x0. Multigrid methods [7, 26] work iteratively and are known to be scalable22

and quasi-optimal for solving sparse linear systems of equations for many classes of23

problems. Each multigrid iteration combines a projection method on a coarser space24

to capture the eigenvectors associated with the small eigenvalues, and a few iterations25

of a smoothing method to capture the remaining eigenvectors generally associated26

with the large eigenvalues.27

28

In this paper, we investigate an algebraic multigrid method (AMG) for the indefi-29

nite Helmholtz equation. We start by introducing an alternative smoother and new30

interpolation rules. Thereafter, we demonstrate that the coarse correction process31

can easily amplify the error in the indefinite case, and therefore needs to be updated.32

Finally, numerical experiments are presented in the last section.33

34

To simplify the discussion in what follows, we use the term ”small/large eigenvec-35

tor” to designate an eigenvector with small/large eigenvalue. We similarly say ”pos-36

itive/negative eigenvector” when referring to the eigenvalue sign. Additionally, capi-37

tal italic Roman letters (A,E, P ) denote matrices and bold lowercase letters denote38

vectors (u,v, r,α). Other lowercase letters denote scalars (σ, λ), while capital calli-39

graphic letters denote sets and spaces (C,F ,K).40
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1.1. Algebraic Multigrid methods. While errors composed of small eigenvec-41

tors are known to be more difficult to eliminate for most iterative methods, multigrid42

methods accelerate the convergence to the solution by projecting them onto a coarser43

space. The coarse projection of those difficult eigenvectors is repeated recursively un-44

til reaching a small enough coarse matrix for which the factorization by a direct solver45

is fast. Assuming the matrix is symmetric positive definite (SPD), the best approxi-46

mation of the solution within the coarse projection space is computed by minimizing47

the approximation error in A-norm. The core idea in multigrid methods is to make48

this projection practical by recursively defining smaller subspaces by way of sparse49

operators Pl, called interpolation operators. The computation of x is accelerated by50

way of a hierarchy of coarse problems Alxl = rl, where rl is the residual of the level51

l in the grid hierarchy. Pl determines the coarse projection subspace of the level l,52

and transfers the information from level l + 1 to l. In most symmetric applications,53

coarse matrices are constructed following the Galerkin formula Al+1 = PT
l AlPl. The54

two-level coarse correction operator denoted by55

(1.1) ΠA (P ) := P (PTAP )−1PTA56

is an A-orthogonal projector onto range(P ) and coincides with a minimization problem57

in the SPD case such that58

(1.2) argmin
x̃∈span{P}

||x− x̃||A = ΠA (P ) r.59

Two-level methods actually need both types of solvers. The coarse correction (1.1)60

requires a direct method for factorizing the coarsest matrix whereas the remaining61

error is eliminated on the fine level through a few iterations of an iterative method62

called a smoother. From Equation (1.1), the error propagation matrix for the coarse63

correction of a two-level method is64

(1.3) E = I −ΠA (P ) .65

Likewise, the error propagation matrix for the smoother is66

(1.4) EM = I −M−1A67

where M−1 is an approximation of A−1. The smoother is applied before each restric-68

tion and after each interpolation, as illustrated in Algorithm 1.1.69

Algorithm 1.1 Two-level cycle

1: Inputs : b right-hand side, x̃ approximation of x or initial guess, r = b−Ax̃ residual
2: M smoother, P interpolation operator
3: for j = 1, ν do
4: x̃← x̃+M−1r
5: r ← b−Ax̃
6: end for
7: rC ← PT r
8: ẽC ← Solve(PTAP, rC)
9: x̃← x̃+ P ẽC
10: r ← b−Ax̃
11: for j = 1, ν do
12: x̃← x̃+M−1r
13: r ← b−Ax̃
14: end for
15: Output : x̃ approximation of x at the end of the cycle

This manuscript is for review purposes only.



TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 3

Finding a smoother and a coarse correction that are complementary is a major con-70

cern in the design of the method. Moreover, the context in which a multigrid method71

is applied determines what kind of operators should be used in the method. In par-72

ticular, the near-kernel space of smallest eigenvectors is especially important in the73

design of interpolation.74

75

In elliptic problems such as the Laplace equation whose spectrum is illustrated in Fig-76

ure 1.1, the convergence of multigrid methods is well known. The matrix A is SPD,77

so smoothers like w-Jacobi or Gauss-Seidel are known to be good smoothers since78

they damp the large eigenvectors without modifying the small ones. In this elliptical79

case, these small and large eigenvectors are characterized by low and high frequency80

oscillations respectively. Hence, while the smoother damps the oscillatory modes, the81

interpolation must target the slowly varying modes associated with small eigenvalues82

(see Figure 1.1b). For this reason, the geometric smoothness of the near-kernel space83

is generally a key assumption, and makes the construction of good interpolation rules84

more convenient in the initialization of the method.85

0 20 40 60 80 100

0

2

4

i

λ
i

(a) Eigenvalues

0 20 40 60 80 100

−0.1

0

0.1

v
i

(b) Eigenvectors

Fig. 1.1: Laplace eigenvalues and three smallest eigenvectors

Likewise in classic algebraic multigrid [4, 23, 27, 24, 12], the interpolation operators86

are designed to target what is called algebraically smooth components. The smoothed87

aggregation method [10] is particularly efficient for solving problems with an a pri-88

ori known near-kernel space, for instance in diffusion [29] or elasticity [28] where the89

target small eigenvectors are the constant vector and rigid body modes respectively.90

Those vectors are split between disjoint aggregates over the entire domain to initiate a91

tentative block interpolation operator. A few smoothing iterations are applied to the92

tentative interpolation operator, extending its pattern and removing high frequency93

components from its range. Usually, a few iterations of Jacobi relaxation are enough,94

but this step of energy reduction has been generalized to Krylov methods such as the95

conjugate gradient [21] by enforcing sparsity constraints in the Krylov space to keep96

a practical interpolation operator. If near-kernel space information is lacking, test97

vectors can be computed algebraically, as in adaptive smoothed aggregation [6].98

99

Furthermore, because the choice of the interpolation strategy is essential in the con-100

vergence of the method, an ideal framework maximizing the complementarity between101

the smoother and the coarse correction [13] has been established to guide algorithm102

development. While this idealistic scenario of convergence is mostly used as a theo-103

retical tool, some reduction-based methods enable a good approximation of the ideal104

interpolation operator.105
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4 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

1.2. Why Helmholtz problems are difficult for multigrid. The Helmholtz106

equation (1.5) involves indefinite matrices with potentially wide and oscillatory near-107

kernel spaces [11]. This equation is our target in this paper.108

(1.5) (Continuous Helmholtz problem) ⇔
{

−∆u− k2u = f on Ω
+ b. c. on ∂Ω

109

In fact, the Helmholtz equation can be seen as a shifted Poisson equation, where110

geometrically smooth eigenvectors (i.e., low Fourier modes, see Figure 1.1b) can be111

negative eigenvectors because of the shift. In the same way, the smallest eigenvectors112

of the shifted Laplacian are higher in frequency (see Figure 1.2b).113
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Fig. 1.2: Helmholtz eigenvalues and three smallest eigenvectors

This complication breaks the near-kernel space geometric smoothness assumption, a114

keystone of many multigrid methods. To design a coarse correction and smoothers115

that are complementary in this context, interpolation rules must reproduce the near-116

kernel oscillation, and contrary to usual relaxation methods, smoothers have to deal117

with both positive and negative eigenvalues. More importantly, the coarse correction118

is not equivalent to a minimization problem anymore since the indefinite matrix does119

not define a norm (i.e., the equality (1.2) is not valid for Helmholtz). Whereas the120

coarse correction is guaranteed to not amplify the error for SPD matrices, the ap-121

proximation error can be amplified in the indefinite case because the spectrum of the122

matrix has both signs.123

124

For these reasons, finding a recurring process to build a scalable multilevel method125

is still an open question. Multiple correction [19], wave-ray [5, 18], and Complex-126

Shifted Laplacian [9] approaches have already been investigated to address this issue.127

In this paper, we present a fully algebraic approach built on ideal reduction-based128

ideas, and demonstrate its potential for solving the Helmholtz problem with constant129

iteration count independent of the wavenumber k. Certain discretization matrices re-130

sulting from the continuous problem (1.5) can be non-symmetric due to the boundary131

conditions. To center the discussion on the indefinite nature of Helmholtz, the next132

approaches address the symmetric indefinite shifted laplacian matrix arising from the133

following 5-pts stencil134

(1.6) Â =

 −1

−1 4− (kh)
2 −1

−1

 ,135

where kh is the shift and h the step size. In Section 2, we start by presenting a normal136

equation polynomial smoother specifically designed to damp the desired proportion137

This manuscript is for review purposes only.



TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 5

of largest eigenvalues independently of their signs, while interpolation rules for prop-138

agating oscillatory near-kernel information are established in Section 3. The Section139

4 gives more details on why the indefiniteness can corrupt the coarse correction by140

introducing a concept of pollution and Section 5 exposes an alternative coarse correc-141

tion to the classical one which avoids some divergence scenarios. Finally, Section 6142

presents benchmarks of this new multigrid method for different Helmholtz problems,143

with varying shift kh and wavenumber k.144

145

In this paper, vi denotes the ith eigenvector of A associated with the eigenvalue146

λi. Moreover, we always assume the eigenvalues are ordered in magnitude (i.e.,147

∀i < n , |λi| ≤ |λi+1|) such that Vc := [v1, . . . ,vnc ] and Vf :=
[
vnc+1 , . . . ,vn

]
148

contain the small and large eigenvector sets of size nc and nf respectively. Naturally,149

the full set of eigenvectors are given by V = [Vc, Vf ], and n = nc + nf .150

2. Polynomial Smoothers for Indefinite Problems. Knowing the behavior151

of the smoother on the spectrum is interesting to guarantee the effectiveness of the152

cycle. Here, the smoother must damp large positive and negative eigenvalues, which153

is problematic for most standard methods. Generally, a polynomial method with154

degree greater than one can work. Krylov iterations are good polynomial smoothers155

in the indefinite case but they minimize the global residual norm regardless of the156

eigenvalues and are non-linear because of their right-hand side dependence. A linear157

polynomial is more convenient for generating the set of smoothed candidates vectors158

needed to construct the interpolation operator described in Section 3.159

2.1. General considerations on polynomial smoothers. One way to en-160

sure that both positive and negative eigenvectors are damped is to consider a normal161

equation polynomial smoother i.e., a smoother working on A2. In general, the de-162

gree m of the polynomial must be greater than one to damp positive and negative163

eigenvectors, as the polynomial illustrated in Figure 2.1 does. Resorting to normal164

equations enables the polynomial to treat eigenvalues with respect to their magnitude165

rather than their sign, which is equivalent to working with even powers of A if the166

matrix is hermitian, which is what we assume in this section. In the future, it might167

be interesting to investigate more general polynomials with odd exponents. In this168

first approach, we use the convenient symmetry property enabled by normal equations169

in the Chebyshev framework.170

171

Let pm(A2) be a polynomial of degree m that approximates A−2. From Equation172

(1.4), let qm+1(A
2) be the associated error propagation matrix of the polynomial173

smoother such that174

(2.1) qm+1(A
2) := I − pm(A2)A2.175

Additionally, let v be an eigenvector of A associated with the eigenvalue λ. Hence,176

(2.2) qm+1(λ
2)v = (1− pm(λ2)λ2)v.177

In multigrid methods, a good smoother eliminates the large eigenvalues that the coarse178

correction does not capture and vice-versa. Let a and b be real scalars such that179

0 < a < b. Assume these large squared eigenvalues are contained in the interval [a, b].180

The construction of a relevant interval will be discussed in the next section. Since181

the polynomial smoother pm(A2) is an inverse approximation of A−2, the polynomial182

function pm(x) can be constructed to approximate the function x−1 [16] from m +183

This manuscript is for review purposes only.



6 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

1 interpolation points xi selected within the interval of large eigenvalues [a, b]. In184

particular, selecting the scaled first kind Chebyshev polynomial roots as interpolation185

points186

(2.3) xi :=
b+ b

2
+

b− a

2
cos

(
(2i+ 1)π

2(m+ 1)

)
, i = 1, . . . ,m+ 1.187

gives the minimal error propagation function qm+1(x) on the interval [a, b]. The188

polynomial is constructed to satisfy the m+ 1 following constraints189

(2.4) xi ∈ [a, b] , pm(xi) =
1

xi
⇔ qm(xi) = 0 , i = 1, . . . ,m+ 1.190

Because the selected nodes xi are the roots of qm+1 and qm+1(0) = 1, then the191

Lagrange formula yields192

(2.5) pm(x) :=

m+1∑
i=1

1

xi

m+1∏
j=1 , j ̸=i

x− xj

xi − xj
, qm+1(x) =

m+1∏
i=1

x− xi

−xi
.193

First kind Chebyshev polynomials are defined by the three-terms recurrence relation194

(2.6) ∀t ∈ [−1, 1] , C0(t) = 1 , C1(t) = t , Cm+1(t) = 2tCm(t)− Cm−1(t).195

The roots of qm+1 are the roots of Cm+1 but scaled on [a, b], the error propagation196

function qm+1 can be derived as the following re-scaled Chebyshev polynomial197

(2.7) qm+1(x) =
Cm+1

(
b+a−2x

b−a

)
Cm+1

(
b+a
b−a

) .198

As explained in [2], the upper bound of Cm+1(t) on [−1, 1] equals one for t = 1199

and is strictly monotonically increasing for t > 1. Accordingly, the supremum of200

the numerator on [a, b] equals one for x = a, and the denominator is strictly greater201

than one because b+a
b−a > 1. Last, qm+1(0) = 1 and qm+1 is strictly monotonically202

decreasing for x ∈ [0, a]. As a consequence, |qm+1(x)| < 1 on the interval (0, b].203

Assuming b ≥ λ2
max, then the spectral radius ρ

(
qm+1(A

2)
)
< 1. In other words, the204

smoother is a convergent iterative method and does not amplify any region of the205

spectrum.206

2.2. Constructing an appropriate target interval. One way to determine207

an interval [a, b] without preliminary information [2, 1] is to compute a few power208

iterations to determine b by an overestimation of the largest eigenvalue, and choose209

the lower bound a according to b, for example a = 1
2b. However, to respect the com-210

plementarity principle, the percentage of damped eigenvalues by the smoother must211

approximate the proportion of non-coarse variables (i.e. the nf largest eigenvalues212

in our case). For instance, if a coarse level is one quarter the size of the finer level,213

then three-quarters of the largest amplitude eigenvectors should be damped by the214

smoother, while the coarse correction deals with the remaining small eigenvectors.215

Consequently, since eigenvalues are not necessarily uniformly separated, a should be216

determined so that a proportion of eigenvalues belongs to the interval [a, b]. More-217

over, the spectral distribution of coarse matrices are unknown in a multi-level setting.218

Therefore, a good interval should satisfy219

(2.8) λ2
i ∈ [a, b] ⇔ λi ∈

[
−
√
b,−

√
a
]
∪
[√

a,
√
b
]
, i = nc, . . . , nf .220
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TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 7

While this interval can be fixed using geometric information, we first compute a221

rough approximation of the matrix spectral density as detailed in [17]. This spectral222

density permits to determine which portion of the spectrum should be damped by223

the smoother, and is defined by the distribution function ϕ(t) that represents the224

probability of finding an eigenvalue at each point t ∈ [−1, 1]. We set the lower bound225

a of the Chebyshev node interval in a second step so that the probability within226

the interval equals the target proportion, for instance half of the total area in a227

scenario of exact balance between coarse and non-coarse variables. As defined in (2.6),228

the distribution function ϕ is approximated by a linear combination of orthogonal229

Chebyshev polynomial functions, such that230

(2.9) ϕ(t) =

∞∑
k=1

µkCk(t) ≈
nµ∑
k=1

µkCk(t).231

Because Chebyshev functions are naturally defined over [−1, 1], the spectral density232

function must evaluate the spectral density of the scaled matrix B = 2
bA

2−I. Since b233

is assumed to bound the eigenvalues of A2, the spectrum of B belongs to [−1, 1]. The234

coefficients µk are then determined by a moments matching procedure, which gives235

(2.10) µk =
2− δk0
nπ

× Trace(Ck(B)).236

Here, n corresponds to the matrix size and δk0 the Kronecker symbol. The trace237

can be approximated by a stochastic trace estimation from a set of nvec random238

and orthogonal vectors zl, where each element of these vectors is chosen following a239

normal distribution with zero mean and a unit standard deviation. Therefore, the240

trace approximations are given by241

(2.11) Trace(Ck(B)) ≈ 1

nvec

nvec∑
l=1

zT
l Ck(B)zl , k = 1, . . . nµ.242

According to (2.11), each trace can be estimated by a sample mean of nvec products243

zT
l Ck(B)zl, and the nµ vectors Ck(B)zl can be computed from the three-term re-244

currence defined in (2.6). Once the distribution function ϕ is approximated following245

Equation (2.9), a rough area approximation by trapezoid rule yields a correct lower246

bound that satisfies a proportion around
nf

n . This lower bound only needs to be247

remapped on the initial interval to return the correct value for a. The interval [a, b]248

constitutes a purely algebraic interval in which the polynomial smoother is the most249

efficient. The bounds a and b are represented in Figure 2.1, where x50% illustrates a250

theoretical lower bound target for the shifted laplacian matrix resulting from (1.6).251

Last, the total number of matrix vector products required by the spectral density252

approximation step for the construction of a relevant interval is nvec × nµ.253

3. Constructing good interpolation rules. Interpolation operators are used254

both to construct the coarse level matrices and to transfer information across levels.255

SPD and geometric smoothness assumptions cannot be used to determine appropriate256

interpolation operators in our case. Some methods such as smoothed aggregation257

[10, 20] and bootstrap-AMG [3] use candidate vectors that are close to the near-258

kernel space to design the interpolation rules. These test vectors are either deduced259

from geometric information [5, 22] or algebraically as in adaptive multigrid methods260

[6]. Here, we prefer to use a fully algebraic and recurring process to create our261
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Fig. 2.1: Spectrum of the polynomial smoother error propagation matrix for kh = 1.65

interpolation operators. Candidate vectors will be generated from random vectors262

smoothed by the polynomial presented in Section 2, and used by the least squares263

minimization framework to determine good fine variable interpolation rules. This264

initial least squares interpolation operator is used as a coarse variable operator in the265

ideal reduction-based framework [13].266

3.1. Ideal framework. Even though the ideal framework requires an SPD as-267

sumption and has not been generalized to indefinite problems, the idea of removing268

components that are handled by the smoother is of particular interest for capturing269

the near-kernel space of oscillatory problems, and will be our guiding principle. Ac-270

cordingly, we assume A is SPD in this section dedicated to the ideal framework.271

272

Following [13], let C and F be complementary coarse and fine variable subsets of273

Ω respectively of size nc and nf . Let RT : Rnc → Rn and S : Rnf → Rn be coarse274

and fine variable operators respectively, such that RS = 0. The space defined by the275

coarse variable operator RT must be handled by the coarse correction, whereas the276

fine variable operator S defines a space where smoothing must operate in order to re-277

spect the complementarity principle. The Ideal Interpolation operator is a theoretical278

operator that is the best that satisfies RP = Ic, in the sense that it minimizes the279

difference between variables and interpolated coarse variables, within a space that is280

the most complementary to the range of the smoother M . The ideal interpolation281

operator is given by282

(3.1) P∗ = argmin
P

(
max
e̸=0

||(I − PR)e||M
||e||A

)
= (I − S(STAS)−1STA)RT .283

Let P:,i and RT
:,i be the ith columns of P and RT respectively. Each column of the284

ideal interpolation operator is therefore defined by285

(3.2) P:,i = RT
:,i − si, with si = argmin

s̃∈Range(S)

||RT
:,i − s̃||A = S(STAS)−1START

:,i286

In fact, the matrix that multiplies each column of RT in (3.2) and (3.1) is a pro-287

jection operator onto the A-orthogonal complement of the range of S. The ideal288

interpolation operator is constructed by removing components of range
(
RT
)
that are289

not A-orthogonal to range(S). Under the assumption that the smoother captures the290
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TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 9

space spanned by S, the best coarse matrix is therefore a matrix where S-related in-291

formation is subtracted. Even if applying (STAS)−1 is too expensive, it gives insight292

for building a more practical method.293

3.2. Least Squares Minimization Interpolation Operator. As mentioned294

at the beginning of Section 3.1, demonstrating that the interpolation operator (3.1)295

is ideal in the theoretical framework of [13] requires A to be symmetric positive-296

definite. However, the reduction viewpoint which consists in cleaning the range of297

interpolation by removing S-related components is of interest. In addition, numerical298

experiments reveal that the classical coarse variable operator RT = [0 Ic]
T does not299

have good approximation property for the oscillatory near-kernel space that char-300

acterizes Helmholtz. Therefore, a new coarse variable operator has to be designed301

algebraically. Using the smallest eigenvectors Vc from Section 3.1 to enforce the rep-302

resentation of the near-kernel space within the interpolation range is not practical.303

Instead, we construct a set of vectors approximating an oscillatory and potentially304

large near-kernel space by using the normal equations polynomial smoother developed305

in Section 2. In this section, we present a coarse variable operator R̂T of size n× nc306

constructed by a least squares minimization strategy [3]. Let the columns of T be a307

set of κ smoothed random vectors zl approximating the near-kernel space such that308

(3.3) T:,l = qm+1(A
2)zl , l = 1, . . . , κ.309

where T:,l designates the lth column of the set T . We assume a C/F splitting with nc310

and nf their respective size. C-points are interpolated to the finer level with a sim-311

ple injection rule, while interpolation rules of F-points are determined by the least312

squares minimization method presented in this section. We let R̂T have the form313

(3.8), where RT
f designates the block of interpolation for the F-points.314

315

Let i be an F-point and r̂i the vector containing the non-zero elements of the ith316

row of R̂T . The idea consists in constructing each F-point interpolation rule by min-317

imizing the squared difference between F-values of the near-kernel candidate vectors318

and the interpolation from their connected C-points in Ci. Denote by Ti,: a row vector319

containing the ith values of each test vector, and TCi,l a vector containing the values320

in T:,l of the C-points that are connected to variable i. Then321

(3.4) ∀i ∈ F , r̂i = argmin
r̂∈Ccard(Ci)

κ∑
l=1

wl (Ti,l − r̂ · TCi,l)
2
=: argmin

r̂∈Ccard(Ci)

Li(r̂)322

where wl are scaling weights (for instance wl = 1/|λl| if T contains near-kernel eigen-323

vectors). Finding the minimum of the convex loss function Li is equivalent to solving324

(3.5) ∇Li(r̂i) = 0.325

Equation (3.5) can be rewritten element-wise326

(3.6)
∂Li(r̂i)

∂r̂ij
=

κ∑
l=1

2wl(Ti,l − r̂i · TCi,l)TCij ,l = 0 , ∀j = 1, . . . , card(Ci).327

Finally, (3.6) leads to a system of linear equations to solve for each fine variable i328

(3.7) r̂iTCi
WTT

Ci
= TiWTT

Ci
329
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The matrix is full rank and the solution of Equation (3.7) is unique if we have at330

least κ = max i {Card(Ci)} locally linearly independent test vectors. Even if it331

is statistically always the case when starting from random candidate vectors, the332

matrix singularity can be detected during the factorization. In that special case, a333

pseudo-inverse can be computed to find an optimal solution in the least squares sense.334

3.3. Ideal approximation from least squares coarse operator. In Section335

3.2, we presented a coarse variable operator for Helmholtz designed by a least squares336

minimization strategy. Using the framework presented in 3.1, define337

(3.8) R̂T =

[
RT

f

Ic

]
and Ŝ =

[
If

−Rf

]
338

where R̂T is the least squares coarse variable operator presented in Section 3.2 and339

RT
f is its F-points interpolation block. Note that R̂Ŝ = 0 as required. Hence, since340

the least squares operator is designed to propagate the candidate vectors that are341

composed of small eigenvectors due to the Chebyshev polynomial smoother of Section342

2, the space spanned by Ŝ is, by orthogonality, mostly composed of large eigenvectors.343

Accordingly, the aim of using the ideal framework in this oscillatory context is to im-344

prove the coarse variable operator by removing components that are already handled345

by the smoother.346

347

However, two major issues arise in the use of the ideal interpolation operator (3.1).348

The first is a general concern related to the fine block ŜTAŜ, which is usually not349

practical to invert, and would lead to a dense interpolation operator P̂ . To circumvent350

this problem, an approximation based on sparsity constraints must be applied. The351

second issue is related to the indefiniteness of the initial matrix. Indeed, as shown by352

the equation (3.2), applying the left operator is equivalent to solving a minimization353

problem in A-norm. However, such a norm does not exist in the indefinite case. Ignor-354

ing this problem may still give interesting results in practice, but we consider instead355

the ATA-norm to ensure the effectiveness of the interpolation operator. Since Ŝ is356

sparse, we control the sparsity of P̂ by restricting the search space to a few columns357

of Ŝ only. Define Xi to be the injection operator of ones and zeros of size nf × ni358

with ni ≤ nf that selects ni columns of Ŝ, ŜXi. From (3.2), let si be the solution of359

the ideal minimization problem such that360

(3.9) si := argmin
s̃∈Range(ŜXi)

||R̂T
:,i − s̃||ATA = ŜXi

(
XT

i Ŝ
TATAŜXi

)−1

XT
i Ŝ

TATAR̂T
:,i.361

Accordingly, columns of the reduction-based interpolation operator are computed by362

(3.10) P̂:,i = R̂T
:,i − si = R̂T

:,i − ŜXiρni ,363

where ρni
is the solution of the ni × ni linear system364

(3.11) XT
i Ŝ

TATAŜXiρni = XT
i Ŝ

TATAR̂T
:,i.365

The choice of the non-zero pattern of P̂ must satisfy a good trade-off between ap-366

proximation properties of the near-kernel space and complexity. While improving the367

sparsity of this interpolation operator is a topic of future research, one strategy is368

to choose the columns of Ŝ based on the entries of ŜTATAR̂T
:,i. In fact, each entry369
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corresponds to the scalar product between a column of Ŝ and R̂T
:,i in ATA-norm. A370

large entry designates a column of Ŝ that contributes a lot to the solution of the371

minimization problem (3.9). The column selection phase iterates until the entries372

associated with the selected columns represent a percentage τ of the entire set of373

non-zero entries. At each iteration, the column associated with the largest entry of374

ŜTATAR̂T
:,i is selected, which is equivalent to extending Xi with the euclidean basis375

vector with one at the index of the chosen column and zeros elsewhere. Because the376

columns with the largest entries in ŜTATAR̂T
:,i are selected first, the set of selected377

columns is the smallest set that satisfies378

(3.12) ||XiŜ
TATAR̂T

:,i||2 ≥ τ × ||ŜTATAR̂T
:,i||2, with τ ∈ [0, 1] .379

We note that even though setting τ = 1 selects all the column associated with non-380

zero entries in the right-hand side, the remaining columns associated with zero entries381

are omitted, and therefore the matrix XT
i Ŝ

TATAŜXi still correspond to a principle382

sub-matrix of ŜTATAŜ.383

384

The Figure 3.1 represents the error of interpolation of every eigenvector for two differ-385

ent shifted problems resulting from (1.6) with respect to τ . The red dots correspond386

to the error when no ideal approximation is used at all (i.e. τ = 0 and therefore387

P̂ = R̂T ), whereas blue and green dots represent the error of interpolation for τ = 0.5388

and τ = 1 respectively. The resulting operator complexity for a two-level method are389

given by Table 6.1 of the last section. Because the subspace ŜXi grows with τ , larger390

values of τ lead to denser interpolation operators. For both shifts, the portion of the391

spectrum for which the least-squares minimization interpolation operator is the most392

accurate corresponds to the smallest eigenvalues in magnitude. This feature is an393

expected and desired effect of generating the set of test vectors from the polynomial394

smoother introduced in Section 2. However, the interpolation error increases with395

the shift. Therefore, the ideal approximation correction becomes necessary as the396

problem gets more indefinite. In particular, Figure 3.1 shows that the interpolation397

error decreases as more columns of Ŝ are added to approximate the ideal interpolation398

operator. One drawback of this gain in accuracy is the fill-in of the matrix.
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Fig. 3.1: Error of interpolation with respect to the shift and sparsity

399
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4. Alteration of the coarse correction in the indefinite case. While both400

smoothers and interpolation operators are now designed to face two inconvenient prop-401

erties of the Helmholtz equation, signed eigenvalues and oscillatory near-kernel space,402

the effectiveness of the classical coarse correction is not guaranteed in an indefinite403

context. Worse still, the classical coarse correction can amplify the error associated404

with small eigenvectors although P̂ has good approximation properties, leading to405

a divergence of the method. Before discussing an alternative coarse correction, let406

us highlight how the matrix indefiniteness can corrupt the classical coarse correction407

with a simple illustration. The Figure 4.1 plots the smallest eigenvector of a two-

0 10 20 30 40 50 60 70 80 90
−0.2

−0.1

0

0.1

0.2

v1 Π(P )v1 ΠA (P )v1

0 10 20 30 40 50 60 70 80 90
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0.1

0.2

v1 Π(P )v1 ΠA (P )v1

(a) kh = 0.625
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−0.2

−0.1

0

0.1

0.2

0 10 20 30 40 50 60 70 80 90
−0.2

−0.1

0

0.1

0.2

(b) kh = 1.71

Fig. 4.1: Smallest eigenvector v1 (2D Shifted Laplacian) (blue) vs. its l2-projection
Π (P )v1 (green) vs. its coarse correction ΠA (P )v1 (red), for two different shifts

408

dimensional shifted Laplacian matrix (1.6) in blue for two different shifts. The shift409

of 4.1b is greater than the shift of 4.1a. As expected, the higher the shift, the more410

oscillatory the problem. In red are plotted the results of the coarse correction ΠA(P )411

defined in Equation (1.1) when applied to the blue eigenvectors. In this example, the412

coarse correction is implemented with the reduction-based interpolation operator in-413

troduced in Section 3. Additionally, the green curves represent the best representation414

of both eigenvectors in the interpolation range by way of the l2-projection operator415

(4.1) Π(P ) := P (PTP )−1PT
416

First, note that the blue and green curves align almost perfectly in both sub-figures,417

which means that the interpolation range introduced in Section 3 offers a good ap-418

proximation to the potentially oscillatory smallest eigenvector. In both cases, P̂ has419

good approximation properties. In Figure 4.1a, where the problem is discretized with420

10 points per wavelength, the red coarse correction vector is relatively close to the421

blue eigenvector. The slight difference between both is only a matter of amplitude.422

In contrast, while the oscillations of the coarse correction vector illustrated in Figure423

4.1b are synchronized with the oscillations of the smallest eigenvector, its direction424
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is reversed. In that case, while the interpolation range is almost perfect, the error of425

the smallest eigenvector is not reduced by the coarse correction, but amplified.426

At this stage, let us define a concept of pollution to better understand how the matrix427

indefiniteness can corrupt the coarse correction.428

Theorem 4.1. Let A be an n × n matrix, and V its orthonormal set of eigen-429

vectors, each associated with the corresponding element of the diagonal eigenvalue430

matrix Λ. Also, let P be an n × nc interpolation operator. Assuming V T
c P is non-431

singular, we write the linear decomposition of the post-scaled interpolation operator as432

P
(
V T
c P

)−1
= V K, where K is the following n× nc matrix of coefficients433

(4.2) K := V TP (V T
c P )−1 =

[
Ic
Kf

]
.434

The block Ic corresponds to the identity matrix of size nc × nc, and the block Kf is435

a nf × nc matrix defined by Kf := V T
f P (V T

c P )−1. The interpolation error of the436

eigenvector vi of Vc is given by437

(4.3) vT
i (I −Π(P ))vi = 1−

[(
Ic +KT

f Kf

)−1
]
i,i

,438

where [·]j,k denotes the entry (j, k) of the bracketed matrix.439

Proof. First, note that post-multiplying P by any non-singular matrix Mc of size440

nc × nc does not change the l2-projection (4.1)441

(PMc)((PMc)
T (PMc))

−1(PMc)
T = PMcM

−1
c (PTP )−1M−T

c MT
c PT

442

= P (PTP )−1PT = Π(P ) .(4.4)443444

In particular for Mc = (V T
c P )−1, then PMc = P (V T

c P )−1 = V K implies that445

I −Π(P ) = I − (V K)((V K)T (V K))−1(V K)T446

= I − V K(KTK)−1KTV T .(4.5)447448

For any eigenvector vi of A, let ei := V Tvi be the canonical unit vector with a one at449

the ith position and zero elsewhere. Assuming vi ∈ Vc (i ≤ nc), the vector ci := KTei450

of size nc is also a unit vector with a one at the ith position. Consequently,451

vT
i (I −Π(P ))vi = vT

i V (I −K(KTK)−1KT )V Tvi452

= eTi (I −K(KTK)−1KT )ei453

= 1− cTi (K
TK)−1ci = 1−

[
(Ic +KT

f Kf )
−1
]
i,i

.(4.6)454
455

Since the l2-projection is unchanged by post-multiplication of P , we assume for what456

follows that K has the form (4.2). The block Kf designates what we call “pollution”.457

This block of pollution causes the slight difference between an eigenvector vi of Vc458

and its best representation in the range of P . When a column of Kf is null, the459

interpolation error of the associated eigenvector equals zero, such that blue and green460

curves align perfectly. In practice however, this property is unlikely to be satisfied461

for Helmholtz, because P should be sparse for cost considerations and the smallest462

eigenvectors are usually unknown. Moreover, the near-kernel space of the Helmholtz463

equation is oscillatory. This makes the construction of good interpolation rules more464

difficult, and tends to pollute the interpolation range. While the pollution decreases465
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the convergence speed of multigrid methods for SPD problems, we demonstrate that466

it can corrupt the coarse correction and make the method diverge in the indefinite467

case, as illustrated by the reversed red vector of Figure 4.1(b).468

469

To study the effectiveness of the coarse correction, consider the contraction of the470

nc small eigenvectors Vc, assuming the nf large eigenvectors Vf are damped by the471

smoother.472

Theorem 4.2. Define A and P as in the setting of Theorem 4.1. Also, let the473

matrix K be defined as in (4.2). The contraction of an eigenvector vi of Vc after the474

coarse correction is given by475

(4.7) vT
i Evi = 1− λi

[(
Λc +KT

f ΛfKf

)−1
]
i,i

.476

477

Proof. By the same reasoning of the proof for Theorem 4.1, we note that post-478

multiplying P by any non-singular matrix Mc of size nc × nc does not change the479

coarse correction480

(4.8) (PMc)((PMc)
TA(PMc))

−1(PMc)
T = P (PTAP )−1PT

481

For PMc = P (V T
c P )−1 = V K, we have482

E = I − (V K)((V K)TA(V K))−1(V K)TA = V (I −K(KTΛK)−1KTΛ)V T .(4.9)483484

Define the euclidean basis vectors ei and ci as in the proof of Theorem 4.1. Subse-485

quently, the contraction of vi ∈ Vc is486

vT
i Evi = vT

i V (I −K(KTΛK)−1KTΛ)V Tvi487

= eTi (I −K(KTΛK)−1KTΛ)ei488

= 1− λic
T
i (K

TΛK)−1ci = 1− λi

[(
Λc +KT

f ΛfKf

)−1
]
i,i

.(4.10)489
490

Theorem 4.2 shows that the damping factors rely on a combination of the small ei-491

genvalues Λc plus the large eigenvalues Λf , such that the mix is given by the entries492

of the pollution Kf .493

494

The effectiveness of the coarse correction is well-known in the SPD case. If all ei-495

genvalues are positives, one can remark that496

(4.11) ∀i ≤ nc , 0 ≤
[(
Λc +KT

f ΛfKf

)−1
]
i,i

≤
[
Λ−1
c

]
i,i

= λ−1
i ⇒ 0 ≤ vT

i Evi ≤ 1.497

Hence, the coarse correction always operates a contraction on vi regardless the block498

of pollution Kf . In the indefinite case however, the property (4.11) does not hold. In499

fact, a necessary condition for the coarse correction to be a contraction is500

(4.12) ∀i ≤ nc ,
∣∣vT

i Evi

∣∣ ≤ 1 ⇒ 0 ≤ λi

[(
Λc +KT

f ΛfKf

)−1
]
i,i

≤ 2.501

From Equation (4.12), it follows that each diagonal entry must have the same sign as502

the associated eigenvalue, and be smaller than twice the inverse of the eigenvalue in503

magnitude. Nothing guarantee such conditions to be satisfied in the case where small504
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and large and either negative or positive eigenvalues are mixed. Especially for very505

small eigenvalues, the mix can easily lead to a diagonal entry of the opposite sign506

even though Kf is small, because its entries are weighted by the large eigenvalues507

Λf . Therefore, a good interpolation operator can still cause the coarse correction to508

amplify the error. For very near-zero eigenvalues, even a round-off error can eventually509

lead to divergence in the indefinite case. The following example better depicts how510

the pollution can cause divergence in the indefinite setting for a 2× 2 matrix.511

Example 4.3. Let A be a 2×2 matrix, and v1 and v2 its eigenvectors respectively512

associated with eigenvalues |λ1| < |λ2|. Let P be an interpolation operator of size 2×1513

targeting the smallest eigenvector v1, such that514

(4.13) P = v1 + ϵv2.515

From definition (4.2), the K matrix can be derived by516

(4.14) K = V TP
(
vT
1 P
)−1

= [v1,v2]
T · [v1 + ϵv2] =

[
1
ϵ

]
.517

From Theorem 4.2, the action of the coarse correction on v1 is given by518

(4.15) vT
1 Ev1 = 1− λ1

[(
Λc +KT

f ΛfKf

)−1
]
1,1

= 1− λ1

λ1 + ϵ2λ2
519

1
2
λ1 λ1

1

−λ1
− 1

2
λ1

-1

[
ϵ2λ2

vT
1 Ev1

Amplification area
Contraction interval

Fig. 4.2: Contraction of the coarse correction with respect to the pollution

520

The figure 4.2 depicts the action of the coarse correction on v1 with respect to the521

pollution block KT
f ΛfKf = ϵ2λ2. A first observation is that the coarse correction522

does not amplify the smallest eigenvector if eigenvalues have the same sign. If the523

eigenvalues are oppositely signed, then the coarse correction amplifies v1 for ϵ2λ2 <524

−λ1/2. Therefore, the condition on the pollution Kf = ϵ that drives the error of525

interpolation is particularly difficult respective to small and large values of λ1 and λ2.526

The next theorem derives a more general condition on the spectral radius ρ(KT
f ΛfKf )527

for the coarse correction to be a contraction of the smallest eigenvalues in the indefinite528

case based on the concept of pollution.529

Theorem 4.4. If A is indefinite, then530

(4.16) ρ
(
KT

f ΛfKf

)
≤ 1

2
|λ1| ⇒ ∀vi ∈ Vc ,

∣∣vT
i Evi

∣∣ ≤ 1531

532

This manuscript is for review purposes only.



16 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

Proof. Define MK = Ic+Λ−1
c KT

f ΛfKf . From the shape of the matrix K defined533

in Equation (4.9), we have534

V T
c EVc = V T

c V (I −K(KTΛK)−1KTΛ)V TVc535

= Ic − (KTΛK)−1Λc536

= Ic − (Ic + Λ−1
c KT

f ΛfKf )
−1Λ−1

c Λc537

= Ic −M−1
K .(4.17)538539

Hence, it follows that540

(4.18) ∀vi ∈ Vc , v
T
i Evi = eTi V

T
c EVcei = 1− eTi M

−1
K ei.541

where ei is the ith vector of the euclidean basis in Rnc . Therefore, |vT
i Evi| ≤ 1 if542

(4.19) ∀vi ∈ Vc , −1 ≤ vT
i Evi ≤ 1 ⇔ 0 ≤ eTi M

−1
K ei ≤ 2.543

We begin by deriving a condition for the right bound of (4.19), and will show that544

it also satisfies the left one. Let x and y be two vectors of Rn linked by the relation545

x = Mky. The right bound is satisfied if546

(4.20) max
x ̸=0

||M−1
K x||
||x||

= max
y ̸=0

||y||
||MKy||

=

(
min
y ̸=0

||MKy||
||y||

)−1

≤ 2.547

Therefore, the condition (4.20) is equivalent to548

(4.21) min
y ̸=0

||MKy||
||y||

≥ 1

2
.549

Let σi(M) be the ith largest singular value of a given matrix M . In a same way,550

λi (M) designates the ith largest eigenvalue in magnitude of M (we omit the matrix551

between parenthesis when referring to the initial matrix A). In addition, let us recall552

the following triangle inequality ||y + z|| ≥ ||y|| − ||z|| , ∀y, z ∈ Rnc . Thus, we have553

that554

min
y ̸=0

||MKy||
||y||

= min
y ̸=0

||y + Λ−1
c KT

f ΛfKfy||
||y||

≥ min
y ̸=0

(
1−

||Λ−1
c KT

f ΛfKfy||
||y||

)
555

= 1−max
y ̸=0

||Λ−1
c KT

f ΛfKfy||
||y||

(4.22)556

= 1− σnc

(
Λ−1
c KT

f ΛfKf

)
.557558

It follows that the condition (4.21) is satisfied if σnc
(Λ−1

c KT
f ΛfKf ) ≤ 1

2 . Finally,559

since σnc(Λ
−1
c KT

f ΛfKf ) ≤ σnc(K
T
f ΛfKf )/σ1 and the singular values coincide with560

eigenvalues in magnitude because both Λc and KT
f ΛfKf are hermitian, the right561

bound of (4.19) is satisfied if562

(4.23) |λnc

(
KT

f ΛfKf

)
| = ρ

(
KT

f ΛfKf

)
≤ 1

2
|λ1|.563

We now address the left bound of (4.19) assuming the condition (4.23) holds. Our564

goal is to prove that all diagonal entries of M−1
K are positive. In that direction, let565

F (M) be the field of values of a given matrix M of size nc such that566

(4.24) F (M) := {x∗Mx | ∀x ∈ Cnc , x∗x = 1} .567
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If M is hermitian, one can show that (e.g. [15, chapter 4])568

min
x∗x=1

x∗Mx = λmin (M) and max
x∗x=1

x∗Mx = λmax (M) .(4.25)569
570

Accordingly, let F (Λc) and F (KT
f ΛfKf ) be the field of values of Λc and KT

f ΛfKf571

respectively. Since A is non-singular, then 0 /∈ F (Λc). Therefore, the spectrum of572

Λ−1
c KT

f ΛfKf is included as follows (e.g. [14, chapter 1])573

(4.26) ∀j ≤ nc , λj

(
Λ−1
c KT

f ΛfKf

)
∈ F

(
KT

f ΛfKf

)
/F (Λc) .574

The set ratio in (4.26) has the usual algebraic interpretation such that575

(4.27) ∀α ∈
F
(
KT

f ΛfKf

)
F
(
Λc

) , −
max
x∗x=1

∣∣∣x∗KT
f ΛfKfx

∣∣∣
min

x∗x=1

∣∣∣x∗Λcx
∣∣∣ ≤ α ≤

max
x∗x=1

∣∣∣x∗KT
f ΛfKfx

∣∣∣
min

x∗x=1

∣∣∣x∗Λcx
∣∣∣ .576

Furthermore, matrices Λc and KT
f ΛfKf are hermitian so the property (4.25) holds577

for both of them. Because the spectrum belongs to the set ratio as in (4.26), we have578

(4.28) − |λ1|−1 ·
∣∣λnc

(
KT

f ΛfKf

)∣∣ ≤ λj

(
Λ−1
c KT

f ΛfKf

)
≤
∣∣λnc

(
KT

f ΛfKf

)∣∣ · |λ1|−1.579

Therefore, assuming the condition (4.23) is satisfied, it follows580

(4.29) λj

(
Λ−1
c KT

f ΛfKf

)
≥ −

∣∣λnc

(
KT

f ΛfKf

)∣∣× |λ1|−1 ≥ −1

2
.581

Adding one to each member of the inequality (4.29) finally gives582

(4.30) λj (MK) = λj

(
I + Λ−1

c KT
f ΛfKf

)
≥ 1

2
583

Hence, the condition (4.23) implies that all eigenvalues of MK are positive. Sub-584

sequently, det (MK) > 0. The adjugate formula for the inverse of MK shows that585

diagonal entries are positive if the determinant of principal sub-matrices are also pos-586

itive. Denote by [ · ]Ω−i
the principal sub-matrix obtained by deleting the ith row and587

column of a matrix. Since Λc is diagonal, one can show that588

(4.31)
[
Λ−1
c KT

f ΛfKf

]
Ω−i

= [Λc]
−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

.589

As in Equation (4.26), the spectrum is included such that590

∀j ≤ nc − 1 , λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
∈ F

([
KT

f ΛfKf

]
Ω−i

)
/F
(
[Λc]Ω−i

)
,591

and therefore the following bound holds592

(4.32) λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ −

∣∣∣λnc−1

([
KT

f ΛfKf

]
Ω−i

)∣∣∣× |λ1|−1.593

The matrix KT
f ΛfKf being hermitian, Cauchy’s interlace theorem states that594

(4.33) λj

(
KT

f ΛfKf

)
≤ λj

([
KT

f ΛfKf

]
Ω−i

)
≤ λj+1

(
KT

f ΛfKf

)
, j = 1, · · · , nc − 1.595

As a consequence, and from the inequality (4.29), we have596

(4.34) λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ −

∣∣λnc

(
KT

f ΛfKf

)∣∣× |λ1|−1 ≥ −1

2
.597
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Hence, eigenvalues of principal sub-matrices also satisfy598

(4.35) λj

(
[MK ]Ω−i

)
= λj

(
Inc−1 + [Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ 1

2
.599

Because eigenvalues of the principal sub-matrices are positive, so are the determinants.600

From the adjugate formula of M−1
K , it follows that601

(4.36) eTi M
−1
K ei =

[
M−1

K

]
i,i

=
det
(
[MK ]Ω−i

)
det
(
MK

) ≥ 0, i = 1, · · · , nc602

As a consequence, both left and right bounds of (4.19) are satisfied. Finally,603

(4.37) ρ
(
KT

f ΛfKf

)
≤ 1

2
|λ1| ⇒ ∀vi ∈ Vc ,

∣∣vT
i Evi

∣∣ ≤ 1604

The condition provided by Theorem 4.4 is that the spectral radius of the block605

KT
f ΛfKf should not exceed half of the smallest eigenvalue in magnitude. No as-606

sumption can be made on the sign of eigenvalues in the indefinite case, so that the607

condition prevents the coarse correction from amplifying the error in the case where608

eigenvalues are oppositely signed. Applied to the previous example 4.2, Theorem 4.4609

states that |ϵ2λ2| < |λ1|/2. That said, the condition is extremely strict and probably610

impossible to satisfy in practice for very small eigenvalues. In a practical method, the611

block Kf will never be sufficiently small for solving all types of indefinite problems612

because of a potentially near-zero eigenvalue. As illustrated by Figure 4.1, a good613

interpolation operator with small Kf can still cause divergence although it satisfies614

good approximation properties. The classical coarse correction appears hopeless for615

indefinite problems.616

5. Alternative coarse correction for indefinite problems. As discussed in617

the previous section, the classical coarse correction is not equivalent to a minimization618

problem in the indefinite case, and improving P will never be enough to remedy619

this loss of equivalence. Moreover, because the interpolation operator developed in620

Section 3 targets the smallest eigenvectors of each level, every coarser matrix is more621

indefinite than its fine parent. Then, as the number of coarse levels increases, the622

balance between negative and positive eigenvalues reaches an equilibrium, and makes623

the effectiveness of the classical coarse correction difficult to predict. Nevertheless,624

Figure 4.1 shows that the interpolation operator has good approximation properties625

for the oscillatory near-kernel space. In particular, the Figure 4.1b suggests that only626

the direction of the coarse correction vector has to be changed; the shape is correct.627

Hence, a coarse correction that amplifies or flips the smallest eigenvectors can still628

provide pertinent information for solving the system. In this section, we propose to629

minimize the approximation error in a proper norm for indefinite problems and within630

a space composed of vectors returned by the classical coarse correction. Moreover, to631

decrease the eigenvector pollution, each coarse correction vector is smoothed by the632

polynomial smoother of Section 2.633

5.1. Notations and general considerations on GMRES. The Generalized634

Minimal RESidual (GMRES) method [25] approximates the solution in a Krylov635

subspace by minimizing the residual in the Euclidean norm. The method can solve636

any class of matrix system since the norm is valid independent of the context, which637

is of particular interest for the indefinite case. Let us first define some notation before638
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introducing the alternative coarse correction. Let Wp be the n×p rectangular matrix639

containing the p orthonormalized Krylov vectors such that640

(5.1) range (Wp) = span
{
b, Ab, A2b, . . . , Ap−1b

}
.641

Each column of Wp is orthonormalized following a Gram-Schmidt process. The co-642

efficients of the orthonormalization are stored in the rectangular Hessenberg matrix643

H̄p of size p+ 1× p. The square matrix Hp is of size p× p and obtained from H̄p by644

deleting its last row. Both matrices Wp and Hp are linked by645

(5.2) AWp = Wp+1H̄p and WT
p AWp = Hp,646

which leads to the following equality647

(5.3) min
x̃∈range(Wp)

∥b−Ax̃∥2 = min
ρp∈Cp

∥b−AWpρp∥2 = min
ρp∈Cp

∥WT
p b−Hpρp∥2648

In practice, GMRES takes advantage of the convenient Hessenberg shape of H̄p to649

construct an upper triangular matrix by applying Given’s rotations. The minimization650

of the residual then relies on a backward substitution. The relation (5.2) can be651

generalized [8] to any arbitrary subspace Wp = [w1, . . . ,wp] such that652

(5.4) argmin
x̃∈range(Wp)

||b−Ax̃||2 = WpH
−1
p ZT

p b with AWp = ZpHp653

and where Zp denotes the orthonormalized basis of AWp. Note that the Arnoldi654

relation (5.4) does not define any particular recurrence relation since Wp is arbitrary655

and not necessarily designed by successive matrix vector products. In addition, the656

only matrix that needs to be orthonormal in the generalized setting is Zp.657

5.2. Minimization within a space of coarse correction vectors. As men-658

tioned in the introduction of this section, the interpolation operator has good ap-659

proximation properties for the oscillatory near-kernel space. Even though the small660

eigenvectors that constitute each coarse correction vector are likely to be oriented in661

the wrong direction or amplified because of the pollution effect introduced in Section662

4, they still provide useful information about the near-kernel space. For ease of dis-663

cussion, we present this idea with a two-level method. The multi-level case will be664

presented in the next section with numerical experiments.665

666

Let Wi be the set of coarse correction vectors of the ith iteration linked by the Arnoldi667

relation (5.4) with its orthonormal counterpart Zi. Accordingly, let wj ∈ Wi and668

zj ∈ Zi denote the jth vectors of the set Wi and Zi respectively. At each iteration i,669

the classical coarse correction returns a new coarse correction vector that is smoothed670

by the Chebyshev polynomial smoother presented in Section 2. This new smoothed671

coarse correction vector is therefore added to the previous set such that672

(5.5) Wi = [Wi−1 , wi] with wi = qνm+1(A
2)ΠA (P ) r(i

)

,673

where r(i) designates the residual at the ith iteration. From the Arnoldi relation (5.4),674

we have675

(5.6) Hi = ZT
i AWi = H−T

i WT
i ATAWi , Zi = AWiH

−1
i .676
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Hence, solving the minimization problem (5.4) is equivalent to solving the normal677

equations within the subspace spanned by Wi678

WiH
−1
i ZT

i A = Wi

(
WT

i ATAWi

)−1
HT

i Z
T
i A679

= Wi

(
WT

i ATAWi

)−1
WT

i ATA = ΠATA (Wi) .(5.7)680681

The concept of pollution also drives the convergence in the alternative setting. Sec-682

tion 4 demonstrated that the block Kf pollutes the range of P and therefore impacts683

the classical coarse correction. Because the minimization space Wi is generated with684

the classical coarse correction by way of Equation (5.5), the block of pollution still685

impacts the contraction of the small eigenvectors. Resorting to the Euclidean norm686

in (5.4) prevents the divergence, but it also squares the eigenvalues of the initial prob-687

lem because of the equivalence with an ATA-orthogonal projection. This naturally688

increases the gap between small and large eigenvalues, and therefore decreases the689

contraction of the smallest over the largest.690

691

Smoothing the classical coarse correction vectors by way of the polynomial qνm+1(A
2)692

compensates for this effect by reducing the prevalence of large eigenvectors in the693

minimization space. This idea of damping the large eigenvalues to reveal the smaller694

ones is also used to generate a relevant set of test vectors for the construction of695

the least-squares minimization operator introduced in Section 3. Once the coarse696

correction vector is smoothed and included in Wi, the set Zi is extended as follows697

(5.8) Zi = [Zi−1 , zi] with zi =
1

hi,i

Awi −
i−1∑
j=1

hj,i · zj

 ,698

where coefficients hj,i result from the orthogonalization process of the new vector699

Awi. Those coefficients are stored in the squared upper triangular matrix700

(5.9) Hi =


h1,p

Hi−1

...
hi−1,i

0 · · · 0 hi,i

 with hj,i =

{
⟨zj , zi⟩ if j < i
||zi||2 if j = i

.701

The algorithm 5.1 presents the alternative two-level cycle, and can be compared with702

the classic one in Algorithm 1.1.703

Example 5.1. Consider again Example 4.3, where A is a 2 × 2 matrix, with704

v1 and v2 its eigenvectors respectively associated with eigenvalues |λ1| < |λ2|. The705

interpolation operator P targets v1 as defined by (4.13). Let W1 be the minimization706

space of dimension 1 constructed following (5.5) such that707

(5.10) W1 = qm+1(A
2)ΠA(P )v1 =

λ2
1

λ1 + ϵ2λ2

(
qm+1(λ

2
1)v1 + qm+1(λ

2
2)ϵv2

)
.708

Furthermore, define EW1
to be the error propagation matrix of the alternative coarse709

correction. One can show that710

(5.11) vT
1 EW1

v1 = vT
1 (I −ΠATA (W1))v1 = 1−

q2m+1(λ
2
1)λ

2
1

q2m+1(λ
2
1)λ

2
1 + q2m+1(λ

2
2)ϵ

2λ2
2

.711

This manuscript is for review purposes only.



TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 21

Algorithm 5.1 Two-level cycle with the alternative coarse correction

Inputs : b right-hand side, x̃ approximation of x, r = b−Aũ residual
M smoother, P interpolation operator

for j = 1, ν do
x̃← x̃+ p(A2)r
r ← b−Ax̃

end for
rC ← PT r
eC ← Solve(PTAP, rC)
w ← qνm+1(A

2)PeC
ŵ, Hi ← Orthonormalize(w, Zi−1)
Wi, Zi ← [Wi−1 , w] , [Zi−1 , ŵ]
for j = 1, ν do

x̃← x̃+ p(A2)r
r ← b−Ax̃

end for
x̃← x̃+WiH

−1
i ZT

i r
r ← b−Ax̃
Output : x̃ approximation of x at the end of the cycle

To simplify the discussion, let us assume that the smallest eigenvector is preserved712

by the smoother, such that qm+1(λ
2
1) = 1. Figure 5.1 illustrates the contraction of v1713

after applying the alternative coarse correction with respect to the pollution and the714

polynomial. As expected, the smoother increases the contraction and counter balances715

the squared large eigenvalue λ2 that weights the pollution Kf = ϵ when minimizing in716

the Euclidean norm.

1
2
λ2
1 λ2

1
λ1

1

q2m+1(λ
2
2)ϵ

2λ2
2

vT
1 EW v1

qm+1(λ
2
2) = 1 0.3 0.1

Fig. 5.1: Illustration of the contraction of a small eigenvector with respect to the
pollution and the polynomial smoother

717

6. Numerical Experiments. In the following numerical experiments, the in-718

terval of the Chebyshev polynomial smoother is determined following the spectral719

density approximation method presented in Section 2.2. The number nν of coeffi-720

cients µk in the moment matching procedure is fixed to 15, and nvec fixed to 5. The721

degree m of the polynomial is 3. Regarding the construction of the interpolation722

operator, the number of smoothed test vectors is fixed to 15. Last, the number of723

interpolation points in the least square minimization strategy used to construct the724

coarse grid selection operator R̂T never exceeds 4 (i.e., max i∈F {Card(Ci)} = 4).725

6.1. Two-level experiment on the Two Dimensional Shifted Laplacian.726

Let us first apply this new multigrid setting to the two-dimensional shifted laplacian727

problem associated with the stencil matrix (1.6). The size of the shifted laplacian728
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matrix is fixed to n = 100. Figure 6.1 depicts the number of iterations with respect729

to the shift kh using either the classical or the alternative coarse correction. Recall730

that the matrix is the most indefinite (exact balance between negative and positive731

eigenvalues) when kh = 2, and that the near-kernel space becomes more oscillatory732

as kh increases. The number of iterations are also presented with respect to the733

percentage τ that governs the number of selected columns of Ŝ in the approximation734

of ideal interpolation. The resulting operator complexity defined by ϕ :=
∑

l nnz(Al)

nnz(A0)
735

for different values of τ is provided by Table 6.1. Last, the tolerance of the relative736

residual norm is set to 10−6, and the maximal number of iterations is fixed to 100.737

Peak values of the standard multigrid setting on the left column denote divergence,738

whereas they stand for slow convergence in the alternative setting plotted on the right739

column.740
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Fig. 6.1: Number of iterations of two-level methods with respect to kh and τ

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ϕ 1.81 3.00 3.47 3.69 3.93 4.16 4.35 4.55 4.73 4.87 5.15

Table 6.1: Operators complexity of the two-level method with respect to τ

Both left figures 6.1c and 6.1a correspond to a two-level method built on the classical741

coarse correction respectively for ν = 2 and ν = 4. Whereas increasing the number742

of selected columns in Ŝ for approximating the ideal interpolation operator by way743
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of the parameter τ generally helps the convergence, the method remains likely to744

diverge for the reasons explained in Section 4. Still, the best setting for the classical745

coarse correction is naturally τ = 1 and ν = 4. Certain divergence scenarios that746

happen for ν = 2 (for instance around kh = 0.8) are fixed by doubling the number of747

smoothing iterations. Doing so improves the set of test vectors in approximating the748

near-kernel space, and therefore leads to a better least-squares minimization coarse749

variable operator that decreases the pollution Kf . It remains however impossible750

to derive a general setting that ensures the convergence of the standard method in751

all cases. Both right figures 6.1b and 6.1d represent the same experiment with the752

alternative coarse correction. The peaks around kh = 2 depict a slow convergence753

situation where the relative residual norm is stuck around 10−5 because of very near-754

zero eigenvalues. Except for these extremely indefinite cases, the method converges755

in all cases. We also remark that the divergence of the standard method correlates756

with more iterations in the alternative setting. At the cost of complexity, increasing757

τ or ν provides a better convergence factor.758

6.2. Multi-level experiment on the Two Dimensional Helmholtz prob-759

lem with absorbing boundary conditions.760

The following numerical experiments depict the convergence for a two dimensional761

Helmholtz problem using absorbing boundary conditions and with a discretization762

coefficient set to kh = 0.625 (i.e. 10 points per wavelength, where k corresponds763

to the wavenumber). Therefore, the discretization matrix is indefinite, complex and764

non-hermitian, and grows with k. As a consequence, the restriction operation is made765

through the transpose conjugate P̂ ∗. Moreover, the squared matrix in the polynomial766

setting is replaced by A∗A. Also note that these numerical experiments result from767

the alternative coarse correction only, and that ZT is replaced by Z∗ in (5.4). The768

first benchmark illustrated in Figure 6.2 explores the convergence of the method by769

fixing the number of selected column of Ŝ to the maximum (i.e., τ = 1). Each curve770

corresponds to a method following its number of levels. The y-axis corresponds to771

the number of iterations, while the wavenumber varies along the x-axis. The number772

of iterations is constant until the fourth level. The number of iterations of both the773

five-level and six-level methods increase with the wavenumber.

20 40 60 80 100 120 140 160 180 200
0
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100
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It
er
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n
s

Levels = 2 3 4 5 6

Fig. 6.2: Number of iterations following the wavenumber k, ν = 2, τ = 1

774

While setting τ = 1 enables the method to converge almost constantly up to five775

levels, the operator complexity is too high for practical implementation. Therefore,776

the second benchmark explores the number of iterations of a two-level method with777

respect to the parameter τ . Figure 6.3 shows that the plain least-squares minimization778

operator (i.e. τ = 0) is not a suitable choice as k increases. Even though larger779

sub-spaces ŜXi in the approximation of the ideal interpolation operator yields denser780
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Fig. 6.3: Two-level method with alternative coarse correction - number of iterations
and operators complexity with respect to k and τ , ν = 2

matrices, the number of iterations tends toward size independence as τ grows. A trade-781

off between convergence and complexity may be possible depending on the problem782

size. More generally, Figure 6.3 reveals the important role of the ideal approximation783

step in the convergence. A better sparsification strategy is a topic of further research.784

785

7. Conclusions. Indefinite and oscillatory problems are difficult for multigrid786

methods. The negative eigenvalues require an adapted smoother, and the interpo-787

lation operator should capture the oscillatory near-kernel space. More importantly,788

the coarse correction should be adapted to the indefiniteness of the initial matrix,789

which does not define a norm. The normal equation polynomial smoother is designed790

to target a desired proportion of eigenvalues according to their amplitude, and the791

range of our interpolation operator offers a good approximation of the near-kernel792

space despite its oscillations. The alternative coarse correction space proposed in the793

paper minimizes the global residual in a proper norm for indefinite problems in a794

space approximating the set of smallest eigenvectors known to be difficult for most795

iterative methods. Finding a better trade-off between sparsity and accuracy of inter-796

polation and constructing a polynomial without resorting to normal equations will be797

important points in our future investigations.798
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[24] J. W. Ruge and K. Stüben, 4. Algebraic Multigrid, https://doi.org/10.1137/1.9781611971057.864
ch4, https://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4, https://arxiv.org/865
abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971057.ch4.866

[25] Y. Saad, Iterative Methods for Sparse Linear Systems, https://www-users.cs.umn.edu/∼saad/867
IterMethBook 2ndEd.pdf.868

[26] G. Strang, Multigrid methods, tech. report, MIT, 2006, https://math.mit.edu/classes/18.086/869
2006/am63.pdf.870
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