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TOWARD AN ALGEBRAIC MULTIGRID METHOD FOR THE1

INDEFINITE HELMHOLTZ EQUATION ∗2

ROBERT D. FALGOUT† , MATTHIEU LECOUVEZ‡ , PIERRE RAMET§ , AND CLÉMENT3

RICHEFORT‡4

Abstract. It is well known that multigrid methods are very competitive in solving a wide range5
of SPD problems. However achieving such performance for non-SPD matrices remains an open prob-6
lem. In particular, three main issues may arise when solving a Helmholtz problem : some eigenvalues7
may be negative or even complex, requiring the choice of an adapted smoother for capturing them,8
and because the near-kernel space is oscillatory, the geometric smoothness assumption cannot be9
used to build efficient interpolation rules. Moreover, the coarse correction is not equivalent to a pro-10
jection method since the indefinite matrix does not define a norm. We present some investigations11
about designing a method that converges in a constant number of iterations with respect to the12
wavenumber. The method builds on an ideal reduction-based framework and related theory for SPD13
matrices to improve an initial least squares minimization coarse selection operator formed from a set14
of smoothed random vectors. A new coarse correction is proposed to minimize the residual in an15
appropriate norm for indefinite problems. We also present numerical results at the end of the paper.16

Key words. Algebraic Multigrid, Helmholtz Equation, Linear Algebra, Polynomial Smoother,17
Indefinite matrix18

1. Introduction. The numerical simulation of various physical phenomena leads19

to potentially very large linear systems of equations written Ax = b in matrix form.20

These systems can be solved directly by a convenient factorization of A, or iteratively21

by computing and refining an approximation of the solution x starting from an initial22

guess x0. Multigrid methods [6, 25] work iteratively and are known to be scalable23

and quasi-optimal for solving sparse linear systems of equations for many classes of24

problems. Each multigrid iteration combines a projection method on a coarser space25

to capture the eigenvectors associated with the small eigenvalues, and a few iterations26

of a smoothing method to capture the remaining eigenvectors generally associated27

with the large eigenvalues.28

29

To simplify the discussion in what follows, we use the term ”small/large eigenvec-30

tor” to designate an eigenvector with small/large eigenvalue. We similarly say ”pos-31

itive/negative eigenvector” when referring to the eigenvalue sign. Additionally, capi-32

tal italic Roman letters (A,E, P ) denote matrices and bold lowercase letters denote33

vectors (u,v, r,α). Other lowercase letters denote scalars (σ, λ), while capital calli-34

graphic letters denote sets and spaces (C,F ,K).35

1.1. Multigrid methods. While errors composed of small eigenvectors are36

known to be more difficult to eliminate for most iterative methods, multigrid methods37

accelerate the convergence to the solution by projecting them onto a coarser space.38

The coarse projection of those difficult eigenvectors is repeated recursively until reach-39

ing a small enough coarse matrix for which the factorization by a direct solver is fast.40
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2 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

Assuming the matrix is symmetric positive definite (SPD), the best approximation41

of the solution within the coarse projection space is computed by minimizing the ap-42

proximation error in A-norm. The core idea in multigrid methods is to make this43

projection practical by recursively defining smaller subspaces by way of sparse op-44

erators Pl, called interpolation operators. The computation of x is accelerated by45

way of a hierarchy of coarse problems Alxl = rl, where rl is the residual of the level46

l in the grid hierarchy. Pl determines the coarse projection subspace of the level l,47

and transfers the information from level l + 1 to l. In most symmetric applications,48

coarse matrices are constructed following the Galerkin formula Al+1 = PT
l AlPl. The49

two-level coarse correction operator denoted by50

(1.1) ΠA (P ) := P (PTAP )−1PTA51

is an A-orthogonal projector onto range(P ) and coincides with a minimization problem52

in the SPD case such that53

(1.2) argmin
x̃∈span{P}

||x− x̃||A = ΠA (P ) r.54

Two-level methods actually need both types of solvers. The coarse correction (1.1)55

requires a direct method for factorizing the coarsest matrix whereas the remaining56

error is eliminated on the fine level through a few iterations of an iterative method57

called a smoother. From Equation (1.1), the error propagation matrix for the coarse58

correction of a two-level method is59

(1.3) E = I −ΠA (P ) .60

Likewise, the error propagation matrix for the smoother is61

(1.4) EM = I −M−1A62

where M−1 is an approximation of A−1. The smoother is applied before each restric-63

tion and after each interpolation, as illustrated in Algorithm 1.1.64

Algorithm 1.1 Two-level cycle

1: Inputs : b right-hand side, x̃ approximation of x or initial guess, r = b−Ax̃ residual
2: A initial matrix, M smoother, P interpolation operator
3: for j = 1, ν do
4: x̃← x̃+M−1r
5: r ← b−Ax̃
6: end for
7: rC ← PT r
8: ẽC ← Solve(PTAP, rC)
9: x̃← x̃+ P ẽC
10: r ← b−Ax̃
11: for j = 1, ν do
12: x̃← x̃+M−1r
13: r ← b−Ax̃
14: end for
15: Output : x̃ approximation of x at the end of the cycle

Finding a smoother and a coarse correction that are complementary is a major concern65

in the design of the method. Moreover, the context in which a multigrid method66

is applied determines what kind of operators should be used in the method. In67
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TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 3

particular, the near-kernel space of smallest eigenvectors is especially important in68

the design of interpolation. In elliptic problems such as the Laplace equation whose69

spectrum is illustrated in Figure 1.1, the convergence of multigrid methods is well70

known. The matrix A is SPD, so smoothers like w-Jacobi or Gauss-Seidel are known to71

be good smoothers since they damp the large eigenvectors without modifying the small72

ones. In this elliptical context, these small and large eigenvectors are characterized by73

low and high frequency oscillations respectively. Hence, while the smoother damps the74

oscillatory modes, the interpolation must target the slowly varying modes associated75

with small eigenvalues (see Figure 1.1b). For this reason, the geometric smoothness76

of the near-kernel space is generally a key assumption, and makes the construction of77

good interpolation rules more convenient in the initialization of the method.78
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Fig. 1.1: Laplace eigenvalues and three smallest eigenvectors

Likewise in classic algebraic multigrid [26, 23, 11], the interpolation operators are79

designed to target what is called algebraically smooth components. The smoothed80

aggregation method [9] is particularly efficient for solving problems with an a pri-81

ori known near-kernel space, for instance in diffusion [28] or elasticity [27] where82

the target small eigenvectors are the constant vector and rigid body modes respec-83

tively. Those vectors are split between disjoint aggregates over the entire domain84

to initiate a tentative block interpolation operator. A few smoothing iterations are85

applied to the tentative interpolation operator to extend its pattern, but especially86

in order to clean the tentative interpolation range from high frequencies. Usually, a87

few iterations of the Jacobi relaxation method are enough, but this step of energy88

minimization has been generalized to Krylov methods such as the conjugate gradient89

[21] by enforcing sparsity constraints in the minimization space to keep a practical90

interpolation operator. If near-kernel space information is lacking, test vectors can91

still be computed algebraically, as in adaptive smoothed aggregation [5]. Furthermore,92

because the choice of the interpolation strategy is essential in the convergence of the93

method, an ideal framework maximizing the complementarity between the smoother94

and the coarse correction [12] has been established to guide the algorithm develop-95

ment. While this idealistic scenario of convergence is mostly used as a theoretical tool,96

some reduction-based methods enable a good approximation of the ideal interpolator97

given some initial coarse and fine variable splitting [19, 29].98

1.2. Why Helmholtz problems are difficult for multigrid. The Helmholtz99

equation (1.5) involves indefinite matrices with potentially wide and oscillatory near-100

kernel spaces [10]. This equation is our target in this paper.101

(1.5) (Continuous Helmholtz problem) ⇔
{

−∆u− k2u = f on Ω
+ b. c. on ∂Ω

102
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4 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

In fact, the Helmholtz equation can be seen as a shifted Poisson equation, where103

geometrically smooth eigenvectors (i.e., low Fourier modes, see Figure 1.1b) can be104

negative eigenvectors because of the shift. In the same way, the smallest eigenvectors105

of the shifted Laplacian are higher in frequency (see Figure 1.2b).106
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Fig. 1.2: Helmholtz eigenvalues and three smallest eigenvectors

This complication breaks the near-kernel space geometric smoothness assumption, a107

keystone of many multigrid methods. To design a coarse correction and smoothers108

that are complementary in this context, interpolation rules must reproduce the near-109

kernel oscillation, and contrary to usual relaxation methods, smoothers have to deal110

with both positive and negative eigenvalues. More importantly, the coarse correction111

is not equivalent to a minimization problem anymore since the indefinite matrix does112

not define a norm (i.e., the equality (1.2) is not valid for Helmholtz). Whereas the113

coarse correction is guaranteed to not amplify the error for SPD matrices, the ap-114

proximation error can be amplified in the indefinite case because the spectrum of the115

matrix has both signs.116

117

For these reasons, finding a recurring process to build a scalable multilevel method118

is still an open question. Multiple correction [18], wave-ray [4, 17], and Complex-119

Shifted Laplacian [8] approaches have already been investigated to address this issue.120

In this paper, we present a fully algebraic approach built on ideal reduction-based121

ideas, and demonstrate its potential for solving the Helmholtz problem with constant122

iteration count independent of the wavenumber k. Certain discretization matrices re-123

sulting from the continuous problem (1.5) can be non-symmetric due to the boundary124

conditions. To center the discussion on the indefinite nature of Helmholtz, the next125

approaches address the symmetric indefinite shifted laplacian matrix arising from the126

following 5-pts stencil127

(1.6) Â =

 −1

−1 4− (kh)
2 −1

−1

 .128

In Section 2, we start by presenting a normal equation polynomial smoother specif-129

ically designed to damp the desired proportion of largest eigenvalues independently130

of their signs, while interpolation rules for propagating oscillatory near-kernel infor-131

mation are established in Section 3. The Section 4 gives more details on why the132

indefiniteness can corrupt the coarse correction by introducing a concept of pollution133

and Section 5 exposes an alternative coarse correction to the classical one which avoids134

the divergence scenarios. Finally, Section 6 presents benchmarks of this new multigrid135
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TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 5

method for different Helmholtz problems, with varying shift kh and wavenumber k.136

137

Along the different approaches presented in this paper, vi denotes the ith eigenvector138

of A associated with the eigenvalue λi. Moreover, we always assume the eigenvalues139

to be ordered in magnitude (i.e., ∀i < n , |λi| ≤ |λi+1|) such that Vc := [v1, . . . ,vnc ]140

and Vf :=
[
vnc+1

, . . . ,vn

]
contain the small and large eigenvector sets of size nc and141

nf respectively. Naturally, the full set of eigenvectors are given by V = [Vc, Vf ], and142

n = nc + nf .143

2. Polynomial Smoothers for Indefinite Problem. Working with a smooth-144

ing method whose behavior on the spectrum is a priori known is interesting to guar-145

antee the effectiveness of the cycle. Here, the smoother must damp large positive146

and negative eigenvalues, which is problematic for most standard methods. Gener-147

ally, a polynomial method with degree greater than one can work. Krylov iterations148

are good polynomial smoothers in the indefinite case but they minimize the global149

residual norm regardless of the eigenvalues and are non-linear because of their right-150

hand side dependence. A linear polynomial is more convenient for generating the151

set of smoothed candidates vectors needed to construct the interpolation operator152

described in Section 3.153

2.1. General considerations on polynomial smoothers. One way to en-154

sure that both positive and negative eigenvectors are damped is to consider a normal155

equation polynomial smoother. In general, the degree m of the polynomial must be156

greater than one to damp positive and negative eigenvectors, as the polynomial il-157

lustrated in Figure 2.1 does. Resorting to normal equations enables the polynomial158

to treat eigenvalues with respect to their magnitude rather than their sign, which is159

equivalent to work with even powers of A if the matrix is hermitian, which is what160

we assume in this section. In the future, it might be interesting to investigate more161

general polynomials to avoid normal equations and consider odd exponents. In this162

first approach, we use the convenient symmetry property enabled by normal equations163

in the Chebyshev framework.164

165

Let pm(A2) be a polynomial of degree m that approximates A−2. From Equation166

(1.4), let qm+1(A
2) be the associated error propagation matrix of the polynomial167

smoother such that168

(2.1) qm+1(A
2) := I − pm(A2)A2.169

Additionally, let v be an eigenvector of A associated with the eigenvalue λ. Hence,170

(2.2) qm+1(λ
2)v = (1− pm(λ2)λ2)v.171

In multigrid methods, a good smoother eliminates the large eigenvalues that the coarse172

correction does not capture and vice-versa. Let a and b be real scalars such that 0 <173

a < b. Assume these large squared eigenvalues are contained in the interval [a, b]. The174

construction of a relevant interval will be discussed in the next. Since the polynomial175

smoother pm(A2) is an inverse approximate of A−2, the polynomial function pm(x)176

can be constructed to approximate the function x−1 [15] from m + 1 interpolation177

points xi selected within the interval of large eigenvalues [a, b]. In particular, selecting178

the scaled first kind Chebyshev polynomial roots as interpolation points179

(2.3) xi :=
b+ b

2
+

b− a

2
cos

(
(2i+ 1)π

2(m+ 1)

)
, i = 1, . . . ,m+ 1.180
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6 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

gives the minimal error propagation function qm+1(x) on the interval [a, b]. The181

polynomial is constructed to satisfy the m+ 1 following constraints182

(2.4) xi ∈ [a, b] , pm(xi) =
1

xi
⇔ qm(xi) = 0 , i = 1, . . . ,m+ 1.183

Because the selected nodes xi are the roots of qm+1 and qm+1(0) = 1, then the184

Lagrange formula yields185

(2.5) pm(x) :=

m+1∑
i=1

1

xi

m+1∏
j=1 , j ̸=i

x− xj

xi − xj
, qm+1(x) =

m+1∏
i=1

x− xi

−xi
.186

First kind Chebyshev polynomials are defined by the three-terms recurrence relation187

(2.6) ∀t ∈ [−1, 1] , C0(t) = 1 , C1(t) = t , Cm+1(t) = 2tCm(t)− Cm−1(t).188

The roots of qm+1 are the roots of Cm+1 but scaled on [a, b], the error propagation189

function qm+1 can be derived as the following re-scaled Chebyshev polynomial190

(2.7) qm+1(x) =
Cm+1

(
b+a−2x

b−a

)
Cm+1

(
b+a
b−a

) .191

As explained in [2], the upper bound of Cm+1(t) on [−1, 1] equals one for t = 1192

and is strictly monotonically increasing for t > 1. Accordingly, the supremum of193

the numerator on [a, b] equals one for x = a, and the denominator is strictly greater194

than one because b+a
b−a > 1. Last, qm+1(0) = 1 and qm+1 is strictly monotonically195

decreasing for x ∈ [0, a]. As a consequence, |qm+1(x)| < 1 on the interval (0, b].196

Assuming b ≥ λ2
max, then the spectral radius ρ

(
qm+1(A

2)
)
< 1. In other words, the197

smoother is a convergent iterative method and does not amplify any region of the198

spectrum.199

2.2. Constructing an appropriate target interval. One way to determine200

an interval [a, b] without preliminary information [2, 1] is to compute a few power201

iterations to determine b by an overestimation of the largest eigenvalue, and choose202

the lower bound a according to b, for example a = 1
2b. However, to respect the com-203

plementarity principle, the percentage of damped eigenvalues by the smoother must204

approximate the proportion of non-coarse variables (i.e. the nf largest eigenvalues205

in our case). For instance, if a coarse level is one quarter the size of the finer level,206

then three-quarters of the largest amplitude eigenvectors should be damped by the207

smoother, while the coarse correction deals with the remaining small eigenvectors.208

Consequently, since eigenvalues are not necessarily uniformly separated, a should be209

determined so that a proportion of eigenvalues belongs to the interval [a, b]. More-210

over, the spectral distribution of coarse matrices are unknown in a multi-level setting.211

Therefore, a good interval should satisfy212

(2.8) λ2
i ∈ [a, b] ⇔ λi ∈

[
−
√
b,−

√
a
]
∪
[√

a,
√
b
]
, i = nc, . . . , nf .213

While this interval can be fixed using geometric information, we first compute a214

rough approximation of the matrix spectral density as detailed in [16]. This spectral215

density permits to determine which portion of the spectrum should be damped by216
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TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 7

the smoother, and is defined by the distribution function ϕ(t) that represents the217

probability of finding an eigenvalue at each point t ∈ [−1, 1]. We set the lower bound218

a of the Chebyshev node interval in a second step so that the probability within219

the interval equals the target proportion, for instance half of the total area in a220

scenario of exact balance between coarse and non-coarse variables. As defined in (2.6),221

the distribution function ϕ is approximated by a linear combination of orthogonal222

Chebyshev polynomial functions, such that223

(2.9) ϕ(t) =

∞∑
k=1

µkCk(t) ≈
nµ∑
k=1

µkCk(t).224

Because Chebyshev functions are naturally defined over [−1, 1], the spectral density225

function must evaluate the spectral density of the scaled matrix B = 2
bA

2−I. Since b226

is assumed to bound the eigenvalues of A2, the spectrum of B belongs to [−1, 1]. The227

coefficients µk are then determined by a moments matching procedure, which gives228

(2.10) µk =
2− δk0
nπ

× Trace(Ck(B)).229

Here, n corresponds to the matrix size and δk0 the Kronecker symbol. The trace230

can be approximated by a stochastic trace estimation from a set of nvec random231

and orthogonal vectors zl, where each element of these vectors is chosen following a232

normal distribution with zero mean and a unit standard deviation. Therefore, the233

trace approximations are given by234

(2.11) Trace(Ck(B)) ≈ 1

nvec

nvec∑
l=1

zT
l Ck(B)zl , k = 1, . . . nµ.235

According to (2.11), each trace can be estimated by a sample mean of nvec products236

zT
l Ck(B)zl, and the nµ vectors Ck(B)zl can be computed from the three-term re-237

currence defined in (2.6). Once the distribution function ϕ is approximated following238

Equation (2.9), a rough area approximation by trapezoid rule yields a correct lower239

bound that satisfies a proportion around
nf

n . This lower bound only needs to be240

remapped on the initial interval to return the correct value for a. The interval [a, b]241

constitutes a purely algebraic interval in which the polynomial smoother is the most242

efficient. The bounds a and b are represented in Figure 2.1, where x50% illustrates a243

theoretical lower bound target for the shifted laplacian matrix resulting from (1.6).244

Last, the total number of matrix vector products required by the spectral density245

approximation step for the construction of a relevant interval is nvec × nµ.246

3. Constructing good interpolation rules. Interpolators are used both to247

construct the coarse level matrices and to transfer information across levels. SPD and248

geometric smoothness assumptions cannot be used to determine appropriate interpo-249

lation operators in our case. Some methods such as smoothed aggregation [9, 20] and250

bootstrap-AMG [3] use candidate vectors that are close to the near-kernel space to251

design the interpolation rules. These test vectors are either deduced from geometric252

information [4, 22] or algebraically as in adaptive multigrid methods [5]. Here, we253

prefer to stick to a fully algebraic and recurring process to create our interpolation254

operators. Candidate vectors will be generated from random vectors smoothed by the255

polynomial presented in Section 2, and used by the least squares minimization frame-256

work to determine good fine variable interpolation rules. This initial least squares257

interpolation operator is used as a coarse variable operator in the ideal reduction-258

based framework [12].259

This manuscript is for review purposes only.



8 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

−3 −2 −1 0 1 2 3 4 5 6

0

0.5

1

√
x50%−

√
x50%

√
a

√
b

x

q(
x
2
)
=

1
−
p
(x

2
)x

2

q
xi

Fig. 2.1: Spectrum of the polynomial smoother error propagation matrix for kh = 1.65

3.1. Ideal framework. Even though the ideal framework requires an SPD as-260

sumption and has not been generalized to indefinite problems, the idea of removing261

irrelevant information from the interpolation range is of particular interest for cap-262

turing the near-kernel space of oscillatory problems, and will be our guiding principle263

in this section.264

265

Accordingly, we assume A is SPD in this section dedicated to the ideal framework.266

Following [12], let C and F be complementary coarse and fine variable subsets of Ω267

respectively of size nc and nf . Let RT : Rnc → Rn and S : Rnf → Rn be coarse268

and fine variable operators respectively, such that RS = 0. The space defined by the269

coarse variable operator RT must be handled by the coarse correction, whereas the270

fine variable operator S defines a space where smoothing must operate in order to re-271

spect the complementarity principle. The Ideal Interpolation operator is a theoretical272

operator that is the best that satisfies RP = Ic, in the sense that it minimizes the273

difference between variables and interpolated coarse variables, within a space that is274

the most complementary to the range of the smoother M . The ideal interpolation275

operator is given by276

(3.1) P∗ = argmin
P

(
max
e̸=0

||(I − PR)e||M
||e||A

)
= (I − S(STAS)−1STA)RT .277

Let P:,i and RT
:,i be the ith columns of P and RT respectively. Each column of the278

ideal interpolation operator is therefore defined by279

(3.2) P:,i = RT
:,i − si, with si = argmin

s̃∈Range(S)

||RT
:,i − s̃||A = S(STAS)−1START

:,i280

In fact, the matrix that multiplies each column of RT in (3.2) and (3.1) is a projection281

operator onto the A-orthogonal complement of the range of S. The ideal interpolation282

operator is constructed by extracting from RT the information that can already be283

solved in the subspace S. Such information is irrelevant at a coarse level and should284

be handled by the smoother. Under the assumption that the smoother captures the285

space spanned by S, the best coarse matrix is therefore a matrix where S-related286

information is subtracted. Even if applying (STAS)−1 is too expensive, it gives287

insight for building a more practical method.288
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TOWARD AN AMG METHOD FOR THE INDEFINITE HELMHOLTZ EQUATION 9

3.2. Least Squares Minimization Interpolation Operator. As mentioned289

at the beginning of Section 3.1, demonstrating that the interpolation operator (3.1) is290

ideal in the theoretical framework of [12] requires A to be symmetric positive-definite.291

However, the reduction viewpoint which consists in cleaning the range of interpola-292

tion by extracting irrelevant information at a coarse level perspective is of interest.293

In addition, numerical experiments reveal that the classical coarse variable operator294

RT = [0 Ic]
T does not have good approximation property for the oscillatory near-295

kernel space that characterizes Helmholtz. Therefore, a new coarse variable operator296

has to be designed algebraically. Using the smallest eigenvectors Vc from Section 3.1297

to enforce the representation of the near-kernel space within the interpolation range298

is not practical. Instead, we construct a set of vectors approximating an oscillatory299

and potentially large near-kernel space by using the normal equations polynomial300

smoother developed in Section 2.301

302

In this section, we present a coarse variable operator R̂T of size n × nc construc-303

ted by a least squares minimization strategy [3]. Let the columns of T be a set of κ304

smoothed random vectors zl that approximates the near-kernel space such that305

(3.3) T:,l = qm+1(A
2)zl , l = 1, . . . , κ.306

where T:,l designate the lth column of the set T . We assume a C/F splitting with nc307

and nf their respective size. C-points are interpolated to the finer level with a sim-308

ple injection rule, while interpolation rules of F-points are determined by the least309

squares minimization method presented in this section. Due to this splitting, the310

coarse interpolation block in R̂T corresponds to a nc ×nc identity matrix denoted by311

Ic, while RT
f designate the block of interpolation for the F-points.312

313

Let i be an F-point and r̂i the vector containing the non-zero elements of the ith314

row of R̂T . The idea consists of constructing each F-point interpolation rule by min-315

imizing the squared difference between F-values of the near-kernel candidate vectors316

and the interpolation from their connected C-points in Ci. Denote by Ti,: a row vector317

containing the ith values of each test vector, and TCi,l a vector containing the values318

in T:,l of the C-points that are connected to variable i. Then319

(3.4) ∀i ∈ F , r̂i = argmin
r̂∈Ccard(Ci)

κ∑
l=1

wl (Ti,l − r̂ · TCi,l)
2
=: argmin

r̂∈Ccard(Ci)

Li(r̂)320

where wl are scaling weights (for instance wl = 1/|λl| if T contains near-kernel eigen-321

vectors). Finding the minimum of the convex loss function Li is equivalent to solving322

(3.5) ∇Li(r̂i) = 0.323

Equation (3.5) can be rewritten element-wise324

(3.6)
∂Li(r̂i)

∂r̂ij
=

κ∑
l=1

2wl(Ti,l − r̂i · TCi,l)TCij ,l = 0 , ∀j = 1, . . . , card(Ci).325

Finally, (3.6) leads to a system of linear equations to solve for each fine variable i326

(3.7) r̂iTCi
WTT

Ci
= TiWTT

Ci
327
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The matrix is full rank and the solution of Equation (3.7) is unique if we have at328

least κ = max i {Card(Ci)} locally linearly independent test vectors. Even if it329

is statistically always the case when starting from random candidate vectors, the330

matrix singularity can be detected during the factorization. In that special case, a331

pseudo-inverse can be computed to find an optimal solution in the least squares sense.332

3.3. Ideal approximation from least squares coarse operator. In Section333

3.2, we presented a coarse variable operator for Helmholtz designed by a least squares334

minimization strategy. Using the framework presented in 3.1, define335

(3.8) R̂T =

[
RT

f

Ic

]
and Ŝ =

[
If

−Rf

]
336

where R̂T is the least squares coarse variable operator presented in Section 3.2 and337

RT
f is its F-points interpolation block. Note that R̂Ŝ = 0 as required. Hence, since338

the least squares operator is designed to propagate the candidate vectors that are339

composed of small eigenvectors due to the Chebyshev polynomial smoother of Section340

2, the space spanned by Ŝ is, by orthogonality, mostly composed of large eigenvectors.341

Accordingly, the aim of using the ideal framework in this oscillatory context is to im-342

prove the coarse variable operator by extracting the irrelevant information related to343

these large eigenvectors that can be solved in Ŝ.344

345

However, two major issues arise in the use of the ideal interpolation operator (3.1).346

The first is a general concern related to the fine block ŜTAŜ, which is usually not347

practical to invert, and would lead to a dense interpolation operator P̂ . To circumvent348

this problem, an approximation based on sparsity constraints must be applied. The349

second issue is related to the indefiniteness of the initial matrix. Indeed, as shown by350

the equation (3.2), applying the left operator of the ideal formula removes the infor-351

mation contained in the range of Ŝ by minimizing an approximation error in A-norm.352

However, such a norm does not exist in the indefinite case. Ignoring this problem353

may still give interesting results in practice, but we consider instead the ATA-norm354

to ensure the effectiveness of the interpolation operator. Since Ŝ is sparse, we control355

the sparsity of P̂ by restricting the search space to a few columns of Ŝ only. Define Xi356

to be the injection operator of ones and zeros of size nf ×ni with ni ≤ nf that selects357

ni columns of Ŝ, ŜXi. From (3.2), let si be the solution of the ideal minimization358

problem such that359

(3.9) si := argmin
s̃∈Range(ŜXi)

||R̂T
:,i − s̃||ATA = ŜXi

(
XT

i Ŝ
TATAŜXi

)−1

XT
i Ŝ

TATAR̂T
:,i.360

Accordingly, columns of the reduction-based interpolation operator are computed by361

(3.10) P̂:,i = R̂T
:,i − si = R̂T

:,i − ŜXiρni
,362

where ρni
is the solution of the ni × ni linear system363

(3.11) XT
i Ŝ

TATAŜXiρni
= XT

i Ŝ
TATAR̂T

:,i.364

The choice of the non-zero pattern of P̂ must satisfy a good trade-off between ap-365

proximation properties of the near-kernel space and complexity. While improving the366

sparsity of this interpolation operator is a topic of future research, one strategy is367

to choose the columns of Ŝ based on the entries of ŜTATAR̂T
:,i. In fact, each entry368
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corresponds to the scalar product between a column of Ŝ and R̂T
:,i in ATA-norm. A369

large entry designates a column of Ŝ that contributes a lot in the solution of the370

minimization problem (3.9). The column selection phase iterates until the entries371

associated with the selected columns represent a percentage τ of the entire set of372

non-zero entries. At each iteration, the column associated with the largest entry of373

ŜTATAR̂T
:,i is selected, which is equivalent to extending Xi with the euclidean basis374

vector with one at the index of the chosen column and zeros elsewhere. Because the375

columns with the largest entries in ŜTATAR̂T
:,i are selected first, the set of selected376

columns is the smallest set that satisfies377

(3.12) ||XiŜ
TATAR̂T

:,i||2 ≥ τ × ||ŜTATAR̂T
:,i||2, with τ ∈ [0, 1] .378

We note that even though setting τ = 1 selects all the column associated with non-379

zero entries in the right-hand side, the remaining columns associated with zero entries380

are omitted, and therefore the matrix XT
i Ŝ

TATAŜXi still correspond to a principle381

sub-matrix of ŜTATAŜ. The Figure 3.3 represents the error of interpolation of every382

eigenvector for two different shifted problems resulting from (1.6) with respect to τ .383

The red dots correspond to the error when no ideal approximation is used at all (i.e.384

τ = 0 and therefore P̂ = R̂T ), whereas blue and green dots represent the error of385

interpolation for τ = 0.5 and τ = 1 respectively. The legend for each color associates386

the percentage τ with the average number of non-zero entries nnz
n in the resulting387

interpolation operator. Because the subspace ŜXi grows with τ , larger values of τ388

leads to denser interpolation operators. For both shifts, the portion of the spectrum389

for which the least-squares minimization interpolation operator is the most accurate390

corresponds to the smallest eigenvalues in magnitude. This feature is an expected391

and desired effect of generating the set of test vectors from the polynomial smoother392

introduced in Section 2. However, the interpolation error increases with the shift.393

Therefore, the ideal approximation correction becomes necessary as the problem gets394

more indefinite. In particular, Figure 3.3 shows that the interpolation error decreases395

as more columns of Ŝ are added to approximate the ideal interpolation operator. One396

drawback of this gain in accuracy is the fill-in of the matrix.

0 2 4 6
0

0.5

1

1.5

λi

v
T i

( I
−

P
( P

T
P
) −1

P
T
) v

i τ = 0.0 , nnz
n

= 2.3

τ = 0.5 , nnz
n

= 6.5

Fig. 3.1: kh = 0.625

−2 0 2
0

0.5

1

1.5

λi

τ = 1.0 , nnz
n

= 14.8

Fig. 3.2: kh = 2.0

Fig. 3.3: Error of interpolation with respect to the shift and sparsity

397
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4. Alteration of the coarse correction in the indefinite case. While both398

smoothers and interpolation operators are now designed to face two inconvenient prop-399

erties of the Helmholtz equation, signed eigenvalues and oscillatory near-kernel space,400

the effectiveness of the classical coarse correction is not guaranteed in an indefinite401

context. Worse still, the classical coarse correction can amplify the error associated402

with small eigenvectors although P̂ has good approximation properties. Before dis-403

cussing an alternative coarse correction, let us highlight how the matrix indefiniteness404

can corrupt the classical coarse correction with a simple illustration.405

406

The Figure 4.3 plots the smallest eigenvector of a two-dimensional shifted Lapla-407

cian matrix in blue for two different shifts. The shift of 4.2 is greater than the shift408

of 4.1. As expected, the higher the shift, the more oscillatory the problem. In red are409

plotted the results of the coarse correction when applied to the blue eigenvectors. In410

this example, the coarse correction is implemented with the reduction-based interpo-411

lation operator introduced in Section 3. Additionally, the green curves represent the412

best representation of both eigenvectors in the interpolation range. First, note that413

the blue and green curves align almost perfectly in both sub-figures, which means that414

the interpolation range introduced in Section 3 offers a good approximation to the415

potentially oscillatory smallest eigenvector. In both cases, P̂ has good approximation416

properties. In Figure 4.1, where the problem is discretized with 10 points per wave-417

length, the red coarse correction vector is relatively close to the blue eigenvector. The418

slight difference between both is only a matter of amplitude. In contrast, while the419

oscillations of the coarse correction vector illustrated in Figure 4.2 are synchronized420

with the oscillations of the smallest eigenvector, its direction is reversed. In that case,421

while the interpolation range is almost perfect, the error of the smallest eigenvector422

is not reduced by the coarse correction, but amplified.423

At this stage, let us define a concept of pollution to better understand how the matrix424

indefiniteness can corrupt the coarse correction.425

Theorem 4.1. Let A be an n × n matrix, and V its orthonormal set of eigen-426

vectors, each associated with the corresponding element of the diagonal eigenvalue427

matrix Λ. Also, let P be an n × nc interpolation operator. Assuming V T
c P is non-428

singular, we write the linear decomposition of the post-scaled interpolation operator as429

P
(
V T
c P

)−1
= V K, where K is the following n× nc matrix of coefficients430

(4.1) K := V TP (V T
c P )−1 =

[
Ic
Kf

]
.431

The block Ic corresponds to the identity matrix of size nc × nc, and the block Kf432

is a nf × nc matrix such that Kf := V T
f P (V T

c P )−1. The interpolation error of the433

eigenvector vi of Vc is given by434

(4.2) vT
i (I −Π(P ))vi = 1−

[(
Ic +KT

f Kf

)−1
]
i,i

,435

where [·]j,k denotes the entry (j, k) of the bracketed matrix.436

Proof. First, note that post-multiplying P by any non-singular matrix Mc of size437

nc × nc does not change the l2-projection438

(PMc)((PMc)
T (PMc))

−1(PMc)
T = PMcM

−1
c (PTP )−1M−T

c MT
c PT

439

= P (PTP )−1PT = Π(P ) .(4.3)440441
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Fig. 4.3: Layering of : v1 (blue) vs. P (PTP )−1PTv1 (green) vs.
P (PTAP )−1PTAv1 (red), for two different shifts

In particular for Mc = (V T
c P )−1,442

I −Π(P ) = I − P (PTP )−1PT
443

= I − P (V T
c P )−1

(
P (V T

c P )−1)TP (V T
c P )−1

)−1
(P (V T

c P )−1)T .(4.4)444445

Since P (V T
c P )−1 = V K, it follows that446

I −Π(P ) = I − (V K)((V K)T (V K))−1(V K)T447

= I − V K(KTK)−1KTV T .(4.5)448449

For any eigenvector vi of A, let ei := V Tvi be the canonical unit vector with a450

one at the ith position and zero elsewhere. Assuming vi ∈ Vc (i ≤ nc), the vector451

ci := KTei of size nc is also a unit vector with a one at the ith position. Consequently,452

the damping factor of vi ∈ Vc is453

vT
i (I −Π(P ))vi = vT

i V (I −K(KTK)−1KT )V Tvi454

= eTi (I −K(KTK)−1KT )ei455

= 1− cTi (K
TK)−1ci = 1−

[
(Ic +KT

f Kf )
−1
]
i,i

.(4.6)456
457

Since the l2-projection is unchanged by post-multiplication of P , we assume for what458

follows that K has the form (4.1). The block Kf designates what we call “pollu-459

tion”. This block of pollution causes the slight difference between an eigenvector460
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14 R. FALGOUT, M. LECOUVEZ, P. RAMET, C. RICHEFORT

vi of Vc and its best representation in the range of P . When a column of Kf is461

null, the interpolation error of the associated eigenvector equals zero, such that blue462

and green curves align perfectly. In practice however, this property is unlikely to be463

satisfied for Helmholtz, because P should be sparse for cost considerations and the464

smallest eigenvectors are usually unknown. Moreover, the near-kernel space of the465

Helmholtz equation is oscillatory. This makes the construction of good interpolation466

rules more difficult, and tends to pollute the interpolation range. In fact, this pollu-467

tion is probably unavoidable and the columns of Kf are unlikely to be zero. While468

the pollution decreases the convergence speed of multigrid methods for SPD prob-469

lems, we demonstrate that it can corrupt the coarse correction and make the method470

diverge in the indefinite case, as illustrated by the reversed red vector of Figure 4.3(b).471

472

In that direction, let us discuss the effectiveness of the coarse correction by looking at473

the contraction of the nc small eigenvectors Vc only, assuming the nf large eigenvectors474

Vf are damped by the smoother.475

Theorem 4.2. Define A and P as in the setting of Theorem 4.1. Also, let the476

matrix K be defined as in (4.1). The contraction of an eigenvector vi of Vc after the477

coarse correction is given by478

(4.7) vT
i Evi = 1− λi

[(
Λc +KT

f ΛfKf

)−1
]
i,i

.479

480

Proof. By the same reasoning of the proof for Theorem 4.1, we note that post-481

multiplying P by any non-singular matrix Mc of size nc × nc does not change the482

coarse correction483

(PMc)((PMc)
TA(PMc))

−1(PMc)
T = PMcM

−1
c (PTAP )−1M−T

c MT
c PT

484

= P (PTAP )−1PT(4.8)485486

In particular for Mc = (V T
c P )−1,487

E = I − P (PTAP )−1PTA488

= I − P (V T
c P )−1

(
P (V T

c P )−1)TAP (V T
c P )−1

)−1
(P (V T

c P )−1)TA.(4.9)489490

Similar to (4.5), the equality P (V T
c P )−1 = V K leads to491

E = I − (V K)((V K)TA(V K))−1(V K)TA = V (I −K(KTΛK)−1KTΛ)V T .(4.10)492493

Define the euclidean basis vectors ei and ci as in the proof of Theorem 4.1. Subse-494

quently, the contraction of vi ∈ Vc is495

vT
i Evi = vT

i V (I −K(KTΛK)−1KTΛ)V Tvi496

= eTi (I −K(KTΛK)−1KTΛ)ei497

= 1− λic
T
i (K

TΛK)−1ci = 1− λi

[(
Λc +KT

f ΛfKf

)−1
]
i,i

.(4.11)498
499

Theorem 4.2 shows that the damping factors rely on a combination of the small ei-500

genvalues Λc plus the large eigenvalues Λf , such that the mix is given by the entries501

of the pollution Kf .502

503
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The effectiveness of the coarse correction is well-known in the SPD case. If all ei-504

genvalues are positives, one can remark that505

(4.12) ∀i ≤ nc , 0 ≤
[(
Λc +KT

f ΛfKf

)−1
]
i,i

≤
[
Λ−1
c

]
i,i

= λi ⇒ 0 ≤ vT
i Evi ≤ 1.506

Hence, the coarse correction always operates a contraction on vi regardless the block507

of pollution Kf . In the indefinite case however, the property (4.12) does not hold. In508

fact, a necessary condition for the coarse correction to be a contraction is509

(4.13) ∀i ≤ nc ,
∣∣vT

i Evi

∣∣ ≤ 1 ⇒ 0 ≤ λi

[(
Λc +KT

f ΛfKf

)−1
]
i,i

≤ 2.510

From Equation (4.13), it follows that each diagonal entry must have the same sign as511

its associated eigenvalue, and be smaller than twice the inverse of the eigenvalue in512

magnitude. Nothing guarantee such conditions to be satisfied in the case where small513

and large and either negative or positive eigenvalues are mixed. Especially for very514

small eigenvalues, the mix can easily lead to a diagonal entry of the opposite sign515

even though Kf is small, because its entries are weighted by the large eigenvalues516

Λf . Therefore, a good interpolation operator can still cause the coarse correction to517

amplify the error. For very near-zero eigenvalues, even a round-off error can eventually518

lead to divergence in the indefinite case. The following example better depicts how519

the pollution can cause divergence in the indefinite setting for a 2× 2 matrix.520

Example 4.3. Let A be a 2×2 matrix, and v1 and v2 its eigenvectors respectively521

associated with eigenvalues |λ1| < |λ2|. Let P be an interpolation operator of size 2×1522

targeting the smallest eigenvector v1, such that523

(4.14) P = v1 + ϵv2.524

From definition (4.1), the K matrix can be derived by525

(4.15) K = V TP
(
vT
1 P
)−1

= [v1,v2]
T · [v1 + ϵ× v2] =

[
1
ϵ

]
.526

From Theorem 4.2, the action of the coarse correction on v1 is given by527

(4.16) vT
1 Ev1 = 1− λ1

[(
Λc +KT

f ΛfKf

)−1
]
1,1

= 1− λ1

λ1 + ϵ2λ2
528

529

The figure 4.4 depicts the action of the coarse correction on v1 with respect to the530

pollution block KT
f ΛfKf = ϵ2λ2. A first observation is that the coarse correction531

does not amplify the smallest eigenvector if eigenvalues have the same sign. If the532

eigenvalues are oppositely signed, then the coarse correction amplifies v1 for ϵ2λ2 <533

−λ1/2. Therefore, the condition on the pollution Kf = ϵ that drives the error of534

interpolation is particularly difficult respectively for small and large values of λ1 and535

λ2.536

The next theorem derives a more general condition for the coarse correction to be a537

contraction of the smallest eigenvalues in the indefinite case based on the concept of538

pollution.539

Theorem 4.4. If A is indefinite, then540

(4.17)
∣∣λnc

(
KT

f ΛfKf

)∣∣ ≤ 1

2
|λ1| ⇒ ∀vi ∈ Vc ,

∣∣vT
i Evi

∣∣ ≤ 1541

542
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1

−λ1
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Fig. 4.4: Contraction of the coarse correction with respect to the pollution

Proof. Define MK = Ic+Λ−1
c KT

f ΛfKf . From the shape of the matrix K defined543

in Equation (4.10), we have544

V T
c EVc = V T

c V (I −K(KTΛK)−1KTΛ)V TVc545

= Ic − (KTΛK)−1Λc546

= Ic − (Ic + Λ−1
c KT

f ΛfKf )
−1Λ−1

c Λc547

= Ic −M−1
K .(4.18)548549

Hence, it follows that550

(4.19) ∀vi ∈ Vc , v
T
i Evi = eTi V

T
c EVcei = 1− eTi M

−1
K ei.551

where ei is the ith vector of the euclidean basis in Rnc . Therefore, |vT
i Evi| ≤ 1 if552

(4.20) ∀vi ∈ Vc , −1 ≤ vT
i Evi ≤ 1 ⇔ 0 ≤ eTi M

−1
K ei ≤ 2.553

We begin by deriving a condition for the right bound of (4.20), and will show, in a554

second time, that it also satisfies the left one. Let x and y two vectors of Rn linked555

by the relation x = Mky. The right bound is satisfied if556

(4.21) max
x ̸=0

||M−1
K x||
||x||

= max
y ̸=0

||y||
||MKy||

=

(
min
y ̸=0

||MKy||
||y||

)−1

≤ 2.557

Therefore, the condition (4.21) is equivalent to558

(4.22) min
y ̸=0

||MKy||
||y||

≥ 1

2
.559

Let σi(M) be the ith largest singular value of a given matrix M (we omit the matrix560

between parenthesis when referring to the singular values of the initial matrix A). In561

addition, let us recall the following triangle inequality ||y+z|| ≥ ||y||− ||z|| , ∀y, z ∈562

Rnc . Thus, we have that563

min
y ̸=0

||MKy||
||y||

= min
y ̸=0

||y + Λ−1
c KT

f ΛfKfy||
||y||

≥ min
y ̸=0

(
1−

||Λ−1
c KT

f ΛfKfy||
||y||

)
564

= 1−max
y ̸=0

||Λ−1
c KT

f ΛfKfy||
||y||

(4.23)565

= 1− σnc

(
Λ−1
c KT

f ΛfKf

)
.566567
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It follows that the condition (4.22) is satisfied if σnc
(Λ−1

c KT
f ΛfKf ) ≤ 1

2 . Finally,568

since σnc
(Λ−1

c KT
f ΛfKf ) ≤ σ−1

1 σnc
(KT

f ΛfKf ) and the singular values coincide with569

eigenvalues in magnitude because both Λc and KT
f ΛfKf are hermitian, the right570

bound of (4.20) is satisfied if571

(4.24) |λnc

(
KT

f ΛfKf

)
| ≤ 1

2
|λ1|.572

We now address the left bound of (4.20) assuming the condition (4.24) holds. Our573

goal is to prove that all diagonal entries of M−1
K are positives. In that direction, let574

F (M) be the field of values of a given matrix M of size nc such that575

(4.25) F (M) := {x∗Mx | ∀x ∈ Cnc , x∗x = 1} .576

If M is hermitian, one can show that (e.g. [14, chapter 4])577

min
x∗x=1

x∗Mx = λmin (M) and max
x∗x=1

x∗Mx = λmax (M) .(4.26)578
579

Accordingly, let F (Λc) and F (KT
f ΛfKf ) be the field of values of Λc and KT

f ΛfKf580

respectively. Since A is non-singular, then 0 /∈ F (Λc). Therefore, the spectrum of581

Λ−1
c KT

f ΛfKf is included as follows (e.g. [13, chapter 1])582

(4.27) ∀j ≤ nc , λj

(
Λ−1
c KT

f ΛfKf

)
∈ F

(
KT

f ΛfKf

)
/F (Λc) .583

The set ratio in (4.27) has the usual algebraic interpretation such that584

(4.28) ∀α ∈
F
(
KT

f ΛfKf

)
F
(
Λc

) , −
max
x∗x=1

∣∣∣x∗KT
f ΛfKfx

∣∣∣
min

x∗x=1

∣∣∣x∗Λcx
∣∣∣ ≤ α ≤

max
x∗x=1

∣∣∣x∗KT
f ΛfKfx

∣∣∣
min

x∗x=1

∣∣∣x∗Λcx
∣∣∣ .585

Furthermore, matrices Λc and KT
f ΛfKf are hermitian so the property (4.26) holds586

for both of them. Because the spectrum belongs to the set ratio as in (4.27), we have587

(4.29) − |λ1|−1 ·
∣∣λnc

(
KT

f ΛfKf

)∣∣ ≤ λj

(
Λ−1
c KT

f ΛfKf

)
≤
∣∣λnc

(
KT

f ΛfKf

)∣∣ · |λ1|−1.588

Therefore, assuming the condition (4.24) is satisfied, it follows589

(4.30) λj

(
Λ−1
c KT

f ΛfKf

)
≥ −

∣∣λnc

(
KT

f ΛfKf

)∣∣× |λ1|−1 ≥ −1

2
.590

Adding one to each member of the inequality (4.30) finally gives591

(4.31) λj (MK) = λj

(
I + Λ−1

c KT
f ΛfKf

)
≥ 1

2
592

The condition (4.24) implies that all eigenvalues of MK are positives. Subsequently,593

det (MK) > 0. The adjugate formula for the inverse of MK shows that diagonal594

entries are positives if the determinant of principal sub-matrices are also positives. In595

that direction, denote by [ · ]Ω−i
the principal sub-matrix obtained by deleting the ith596

row and column of a matrix. Since Λc is diagonal, one can show that597

(4.32)
[
Λ−1
c KT

f ΛfKf

]
Ω−i

= [Λc]
−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

.598
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As in Equation (4.27), the spectrum is included such that599

∀j ≤ nc − 1 , λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
∈ F

([
KT

f ΛfKf

]
Ω−i

)
/F
(
[Λc]Ω−i

)
,600

and therefore the following bound holds601

(4.33) λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ −

∣∣∣λnc−1

([
KT

f ΛfKf

]
Ω−i

)∣∣∣× |λ1|−1.602

The matrix KT
f ΛfKf being hermitian, Cauchy’s interlace theorem states that603

(4.34) λj

(
KT

f ΛfKf

)
≤ λj

([
KT

f ΛfKf

]
Ω−i

)
≤ λj+1

(
KT

f ΛfKf

)
, j = 1, · · · , nc − 1.604

As a consequence, and from the inequality (4.30), we have605

(4.35) λj

(
[Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ −

∣∣λnc

(
KT

f ΛfKf

)∣∣× |λ1|−1 ≥ −1

2
.606

Hence, eigenvalues of principal sub-matrices also satisfy607

(4.36) λj

(
[MK ]Ω−i

)
= λj

(
Inc−1 + [Λc]

−1
Ω−i

[
KT

f ΛfKf

]
Ω−i

)
≥ 1

2
.608

Because eigenvalues of the principal sub-matrices are positives, so are the determi-609

nants. From the adjugate formula of M−1
K , it follows that610

(4.37) eTi M
−1
K ei =

[
M−1

K

]
i,i

=
det
(
[MK ]Ω−i

)
det
(
MK

) ≥ 0, i = 1, · · · , nc611

As a consequence, both left and right bounds of (4.20) are satisfied. Finally,612

(4.38)
∣∣λnc

(
KT

f ΛfKf

)∣∣ ≤ 1

2
|λ1| ⇒ ∀vi ∈ Vc ,

∣∣vT
i Evi

∣∣ ≤ 1613

The condition provided by Theorem 4.4 is that the amplitude of the block KT
f ΛfKf614

never exceeds half of the smallest eigenvalue in magnitude. No assumption can be615

made on the sign of eigenvalues in the indefinite case, so that the condition pre-616

vents the coarse correction from amplifying the error in the case where eigenvalues617

are oppositely signed. Applied to the previous example 4.4, Theorem 4.4 states that618

|ϵ2λ2| < |λ1|/2. That said, the condition is extremely strict and probably impossible619

to satisfy in practice for very small eigenvalues. In a practical method, the block Kf620

will never be sufficiently small for solving all type of indefinite problems because of621

a potentially very near-zero eigenvalue. As illustrated by Figure 4.3, a good inter-622

polation operator with small Kf can still cause divergence although it satisfies good623

approximation properties. The classical coarse correction is hopeless for indefinite624

problems.625

5. Alternative coarse correction for indefinite problems. As discussed in626

the previous section, the classical coarse correction is not equivalent to a minimization627

problem in the indefinite case, and improving P will never be enough to remedy628

this loss of equivalence. Moreover, because the interpolation operator developed in629

Section 3 targets the smallest eigenvectors of each level, every coarser matrix is more630

indefinite than its fine parent. Then, as the number of coarse levels increases, the631
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balance between negative and positive eigenvalues reaches an equilibrium, and makes632

the effectiveness of the classical coarse correction difficult to predict. Nevertheless,633

Figure 4.3 shows that the interpolation operator has good approximation properties634

for the oscillatory near-kernel space. In particular, the Figure 4.3(b) suggests that only635

the direction of the coarse correction vector has to be changed; the shape is correct.636

Hence, a coarse correction that amplifies or flips the smallest eigenvectors can still637

provide pertinent information for solving the system. In this section, we propose to638

minimize the approximation error in a proper norm for indefinite problems and within639

a space composed of vectors returned by the classical coarse correction. Moreover, to640

decrease the eigenvector pollution, each coarse correction vector is smoothed by the641

polynomial smoother of Section 2.642

5.1. Notations and general considerations on GMRES. The Generalized643

Minimal RESidual (GMRES) method [24] approximates the solution in a Krylov644

subspace by minimizing the residual in the Euclidean norm. The method can solve645

any class of matrix system since the norm is valid independent of the context, which646

is of particular interest for the indefinite case. Let us first define some notation before647

introducing the alternative coarse correction. Let Wp be the n×p rectangular matrix648

containing the p orthonormalized Krylov vectors such that649

(5.1) range (Wp) = span
{
b, Ab, A2b, . . . , Ap−1b

}
.650

Each column of Wp is orthonormalized following a Gram-Schmidt process. The co-651

efficients of the orthonormalization are stored in the rectangular Hessenberg matrix652

H̄p of size p+ 1× p. The square matrix Hp is of size p× p and obtained from H̄p by653

deleting its last row. Both matrices Wp and Hp are linked by654

(5.2) AWp = Wp+1H̄p and WT
p AWp = Hp,655

which leads to the following equality656

argmin
x̃∈range(Wp)

∥b−Ax̃∥2 = argmin
ρm∈Cp

∥b−AWpρp∥2 = argmin
ρp∈Cp

∥WT
p b−Hpρp∥2657

= WpH
−1
p WT

p b.(5.3)658659

In practice, GMRES takes advantage of the convenient Hessenberg shape of H̄p to660

construct an upper triangular matrix by applying Given’s rotations. The minimization661

of the residual then relies on a backward substitution. The relation (5.2) can be662

generalized [7] to any arbitrary subspace Wp = [w1, . . . ,wp] such that663

(5.4) argmin
x̃∈range(Wp)

||b−Ax̃||2 = WpH
−1
p ZT

p b with AWp = ZpHp664

and where Zp denotes the orthonormalized basis of AWp. Note that the Arnoldi665

relation (5.4) does not define any particular recurrence relation since Wp is arbitrary666

and not necessarily designed by successive matrix vector products. In addition, the667

only matrix that needs to be orthonormal in the generalized setting is Zp.668

5.2. Minimization within a space of coarse correction vectors. As men-669

tioned in the introduction of this section, the interpolation operator has good ap-670

proximation properties for the oscillatory near-kernel space. Even though the small671

eigenvectors that constitute each coarse correction vector are likely to be oriented in672
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the wrong direction or amplified because of the pollution effect introduced in Sec-673

tion 4, they still provide useful information about the near-kernel space. For ease of674

discussion, we present this idea on a two-level method. The multi-level case will be675

depicted in the next section dedicated to numerical experiments.676

677

In that direction, let Wi be the set of coarse correction vectors of the ith iteration678

linked by the Arnoldi relation (5.4) with its orthonormal counterpart Zi. Accordingly,679

let wj ∈ Wi and zj ∈ Zi denote the jth vectors of the set Wi and Zi respectively.680

At each iteration i, the classical coarse correction returns a new coarse correction681

vector that is smoothed by the Chebyshev polynomial smoother presented in Section682

2. This new smoothed coarse correction vector is therefore added to the previous set683

such that684

(5.5) Wi = [Wi−1 , wi] with wi = qνm+1(A
2)ΠA (P ) r(i

)

,685

where r(i) designates the residual at the ith iteration. From the Arnoldi relation (5.4),686

we have687

(5.6) Hi = ZT
i AWi = H−T

i WT
i ATAWi , Zi = AWiH

−1
i .688

Hence, solving the minimization problem (5.4) is equivalent to solve the normal equa-689

tions within the subspace spanned by Wi690

WiH
−1
i ZT

i A = Wi

(
WT

i ATAWi

)−1
HT

i Z
T
i A691

= Wi

(
WT

i ATAWi

)−1
WT

i ATA = ΠATA (Wi) .(5.7)692693

The concept of pollution also drives convergence in the alternative setting. Section694

4 demonstrated that the block Kf pollutes the range of P and therefore impacts the695

classical coarse correction. Because the minimization Wi resorts to the classical coarse696

correction by way of Equation (5.5), the block of pollution still impact the capture of697

the small eigenvectors. Resorting to euclidean norm in (5.4) prevents from divergence,698

but it also squares the eigenvalues of the initial problem because of the equivalence699

with an ATA-orthogonal projection. This naturally increases the gap between small700

and large eigenvalues, and therefore decreases the contraction of the smallest over the701

largest.702

703

Smoothing the classical coarse correction vectors by way of the polynomial qνm+1(A
2)704

compensates this effect by decreasing the distribution of large eigenvectors in the min-705

imization space. This idea of damping the large eigenvalues to reveal the smaller ones706

is also used to generate a relevant set of test vectors for the construction of the least-707

squares minimization operator introduced in Section 3. Once the coarse correction708

vector is smoothed and included in Wi, the set Zi is extended as follows709

(5.8) Zi = [Zi−1 , zi] with zi =
1

hi,i

Awi −
i−1∑
j=1

hj,i · zj

 ,710

where coefficients hj,i result from the orthogonalization process of the new vector711

Awi. Those coefficients are stored in the squared upper triangular matrix712

(5.9) Hi =


h1,p

Hi−1

...
hi−1,i

0 · · · 0 hi,i

 with hj,i =

{
⟨zj , zi⟩ if j < i
||zi||2 if j = i

.713
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The algorithm 5.1 presents the alternative two-level cycle, and can be compared with714

the classic one in Algorithm 1.1.

Algorithm 5.1 Two-level cycle with the alternative coarse correction

Inputs : b right-hand side, x̃ approximation of x, r = b−Aũ residual
A initial matrix, M smoother, P interpolation operator

for j = 1, ν do
x̃← x̃+ p(A2)r
r ← b−Ax̃

end for
rC ← PT r
eC ← Solve(PTAP, rC)
w ← qνm+1(A

2)PeC
ŵ, Hi ← Orthonormalize(w, Zi−1)
Wi, Zi ← [Wi−1 , w] , [Zi−1 , ŵ]
for j = 1, ν do

x̃← x̃+ p(A2)r
r ← b−Ax̃

end for
x̃← x̃+WiH

−1
i ZT

i r
r ← b−Ax̃
Output : x̃ approximation of x at the end of the cycle

715

Example 5.1. Let us pursue Example 4.3, where A is a 2 × 2 matrix, with v1716

and v2 its eigenvectors respectively associated with eigenvalues |λ1| < |λ2|. The in-717

terpolation operator P targets v1 as defined by (4.14). Let W1 be the minimization718

space of dimension 1 constructed following (5.5) such that719

(5.10) W1 = qm+1(A
2)ΠA(P )v1 =

λ2
1

λ1 + ϵ2λ2

(
qm+1(λ

2
1)v1 + qm+1(λ

2
2)ϵv2

)
.720

Furthermore, define EW1 to be the error propagation matrix of the alternative coarse721

correction. One can show that722

(5.11) vT
1 EW1

v1 = vT
1 (I −ΠATA (W1))v1 = 1−

q2m+1(λ
2
1)λ

2
1

q2m+1(λ
2
1)λ

2
1 + q2m+1(λ

2
2)ϵ

2λ2
2

.723

To simplify the discussion, let us assume that the smallest eigenvector is preserved by724

the smoother, such that qm+1(λ
2
1) = 1. The following figure illustrates the contrac-725

tion of v1 after applying the alternative coarse correction with respect to the pollution726

and the polynomial. As expected, the smoother increases the contraction and counter727

balance the squared large eigenvalue λ2 that weights the pollution Kf = ϵ when mini-728

mizing in euclidean norm.729

730

6. Numerical Experiments. In the following numerical experiments, the in-731

terval of the Chebyshev polynomial smoother is determined following the spectral732

density approximation method presented in Section 2.2. The number nν of coeffi-733

cients µk in the moment matching procedure is fixed to 15, and nvec fixed to 5. The734

degree m of the polynomial is 3. Regarding the construction of the interpolation735

operator, the number of smoothed test vectors is fixed to 15. Last, the number of736

interpolation points in the least square minimization strategy used to construct the737

coarse grid selection operator R̂T never exceeds 4 (i.e., max i∈F {Card(Ci)} = 4).738
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λ2
1/2 λ2

1
λ1

1

q2m+1(λ
2
2)ϵ

2λ2
2

vT
1 EW v1

qm+1(λ
2
2) = 1 0.3 0.1

Fig. 5.1: Illustration of the contraction of a small eigenvector with respect to the
pollution and the polynomial smoother

6.1. Two-level experiment on the Two Dimensional Shifted Laplacian.739

Let us first apply this new multigrid setting to the two-dimensional shifted laplacian740

problem associated with the stencil matrix (1.6). The size of the shifted laplacian741

matrix is fixed to n = 100. The following figures depict the number of iterations742

with respect to the shift kh and using either the classical or the alternative coarse743

correction. Recall that the matrix is the most indefinite (exact balance between neg-744

ative and positive eigenvalues) when kh = 2, and that the near-kernel space becomes745

more oscillatory as kh increases. Those number of iterations are also presented with746

respect to the percentage τ that governs the number of selected columns of Ŝ in the747

approximation of ideal interpolation. The resulting operator complexity defined by748

ϕ :=
∑

l nnz(Al)

nnz(A0)
for different values of τ is provided by Table 6.1.749

τ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ϕ 1.81 3.00 3.47 3.69 3.93 4.16 4.35 4.55 4.73 4.87 5.15

Table 6.1: Operators complexity of the two-level method with respect to τ

Last, the tolerance of the relative residual norm is set to 10−6, and the maximal750

number of iterations is fixed to 100. Peak values of the standard multigrid setting751

on the left column denote divergence, whereas they stand for slow convergence in752

the alternative setting plotted on the right column. Both left figures 6.3 and 6.1753

correspond to a two-level method built on the classical coarse correction respectively754

for ν = 2 and ν = 4. Whereas increasing the number of selected columns in Ŝ for755

approximating the ideal interpolation operator by way of the parameter τ generally756

helps the convergence, the method remains likely to diverge for the reasons explained757

in Section 4. Still, the best setting for the classical coarse correction is naturally758

τ = 1 and ν = 4. Certain divergence scenarios that happens for ν = 2 (for instance759

around kh = 0.8) are fixed by doubling the number of smoothing iterations. Doing so760

improves the set of test vectors in approximating the near-kernel space, and therefore761

leads to a better least-squares minimization coarse variable operator that decreases the762

pollution Kf . It remains however impossible to derive a general setting that ensures763

the convergence of the standard method in all cases. Both right figures 6.2 and 6.4764

represent the same experiment with the alternative coarse correction. The peaks765

around kh = 2 depict slow convergence situation where the relative residual norm766

is stuck around 10−5 because of very near-zero eigenvalues. Beside those extremely767
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Fig. 6.1: Classical CC, ν = 2
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Fig. 6.2: Alternative CC, ν = 2
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Fig. 6.3: Classical CC, ν = 4
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Fig. 6.4: Alternative CC, ν = 4

Fig. 6.5: Number of iterations of two-level methods with respect to kh and τ

indefinite cases, the method converges in all cases. We also remark that the divergence768

of the standard method correlate with more iterations in the alternative setting. At769

the cost of complexity, increasing τ or ν provides a better convergence factor.770

6.2. Multi-level experiment on the Two Dimensional Helmholtz prob-771

lem with absorbing boundary conditions.772

The following numerical experiments depict the convergence for a two dimensional773

Helmholtz problem using absorbing boundary conditions and with a discretization774

coefficient set to kh = 0.625 (i.e. 10 points per wavelength, where k corresponds775

to the wavenumber). Therefore, the discretization matrix is indefinite, complex and776

non-hermitian, and grows with k. As a consequence, the restriction operation is made777

through the transpose conjugate P̂ ∗. Moreover, the squared matrix in the polynomial778

setting is replaced by A∗A. Also note that those numerical experiments result from779

the alternative coarse correction only, and that ZT is replaced by Z∗ in (5.4). The780

first benchmark illustrated by Figure 6.6 exposes the convergence of the method by781

fixing the number of selected column of Ŝ to the maximum (i.e., τ = 1). Each curve782

corresponds to a method following its number of levels. The y-axis corresponds to783
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the number of iterations, while the wavenumber varies along the x-axis. The number784

of iterations is constant until the fourth level. The number of iterations of both the785

five-level and six-level methods increase with the wavenumber.
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Levels = 2 3 4 5 6

Fig. 6.6: Number of iterations following the wavenumber k, ν = 2, τ = 1

786

While setting τ = 1 enables the method to converge almost constantly up to five787

levels, the operator complexity is too high for practical implementation. Therefore,788

the second benchmark exposes the number of iterations of a two-level method with789

respect to the parameter τ . Figure 6.7 shows that the plain least-squares minimization
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Fig. 6.7: Two-level method with alternative coarse correction - number of iterations
and operators complexity with respect to k and τ , ν = 2

790

operator (i.e. τ = 0) is not a suitable choice as k is growing. Even though larger sub-791

spaces ŜXi in the approximation of the ideal interpolation operator yields denser792

matrices, the number of iterations tends to size independence as τ grows. A trade-off793

between convergence and complexity may be possible depending on the problem-size.794

More generally, Figure 6.7 reveals how important is the role that plays the ideal795

approximation step in the convergence. A better sparsification strategy is a topic of796

further research.797

7. Conclusions. Indefinite and oscillatory problems are difficult for multigrid798

methods. The negative eigenvalues require an adapted smoother, and the interpolator799
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should capture the oscillatory near-kernel space. More importantly, the coarse correc-800

tion should be adapted to the indefiniteness of the initial matrix, which does not define801

a norm. The normal equation polynomial smoother is designed to target a desired802

proportion of eigenvalues according to their amplitude, and the range of our inter-803

polator offers a good approximation of the near-kernel space despite its oscillations.804

The alternative coarse correction space proposed in the paper permits to minimize the805

global residual in a proper norm for indefinite problems, in a space approximating the806

set of smallest eigenvectors known to be difficult for most iterative methods. Finding807

a better trade-off between sparsity and accuracy of interpolation, and constructing808

a polynomial without resorting to normal equations will be important points in our809

future investigations.810
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[26] K. Stüben, Algebraic multigrid (amg). an introduction with applications, (1999).879
[27] P. Vanek, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for880

second and fourth order elliptic problems, tech. report, USA, 1995.881
[28] B. M. Vanvek Petr and M. Jan, Convergence of algebraic multigrid based on smoothed882

aggregation, (2001), https://doi.org/10.1007/s211-001-8015-y.883
[29] T. U. Zaman, S. P. MacLachlan, L. N. Olson, and M. West, Coarse-grid selection884

using simulated annealing, Journal of Computational and Applied Mathematics, 431885
(2023), p. 115263, https://doi.org/https://doi.org/10.1016/j.cam.2023.115263, https://886
www.sciencedirect.com/science/article/pii/S0377042723002078.887

This manuscript is for review purposes only.

https://doi.org/10.1137/140975310
https://doi.org/10.1137/140975310
https://doi.org/10.1137/140975310
https://doi.org/10.1137/140975310
https://arxiv.org/abs/https://doi.org/10.1137/140975310
https://arxiv.org/abs/https://doi.org/10.1137/140975310
https://arxiv.org/abs/https://doi.org/10.1137/140975310
https://doi.org/10.1137/060654062
https://doi.org/10.1137/060654062
https://doi.org/10.1137/060654062
https://doi.org/10.1137/060654062
https://arxiv.org/abs/https://doi.org/10.1137/060654062
https://doi.org/10.1002/nla.686
https://doi.org/10.1137/100803031
https://doi.org/10.1137/100803031
https://doi.org/10.1137/100803031
https://doi.org/10.1137/100803031
https://arxiv.org/abs/https://doi.org/10.1137/100803031
https://doi.org/10.48550/ARXIV.2202.05658
https://arxiv.org/abs/2202.05658
https://arxiv.org/abs/2202.05658
https://arxiv.org/abs/2202.05658
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1137/1.9781611971057.ch4
https://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971057.ch4
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971057.ch4
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971057.ch4
https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://math.mit.edu/classes/18.086/2006/am63.pdf
https://math.mit.edu/classes/18.086/2006/am63.pdf
https://math.mit.edu/classes/18.086/2006/am63.pdf
https://doi.org/10.1007/s211-001-8015-y
https://doi.org/https://doi.org/10.1016/j.cam.2023.115263
https://www.sciencedirect.com/science/article/pii/S0377042723002078
https://www.sciencedirect.com/science/article/pii/S0377042723002078
https://www.sciencedirect.com/science/article/pii/S0377042723002078

	Introduction
	Multigrid methods
	Why Helmholtz problems are difficult for multigrid

	Polynomial Smoothers for Indefinite Problem
	General considerations on polynomial smoothers
	Constructing an appropriate target interval

	Constructing good interpolation rules
	Ideal framework
	Least Squares Minimization Interpolation Operator
	Ideal approximation from least squares coarse operator

	Alteration of the coarse correction in the indefinite case
	Alternative coarse correction for indefinite problems
	Notations and general considerations on GMRES
	Minimization within a space of coarse correction vectors

	Numerical Experiments
	Two-level experiment on the Two Dimensional Shifted Laplacian
	Multi-level experiment on the Two Dimensional Helmholtz problem with absorbing boundary conditions

	Conclusions
	References

