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Abstract. Model extraction emerges as a critical security threat with
attack vectors exploiting both algorithmic and implementation-based ap-
proaches. The main goal of an attacker is to steal as much information
as possible about a protected victim model, so that he can mimic it with
a substitute model, even with a limited access to similar training data.
Recently, physical attacks such as fault injection have shown worrying
efficiency against the integrity and confidentiality of embedded models.
We focus on embedded deep neural network models on 32-bit microcon-
trollers, a widespread family of hardware platforms in IoT, and the use
of a standard fault injection strategy – Safe Error Attack (SEA) – to
perform a model extraction attack with an adversary having a limited
access to training data. Since the attack strongly depends on the input
queries, we propose a black-box approach to craft a successful attack
set. For a classical convolutional neural network, we successfully recover
at least 90% of the most significant bits with about 1500 crafted in-
puts. These information enable to efficiently train a substitute model,
with only 8% of the training dataset, that reaches high fidelity and near
identical accuracy level than the victim model.

Keywords: Machine Learning, Security, Model extraction, Fault Injection, Em-
bedded system

1 Introduction

Deep neural network models suffer from many critical security issues includ-
ing confidentiality and privacy threats. A growing concern is model extraction
attacks that, basically, aim at stealing a victim model. Different adversarial goals
have to be distinguished [13]. First, an adversary may want to clone the model
(fidelity objective) and build a substitute model with an architecture and pa-
rameters as close as possible to the victim model. Thus, several works (as ours)
concerned the challenging task of the extraction of model parameters. A second
objective (task accuracy objective) is to efficiently steal the performance of the
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victim model (to reach equal or better performance at lower cost) [21,28]. For
that case, having similar architecture or parameter values is not compulsory.

This work focuses on a model parameters extraction with fidelity objective.
This challenge receives a growing interest by the exploitation of very differ-
ent attack vectors, from cryptanalysis-based methods as in [8,26] to learning-
based techniques focused on the substitute model [22,28]. Because of very lim-
ited knowledge on the training distribution, both approaches need a very large
amount of queries to the victim model that could be prohibitive in many attack
context. However, the large-scale deployment of models in a wide variety of hard-
ware platforms fosters the emergence of new attack vectors such as side-channel
(SCA) [14] and fault injection analysis (FIA) [24].

For now, the use of fault injection techniques for model extraction has only
been performed with rowhammer [15], such as in [24] that leverage hardware
flaws of DRAM to partially guess parameter values. However, such rowhammer-
based approaches exclude other platforms but CPU-based ones with DRAM
memory and are known to be complex to carry out in practice. Thus, our ob-
jective is to widen the scope of FIA-based approaches for model extraction by
focusing on models embedded in constrained devices with the widespread 32-bit
microcontroller platforms, massively used for IoT applications. For such devices,
bit-flips with rowhammer as in [24], are not practicable since they rely on Flash
memory. Our work is the first to demonstrate that a well-known attack strat-
egy against cryptographic modules is possible and can reach consistent results
regarding the state-of-the-art. Our contributions are the following:
– We demonstrate a new extraction method based on a Safe-Error Attack

(SEA) that exploits a bit-set fault model (0 → 1, 1 → 1). SEA is a standard
FIA strategy that relies on a simple but powerful principle: injecting a fault
on a secret parameter of a program may or may not lead to a faulted output
according to the parameter value.

– SEA enables to recover the most significant bit values of the victim model
parameters. These information enable to efficiently constrain the substitute
model training, even with limited training data.

– We use full 8-bit quantized models as for real-world embedded applications,
a setting that makes our approach more challenging.

– We show that the model inputs significantly impact extraction performance
and we propose an input generation method to increase the recovery rate.

Availability. Data and codes related to our work are publicly available on
https://gitlab.emse.fr/securityml/lfi_sea_modelextraction.

2 Background

2.1 Model extraction

Threats against the confidentiality of ML models, especially deep neural net-
works, have been extensively studied with both algorithmic and implementation-
based attacks including physical attacks (especially side-channel analysis).

https://gitlab.emse.fr/securityml/lfi_sea_modelextraction
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Let’s consider a supervised neural network model MW , with W its internal
parameters. The input domain is X and M is trained thanks to a training dataset
(Xtrain, Y train), with Y train ⊂ RK the set of labels (K is the number of labels).
For an input x ∈ X , the output prediction is MW (x) ∈ RK and the predicted
label is ŷ = argmax(MW (x)). In a fidelity scenario, the goal of an adversary
is to craft a model M ′

Θ that mimic MW as perfectly as possible regarding his
knowledge and ability. Note that M ′ aims at providing the same predictions as
M , including potential mistakes from MW . Obviously, this goal strongly depends
on how the similarity between two models is defined. A typical approach [13]
is to measure the agreement of both models at the label-level, i.e. a classical
objective is to have argmax(M ′

Θ(x)) = argmax(MW (x)) for every x sampled
from a target distribution over X . A more complex and optimal extraction,
Functionally Equivalent Extraction, aims to reach M ′(x) = M(x),∀x ∈ X . Note
that the strongest possible attack leading to a substitute model with exactly the
same architecture and same parameters (W = Θ) is infeasible by only exploiting
input/output pairs from the victim model [13].

A first type of methods relies on the training of M ′
Θ with several works based

on active learning principles. The challenge relies on the classical assumption
that an adversary has a very limited (if any) access to the original training data.
Therefore, a critical limitation is the need of a very large amount of query/output
pairs, collected from the victim model, to build an efficient substitute training
dataset. A second approach is based on a full mathematical recovery by exploit-
ing chosen input/output pairs as well as gradient-based properties of the model,
such as the critical point (x = 0) of the second derivatives of ReLU in [8]. The
state-of-the-art result of this approach is a near perfect recovery (worst case er-
ror of 2−25) of the 100K parameters of a 2-layer MLP using 221.5 queries. The
attack has not been scaled to deeper models.

The last methods leverage the power of physical attacks to exploit infor-
mation leakages, regularly demonstrated in many security applications such as
cryptography [3]. More essentially, side-channel analysis have been proposed to
guess the values of a model parameters with timing analysis [19] or typical corre-
lation power analysis [4] even if the task still gathers critical open challenges [14]
for a full extraction of real-world embedded models.

2.2 Fault Injection Attacks

Fault injection attacks (FIA) are active hardware threats that consist in
faulting the operations of a target circuit for the purpose of extracting a secret
or gaining an unauthorized access [3]. They generally require a physical access
to the target [5] but some variants can be carried out remotely like rowhammer
[15] that targets DRAM. By heavily addressing some memory rows, an attacker
disturbs the adjacent rows (in the victim’s address space) which may typically
leads to bit-flip faults. Other remote approaches used software breaches in dy-
namic voltage and frequency scaling modules [23].

Laser Fault Injection. Typical injection means gather low-cost techniques
such as voltage or clock glitching that globally (i.e., spatially) alter the target
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device and moderate/high-cost methods such as electromagnetic pulse or laser
beam (usually, near-infrared). Laser fault injection (LFI) is particularly used in
security testing centers and for certification purpose because it enables power-
ful analysis with high temporal and spatial accuracy [1]. LFI makes it possible
to inject faults at bit-level according a data-dependent fault model4. Usually, a
bit-flip data-independent fault model is used to model FIAs, according to which
a faulted bit is inverted whatever its original value (the bit is said to be flipped :
0 → 1, 1 → 0). Using LFI, the fault model be either a bit-set or a bit-reset.
When a bit-set fault is injected, an actual error is induced when the initial bit
value was 0, the faulted bit then switches to 1 (0 → 1). When the original bit
value is already at 1, it stays at 1 (1 → 1): the targeted bit is safe from any
error. This fault model is said to be data-dependent as the injection of a fault
depends on its initial data state. A bit-reset fault model is linked to a symmetric
behavior (0 → 0, 1 → 0). The physical phenomenon of a bit-set fault model with
a laser shot in a floating gate transistor relies on the creation of a photolectric
current that induces voltage transients allowing to perform a fault injection [10].

Safe-Error Attack. Data-dependent fault model provides additional informa-
tion to an attacker by simply observing the error-free response of the target. That
is the basic principle of the Safe-Error Attack (SEA) described in [30]. SEA re-
lies on the observation that a fault could lead or not to an incorrect output
depending on a secret data. In our case, the secret is a parameter of the victim
model and the output is its predictions. Since SEA has been mostly applied for
cryptography, we illustrate the attack principle with a secret key recovering task
for an encryption algorithm that outputs a ciphertext from an input plaintext.
A bit-set is injected on the first bit of the secret key. If the obtained ciphertext
is erroneous, the key bit is 0 (an actual 0 → 1 fault was injected), if it is error-
free, the key bit is 1 (because the key bit was actually unfaulted 1 → 1). Then,
the whole key can leak with an iterative attack on all its bits. With this work,
we show that the SEA is also relevant to extract information from a DNN as
described in section 6.2.

Fault injection on 32-bit microcontrollers. LFI in SRAM or D flip-flop
memories follows a data-dependent fault model. Well-defined and precise loca-
tions of these memory cells yield either a bit-set or a bit-reset fault-model as
assessed on experimental basis [12,27]. The challenge is to find with certainty
the points of interest of many memory bits involved in an SEA which may ques-
tion the practical feasibility of SEA while targeting SRAM cells and D flip-flops.
However, microcontrollers store their program and data (such as a DNN model)
in embedded Flash memories (the most usual kind of embedded non-volatile
memory). At read time, these data are sensitive to LFI according a bit-set fault
model when read from the Flash memory for 32-bit microcontroller targets as
reported by [10,20]. The experiments carried out in these reference works showed

4 Note that we use the term fault model in a restrictive way to describe the mathe-
matical properties of the fault injection process.
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that it is feasible: (1) to achieve a 100% success rate when inducing a bit-set,
and (2) to chose at will the index of a single bit to be faulted among the 32 bits
of the read data, thanks to the regular and orderly architecture of an embedded
Flash (which generally follows a NOR architecture). Hence, the experimental
state-of-the-art shows that performing an SEA using LFI on the Flash memory
of a microcontroller is within the reach of attackers who can access a LFI setup.

3 Related Works

Few works addressed the extraction of ML models by using fault injection.
In [6], Breier et al. proposed to extract the parameters of the last layer only
of a victim model. This work sets in a restricted scenario where the adversary
perfectly knows everything of the victim model except the parameters of the very
last output layer. The authors claimed that it is the case in a transfer learning
scenario with all the other layers coming from a public pretrained model. To
reverse the last layer, they used fault injections to alter the sign of the parameters
and demonstrated, by simulations, that only mn faults and 2mn executions of
the victim within the weighted sum of each neuron are necessary to extract the
full weight matrix of the target layer (with m and n the number of the neurons of
the last and penultimate layers respectively). Our work is significantly different
since we target all the parameters of the model and do not use fault injections
to mathematically reverse a layer computations (in [6] a Softmax-layer) but to
extract as much information as possible to efficiently train a substitute model.

Therefore, our main reference is DeepSteal [24] with which we share the
objective and threat model. DeepSteal exclusively concerns DRAM platform
(in [24], Intel i5 CPU) and leverages bit-flip faults with a rowhammer attack [16]
to recover MSB of a victim model parameters. Then, the authors propose to use
the MSB recovered to constraint the training of a substitute model. For the
parameters with recovered bits, a range of possible values and a mean value
are defined. At training time, these mean values act as a classical weight-penalty
regularization (see Section 6.6 for details). Our work aims at demonstrating that
this two-step methodology is actually generalizable to another type of platforms,
i.e. 32-bit microcontrollers, with a different fault model (bit-set) and exploitation
methods (SEA and input crafting). Our approach is suitable to any fault injection
means that lead to data-dependent faults (bit-set or bit-reset).

4 Threat Model

Our work is positioned in a context where an attacker tries to steal parameters
of a model in order to copy it or to prepare future attacks. Our adversary targets
embedded neural network models in platform such as 32-bit microcontrollers,
thus 8-bit quantized models specifically designed for embedded inference.

We set in a traditional grey-box context for model extraction [8,24], with an
adversary knowing the victim model architecture but not its parameter values
and accesses to less than 10% of the training dataset. In some cases, model’s ar-
chitecture is effectively already known, easy to guess or previously extract with
an appropriate attack (including physical ones such as [4]). Likewise, limited
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access to training data also corresponds to real-world applications without pub-
licly available benchmarks, as studied in many active learning-based extraction
methods [2,9,21,22].

The adversarial ability is basically twofold. First, the adversary has an unlim-
ited black-box access to the model by querying it and getting the (normalized)
outputs (i.e., not the logits). Importantly, working with full quantized models
(8-bit), the available prediction scores are also quantized. Second, the adversary
has a fault injection means that can yield a data-dependent fault model (e.g.
a laser setup) and a clone device on which the attacker can profile the Flash
memory layout to accurately control the fault injection process. This profiling
process does not need the target inference program but only simple read/write
memory procedures, as in [10].

Notations. The victim neural network is noted MW with W its parameters.
The substitute model is Ms with parameters Ws. M performs a classification
task with inputs x ∈ X (⊂ Rd) and the output predictions MW (x) ∈ RK with
X the input domain and K the number of labels. Then, the predicted label is
y = argmax(MW (x)) and the correct label is noted as y∗. A set of inputs and
predictions are respectively noted as X and Y . The loss function is the categorical
cross-entropy simply noted LCE . Our method is based on a safe-error attack with
bit-set faults perform on the victim model parameters. The faulted parameters
are referred as W̃ , then M

W̃
is the resulting faulted model and Ỹ is a set of

faulted predictions. Our models are 8-bit quantified with signed integers (two’s
complement representation): a parameter w is represented as b0b1...b7 with bi a
bit value and b0 the Most Significant Bit (hereafter, MSB).

5 Experimental setup

5.1 8-bit quantized neural network models

Our work is focused on 8-bit inference implementations that correspond
to real-world applications using constrained embedded platforms. 8-bit quan-
tization is the de facto practice for embedded models on microcontrollers and
is the default configuration in many deployment tools (e.g., NNoM, TF-Lite,
CubeMX.AI, MCUNet). However, the extraction method being based on a SEA,
the outputs quantization has a strong impact on the extraction process.

A first approach is a lite post-training 8-bit quantization of the parameters
only for memory footprint purpose: at inference time, the 8-bit stored parameters
are then scaled to full-precision values, the computations, activation outputs as
well as the prediction scores are in full-precision. Because of its easiness, this
quantization scheme is used in many simulation works. However, we claim that
it may represent a strong limitation and drawbacks since it does not represent
the real behavior of embedded models with real-world deployment platforms
relying on more complex quantization schemes. If we consider this naive lite-
quantization, our SEA-based approach straightforwardly extract most of the
bits of the victim model parameters. However, the extraction is more challenging
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when dealing with a full-quantization process that includes the parameters, the
activation values and the output prediction scores.

We developed a Python framework based on Pytorch to perform all our simu-
lations with this 8-bit quantization schema. We chose NNoM (Neural Network on
Microcontroller)5 as model deployment library that uses the reference CMSIS-
NN library from ARM [17] as backend. NNoM is open-source with a full access
to the C code and allows 8-bit quantization for weights, biases and activation
function with a uniform symmetric powers-of-two quantization scheme (as in
CMSIS-NN). This scheme is popular for embedded platforms because intrinsic
calculations require no division only integer additions, multiplications and bit
shifting (see Appendix for details). Our Python framework provides the same
outputs (at layer and model-level) than ones provided by NNoM on a Cortex-M
platforms. More particularly, NNoM deals with signed 8-bit integers only and
does not scale the prediction scores (∈ R+) in [0, 255] but in [0, 127].

5.2 Models and datasets

We used two classical model architectures. Our first model is a multilayer
perceptron composed of three fully-connected layers (128 - 64 - 10 neurons, no
bias) with ReLU as activation function. In the rest of the paper, this model is
simply referred as MLP. MLP is trained on MNIST, composed of 70k grayscale
images (28× 28) of digits. The second model is a convolutional neural network
composed of three convolutional layers and one fully-connected layer (no bias).
This model is a usual reference for embedded models in microcontrollers pre-
sented in [17]. For the rest of this paper, this model is referred as CNN. CNN is
trained on the Cifar-10 dataset composed of 60k color images (32 × 32) among
10 categories. In Appendix, Table 7 details our models.

6 Model Extraction with SEA

6.1 Overview

Our method relies on three steps (as illustrated in Appendix, Fig.5) :

1. The adversary builds an attack dataset from pure random inputs with a
black-box genetic algorithm. The goal is to feed the victim model with inputs
that enhance the efficiency of the safe-error attack.

2. For each bit of each parameter and for each input from the attack set, the
adversary collects two prediction sets: an error-free one with the nominal
victim model and a faulted one with the faulted model. The fault correspond
to a bit-set performed with an injection means on the victim model stored
in memory. Then, a safe-error attack is performed by comparing the two
prediction sets. Non-similar prediction scores enable to recover a 0 bit value.
Additional bits can be recovered with a simple heuristic in the case of two
non adjacent bits extracted by SEA.

5 https://majianjia.github.io/nnom/
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3. A substitute model is built and trained with a very limited part (8%) of the
victim training set. Training is constrained with the recovered bits with a
mean clustering training as proposed in [24].

6.2 Exploiting safe-error attack

We performed a SEA on the victim model parameters W in an iterative way
to test all its bits. Our fault model is data-dependent since it is a requirement
of SEA. Such a bit-set fault model is achievable for LFI in the Flash memory of
a microcontroller platform. Hence, we considered this fault model in our work,
however all our results can be extended to the bit-reset case, a model that is
also sometime encountered for some Flash memories.

Over a set of test inputs X, the SEA relies on the direct comparison between
the predictions Y of the victim model MW and the ones Ỹ output by the faulted
victim model M

W̃
. We check the similarity between Y and Ỹ , noted S(Y, Ỹ ).

S(Y, Ỹ ) is True if we have a strict equality between the two score matrix, False
otherwise. In the bit-set context, 3 cases are possible as summarized in Tab. 1.
When a fault occurs on a bit having 0 as value, the fault may lead to a dif-
ferent set of predictions than the normal behavior, therefore the adversary may
conclude that the bit is 0. If the bit-set has no impact on the predictions or
if the bit is already set to 1, then the adversary cannot recover the bit value.
Thus, an adversarial objective is to optimize the error propagation when a fault
occurs (0 → 1) so that a fault is likely to lead to a difference between Y and Ỹ .
We analyze how the selection of the inputs can be leveraged by an adversary to
reach this objective in the following Section.

Table 1: Truth table of SEA

bi b̃i S(Y, Ỹ ) bi estimation

0 1 False 0
0 1 True doubt
1 1 True doubt

Table 2: Accuracy (%) according to in-
puts category

Model All Uncertain Certain

CNN 79.4 57.07 92.23
MLP 94.94 68.07 98.2

6.3 Efficiency of task-specific inputs

As a first analysis, we used inputs from test sets of MNIST and Cifar-10
as attack set for the SEA. Interestingly, we observed a significant heterogeneity
of inputs on their efficiency to recover bit-level information: for some inputs,
bit-set faults do not alter prediction scores whereas other inputs lead to strong
alterations. Experimentally, we distinguished two categories according to their
prediction scores. A first class (hereafter called “Certain“) represents inputs that
lead to predictions with a single label having the maximum score of 127 (e.g.,
[0, 0, 0, 0, 0, 0, 0, 0, 0, 127] for 10 classes). The second class (hereafter called “Un-
certain“) gathers the prediction scores with at least two labels having a non-null
score (e.g., [0, 13, 0, 0, 0, 0, 0, 4, 0, 110]). Table 2 provides the accuracy of the MLP
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Table 3: Bit-recovery efficiency for Certain (C)
and Uncertain U test inputs.

No recovery (%) Average # of
bits recovered (std)

C U C U

MLP 47.65 0.0 131 (969) 8438 (6856)

CNN 14.23 0.0 1656 (7066) 55388 (21229)

Table 4: Prediction types
over 5000 random inputs.

MLP CNN

C (%) 9.82 99.4
U (%) 90.18 0.06

and CNN models according to these categories. Unsurprisingly, because models
reach a strong confidence on the inputs from the Certain class, the accuracy is
naturally high, above 90% on Cifar-10 and close to 100% on MNIST. Therefore,
most of the mispredictions are concentrated in the Uncertain class.

Tab. 3 presents the difference between these two categories of inputs (details
per layer are in Appendix, Tab. 8). The first column is focused on the proportion
(%) of Certain and Uncertain inputs that do not lead to any recovered bit. For
example, for CNN, 14.23% of Certain inputs do not lead to any bit recovery (i.e.,
predictions between the error-free and the faulted models are identical on these
inputs). The last column gives the number of bits recovered over the inputs: for
a model, we used m Certain and m Uncertain inputs and computed the average
number of bits recovered (and standard deviation) over these m inputs. We used
m = 2000 for MLP and m = 3000 for CNN. For example, for MLP, inputs
from the Uncertain category enable to extract (on average) 64 times more bits
than ones from the Certain class (8438 vs. 131). Fig. 4 (Appendix) shows the
distribution of recovered bits w.r.t. the inputs with some outliers that explained
high std values.

A first observation is that the Uncertain inputs always leak bit information
and the useless ones are over-represented in the Certain category for some layers
of the two models. This result is more disparate for the CNN model since the
parameters of the first convolutional layer are more easily recovered whatever the
type of inputs (only 14.33% of the Certain predictions are useless for the SEA).
Moreover, the difference between both categories on the number of recovered
bits is significantly higher for the inputs in the Uncertain category, with a factor
of 33 for CNN and 64 for MLP.

We propose a closer look of this phenomenon by analyzing the distribu-
tion (per layer) of the absolute gradient values of the loss w.r.t. the parameters
(∇WLCE) represented in Fig. 1. We observe a clear difference of the loss sensi-
tivity between the two categories with high magnitudes for the Uncertain class:
for inputs leading to uncertain predictions, a modification of the parameters will
strongly affect the loss value and, therefore, the predictions.

This first experiment demonstrates the strong impact of input nature on the
exploitation of a SEA to recover bit values. Setting in a threat model where the
adversary has a very limited access to training dataset, these results pave the
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(a) CNN (b) MLP

Fig. 1: ∇wL distribution per layer for Certain and Uncertain inputs. The boxplot
represents the median value inside the first and third quartiles. Blue lines extend
the box by 1.5x and black circles are outliers.

way to a strategy that aims at crafting inputs with a single objective: provide
uncertain predictions. That point is important since the challenge is less complex
than the generation of task-specific inputs similar to ones belonging into the
original training distribution.

6.4 Crafting inputs for uncertain predictions

Random inputs. Our first interrogation concerns the efficiency of random
inputs. With a very limited access to the training dataset, the use of unlimited
random inputs could be a real advantage for the bits recovery step. Tab. 4 shows
the dispatching between the two prediction categories of 5000 random inputs
following a uniform distribution. For MLP, random inputs allow to generate an
attack set with 90,18% of inputs leading to Uncertain predictions. Surprisingly,
for CNN, only Certain predictions are obtained. We noticed that the random in-
puts are (nearly) always associated to the same label (label 7), therefore all the
predictions are equal. We observed the same behavior for another CNN archi-
tectures trained on Cifar-10 (VGG-8 with or without biases). Since architecture
of the victim model is an important factor on the efficiency of random inputs,
we suggest a black-box approach to craft inputs leading to Uncertain predictions
when inferred with the model thanks to a genetic algorithm.

A black-box crafting method. Our goal is to use a genetic algorithm (GA)
to directly craft an attack set with as only objective to produce Uncertain pre-
dictions. Our GA acts as follow.

(1) Population initialization. GA starts with a set of inputs, called population,
that is simply sampled using a uniform distribution (as for the random inputs
above) with pixel values in [Vmin, Vmax] such as [Vmin, Vmax] ⊂ [−127; 127].
We constrained the range value since we experimentally observed that it helps
the algorithm convergence. Several values of (Vmin, Vmax) can be fixed to have
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Fig. 2: Illustration of the LSBL principle.

several initial population and increase the diversity. In our case 150 elements are
used per population.

(2) Objective definition. GA aims at performing iterative transformations
on the population to reach our adversarial objective: the output scores must
match with an uncertain prediction scores fixed by the adversary, called target
scores Y t. A target score, yt is in RK with yt(i) ∈ [0; 127]. C scores among K
are randomly picked and set to 0, with C ∈ [0;N − 2]. The K − C non-null
remaining scores are randomly set and scaled so that

∑
i y

t(i) = 127.
(3) Population evolution. The core process is iterative and aims at building

a new population thanks to a set of classical transformations. At iteration t,
the new population results from selection, crossover and mutation operations
between elements of the previous population at t− 1. A new population is gen-
erated until an optimal solution is reached. To determine which operation is
done on each element of the population a cost function is used in order to sort
elements of the population. In our case, the cost function is LCE . The selection
consists in keeping some elements of the previous generation at t−1 to create the
new one. The selection keeps b% of the best elements and r% of the sub-optimal
elements, randomly chosen (typical values for CNN are b = 60 and r = 20). The
mutation operation randomly applies some noise in sub-optimal elements of the
previous generation to create new elements. The crossover merges two elements
of the previous generation to create two new elements by interchanging half of
each element randomly.

GA based method is repeated until the number of elements wanted in the
attack dataset is reached. In Fig. 3 (left), we observe on CNN that our GA-
generated inputs are significantly more efficient than random inputs (dotted
lines). We extract 80% and 90% of the MSB of the CNN parameters with only
150 and 1500 inputs, respectively.

6.5 Least Significant Bit Leakage Principle

Because of the bit-set fault model and its intrinsic ambiguity (cf. truth ta-
ble 1), SEA only enables to partially recover the bit values of the victim model
parameters. However, it is possible to increase the number of bits recovered by
applying a principle that we called the Least Significant Bit Leakage principle
(hereafter, LSBL) that enables to guess bit values according to the position of
the bits already recovered.

The LSBL principle is as follows: if a bit bk with k ∈]0; 7] of a parameter w
has been recovered by SEA (i.e., bk = 0 without ambiguity), then all undefined
bits bi with i ∈ [0; k − 1] can be estimated to 1.
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Fig. 3: Bits recovered with SEA and LSBL for (left) CNN and (right) MLP
(random inputs only).

An explanation is that the more a bit-set is performed on a least significant bit
than k, the smaller the variation of the parameter is. Thus, if a small alteration
impacts prediction (at k) then, a bigger alteration should also impact it. This
principle enables to estimate the bits bi because if these bits do not impact the
prediction, it is due to a bit value equal to 1. Fig. 2 illustrates LSBL with one
parameter w = 125. With SEA, we recover b0 and b6. Applying LSBL, we can
guess all undefined bits from b1 to b5. Thus, LSBL enables to grow the extracted
information from 2 to 6 bits. Thanks to the LSBL principle the rate of recovered
bits increase from 47.05% to 80.1% for the CNN model with 5000 crafted inputs.

In Fig. 3 we shows the percentage of bits recovered by combining SEA and
LSBL according to the inputs. We propose both random and GA-crafted inputs
for the CNN model. To ease the visualization, we only present random inputs for
MLP, since GA provide similar results (see 6.4). Our results demonstrate a high
rate of recovered bits for both models thanks to SEA associated to the LSBL
principle. In the best case, we can estimate about 90% of the most significant
bits. Our method is also efficient for the 6 MSBs with a recovery rate superior
to 80%. Moreover, we notice a fast plateau effect with the majority (80%) of
the recovered bits extracted with approximately 250 inputs (CNN) then, after
1500 inputs (CNN), using more inputs only allow to recover few bits. The same
effect is observed for MLP. We evaluated the LSBL principle on CNN and MLP
models by computing the recovery error for the bits exclusively estimated by
LSBL. The recovery error rapidly goes under 1% for only 150 and 300 inputs
for CNN and MLP respectively. Therefore, this heuristic, despite being perfect,
enables to recover bit values with a very low error rate.

6.6 Train substitute model

As in [24], we trained the substitute model by using the recovered bits as
a constraint over only 8% of the training dataset. Without training (i.e. if we
simply set the recovered bits to their estimated values and randomly initialized
the other bits) we reached a very low performance of the substitute model with
an average accuracy of 26.02% for CNN and 75.78% for MLP on the test set
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with at least 90% of MSB. Similarly as [24], we used a new loss (hereafter noted
Lsub, for the substitute loss) that relies on the cross-entropy loss LCE (so that
the substitute model is trained to perform the same task-oriented objective as
the victim) with a penalty term that constrains the partially recovered weights.
As in [24], Lsub is defined as (Eq. 1):

Lsub = LCE

(
MW(x), y

)
+ λ

L∑
l=1

||Wl −Wl
mean|| (1)

with L the number of layers, Wl is parameters matrix of layer l, Wl
mean =

(Wl
min +Wl

max)/2 are the mean values according to the min and max values,
updated after each training iteration and λ a hyper-parameter balancing the
penalty strength. Initial values are computed with the MSB recovered that define
projected ranges for the possible values of the parameters partially extracted.
For example, if the two first MSB of w are 0, then the projected range for
w is [0; 63]. For each training batch, the mean clustering updates Wmean with
the current values and parameters are clipped according to the projected range
after each training epoch. The main objective is to avoid any divergence of
parameters from the information extracted by the fault injection step. Note that
this training procedure is only applied to parameters partially recovered by SEA.
For parameters without any recovered bit, no penalty can be applied, therefore
λ = 0. For parameters fully recovered (i.e., the 8 bits), they are freezed at training
time. As demonstrated in [24], minimizing Lsub with the mean clustering training
allows to train the substitute model with few training data.

6.7 Evaluation

We keep the same evaluation protocol as in [24]. A first criteria is the accu-
racy reached by the substitute model after training when tested with test set
of MNIST (for MLP) and Cifar-10 (for CNN). The closer to the victim per-
formance the better. The second criteria is the fidelity between substitute and
victim models defined as the rate of identical predictions over test set (the higher
the better). The last criteria is Accuracy Under Attack (AUA) which is the ac-
curacy of victim model when fed with adversarial examples crafted on substitute
model. For AUA, if substitute model achieves to mimic victim model behaviours,
then both models will respond similarly when facing adversarial examples: the
transferability of adversarial perturbations will be maximum and we expect a
very low adversarial accuracy for victim and substitute model. AUA is twice
interesting since it measures a similarity-level between two models as well as the
capacity of the adversary to craft efficient adversarial examples against victim
model thanks to his substitute model. Consistently with the state-of-the-art,
we used the l∞-PGD attack [18] with 40 steps and an adversarial budget of
ϵ = 8/255 for Cifar-10 and ϵ = 0.3 for MNIST.

Our results are summarized in Tab. 5 for MLP and CNN according to dif-
ferent recovery rate of MSB. For CNN, accuracy grows from 40.55% to 75.27%
when MSB recovered ratio increases from 60% to 90% (64.50% to 92.93% as ac-
curacy for MLP). Our best results for CNN and MLP represent an accuracy drop
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Table 5: Performance of the substitute model after training according to the
level of extraction. (AUA: Accuracy Under Attack)

At least % MSB recovered CNN MLP
(+ others if recovered) Accuracy Fidelity AUA Accuracy Fidelity AUA

90 75.27 85.58 1.83 92.93 96.44 0.0
80 69.36 77.00 5.55 92.09 95.48 0.01
70 54.59 61.10 12.99 90.52 93.66 0.1
60 40.55 44.66 34.84 64.50 66.56 12.50

Victim 79.4 100 0.42 94.94 100 0.0

of only 4% and 2% respectively compared to victim models. Importantly, we also
reach high fidelity rate with 85.58% (CNN) and 96.44% (MLP) for the best case
(90% of MSB). Focusing on the CNN results, the performance of our approach
is consistent with the ones observed in [24] with different architectures6. AUA
results show that adversarial examples can be efficiently crafted from substitute
models, then applied on the victim models. With the best amount of MSB re-
covered, victim models have an adversarial accuracy close to the one obtained
by crafting adversarial examples in a white-box context (1.83% for CNN and 0%
for MLP). Generally, whatever numbers of MSB used to train substitute mod-
els, adversarial examples crafted on substitute models are sufficiently efficient
on victim models to have an adversarial accuracy below 35%.

7 Discussions

Impact of model architecture. We evaluated our method on two classical
models relevant for the type of platforms we consider. However, our results raise
open questions about the impact of the model architecture on the SEA efficiency.
Further analysis have to be investigated on other models and layers, e.g. influence
of the model depth, residual networks (ResNet) or batch normalization.
Input generation strategy. A limitation of our GA-based crafting method
is the use of too many parameters at different steps of the process (objective
definition, inputs initialization and transformations applied to the population).
Therefore, further analysis should evaluate alternative techniques such as the
Black-Box Ripper approach proposed by Barbalau et al. [2] that exploit genera-
tive evolutionary framework to build a proxy dataset. Other methods may rely
on black-box decision-based adversarial examples [7] to craft Uncertain samples.
Practical LFI experiments. Colombier et al. [10] first demonstrated the bit-
set fault model in Flash memory of a Cortex-M 32-bit microcontrollers with
LFI. It was directly applied in [11] to evaluate the robustness of an embedded

6 On Cifar-10, with 90% of recovered MSB, [24] built a ResNet-18 substitute model
with an accuracy of 89.59% (victim:93.16%), a fidelity of 91.6% and AUA of 1.61
(victim: 0%), and a VGG-11 substitute model with an accuracy of 81.56% (vic-
tim:89.96%), a fidelity of 83.33% and AUA of 18.55% (victim: 4.63%).
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neural network against a weight-based adversarial attack with a bit-set variant
of the Bit-Flip Attack from [25]. To evaluate the practicability of our method,
we strictly followed the set up from [11] and conducted first experiments with a
MLP model on an ARM Cortex-M3 platform. The model is the same as in [11]
with two linear layers (50 - 10 neurons) trained on MNIST with dimensionality
reduction on R50 performed by principal component analysis. The fault injections
setup is composed of a two-spot laser beam in near infrared (Cf. Set up details
in Appendix). As a first practical experiment and for characterization purpose,
we set in a white-box context with trigger signal to monitor the synchronization
of the laser beam with the loading of the targeted parameter. Moreover the
inference program has been compiled without optimization (O0). We recovered
90% of MSB (with other bits if recovered) by using only 15 crafted inputs. As
mentioned in [10] and [11], we noted that the bits can be targeted very precisely
with a perfect repeatability of the fault injection.

The main limitation in terms of practicability is that the attack needs one
inference with one fault injection per bit and per input (attack set). Then, the
overall SEA time is TSEA = Ninputs ×Nbits × δinf with δinf the inference time.
δinf could be a real bottleneck for constrained Cortex-M platforms. Without any
optimisation (e.g., compilation level) we had δinf = 150 ms, then the complete
non-optimized attack lasted 3 hours. However, targeting every bit of the model
is not necessary and the attack duration can be reduced, at least, by half by
considering the 4 MSB or even 20 minutes with only the first MSB as in [24].
Importantly, we highlight the fact that complexity comparison with [24] is hardly
possible since DRAM-CPU platforms in [24] can handle far more complex models
than 32-bit microcontroller devices as in our work7.

This work paves the way to further researches that should be focused on
combining side-channel analysis to trigger the faults in black-box setting as well
as using different 32-bit microcontroller platforms. Moreover, other injection
mean should be studied, such as electromagnetic fault injection (EMFI) since
bit-reset fault models have been demonstrated even in CPU platforms [29].
How to protect? Protections against fault injections and safe-error attacks
classically encompass randomization, redundancy and data integrity check (error-
correction). However, most of the traditional defenses can be too expensive to
protect a whole model (i.e. all bits). A logical way to overcome our attack is
to add randomization within the model so that it slightly perturbs the predic-
tion scores without altering the overall performance of the model. This can be
achieved by randomly scaling the output feature map of the intermediate lay-
ers of the model. We test our protection on the last convolutional layer of our
CNN by used 8 scaling factors αi that are randomly picked in [0.9, 1] at each
inference (each α scales 8 channels). With this strategy, we keep an overall per-
formance with a accuracy that slightly drops from 79.40% (nominal accuracy)
to 79.30% and our SEA approach is no more able to extract bit values because
the predictions are unlikely to be equal from one inference to another.

7 In [24], authors used ResNet-18,-34 and VGG-11 on Cifar-10 with an average ex-
traction time of 12 days (extraction of the first MSB)
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Table 6: Impact of expectation over layer randomization. Average (std) of the
scores between two set of predictions for CNN (5000 crafted inputs).

Expectation over N inferences per input
N= 2 10 100 1000

∆Y (std) 7.7 (12.3) 2.4 (3.7) 0.8 (1.3) 0.3 (0.6)

The main limitation on such randomization approach is that it does not
make the attack impractical since the adversary may rely his strategy on an
expectation of the predictions to drown the effect of the randomization. In Tab. 6,
we represent the average and standard deviation of the difference between two
groups of prediction scores where each input is repeated N times (i.e., the output
score for this input is averaged over N inferences, then the difference is averaged
over the 10 labels). For convenience, this difference is simply noted as ∆Y . As
expected, we observe that the impact of the randomization is significantly drown
as N grows. However, this theoretical limitation needs to be moderated with a
practical point of view since we deal with an attack that relies on fault injections.
Indeed, this first result shows that the adversary would need to process at least
1000 inferences (hence 1000 faults) for each input to thwart the protection. Such
a drastic practical overload could be prohibitive for many fault injection means.

8 Conclusion

Our model extraction attack is specifically adapted to models deployed in
constrained platforms that are vulnerable to memory alterations. We extract
information from a victim model by using a safe-error attack principle with cus-
tom inputs that optimize the leakage of parameters with bit-set fault injections.
We present promising results on two architectures (MLP and CNN) with a suc-
cessful extraction of 80% of the 6 most significant bits of victim parameters.
These recovered bit values are used to constrain the substitute model training
even with very limited training data that finally reaches similar accuracy than
the victim model with a high-level of fidelity. This work aims at highlighting the
criticity of model extraction regarding the large-scale deployment of machine
learning models in hardware platforms. Our work paves the way to further prac-
tical experiments with different fault injection means and target devices as well
as suggestion of potential protections.
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Appendix

Models architecture and quantization scheme

Powers-of-two quantization scheme: xi =
⌊
xf · 27−dec

⌉
, dec =

⌈
log2

(
max

(
|Xf |

))⌉
.

Xf is a 32-bit floating point tensor, xf a value of Xf , xi its 8-bit counterpart
and 2dec the quantization scale.

Table 7: MLP (MNIST) and CNN (Cifar-10) architecture. We follow the Py-
Torch naming for fully-connected layers with "Linear". Convolutional layers are
composed by 5x5 kernels and followed by a pooling layer (average 2x2).

Layer # param Layer # param

Inputs (784) Inputs (32,32)
Linear 1 (128 neurons), ReLU 100352 Conv1 (32 kernels), ReLU 2400
Linear 2 (64 neurons), ReLU 8192 Conv2 (32 kernels), ReLU 25600

Linear 3 (10 neurons), Softmax 640 Conv3 (64 kernels), ReLU 51200
Linear (10 neurons), Softmax 10240

MLP 109184 CNN 89440

Details of the Bit-recovery efficiency

Table 8: Bit-recovery efficiency for Certain and Uncertain test inputs. (top) MLP
and (bottom) CNN.

Layers No recovery (%) Average # of bits recovered (std)
Certain Uncertain Certain Uncertain

Linear 1 97.15 0.0 83 (915) 5976 (5564)
Linear 2 92.6 0.0 40 (301) 2229 (1478)
Linear 3 48.95 0.0 8 (21) 231 (87)

MLP 47.65 0.0 131 (969) 8438 (6856)

Conv. 1 14.33 0.0 399 (933) 7144 (1309)
Conv. 2 68.6 0.0 895 (4255) 32380 (11635)
Conv. 3 79.5 0.0 339 (2057) 15062 (9463)
Linear 1 67.5 0.0 24 (87) 803 (406)

CNN 14.23 0.0 1656 (7066) 55388 (21229)

LFI experiments

Target board:

– ARM Cortex-M3, 8MHz (90 nm CMOS), 128 kB Flash memory.
– MCU packaging was opened with engraving.
– Communication with ChipWhisperer CW308 platform.

LFI platform:
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– 2 spots near infrared, λ = 1, 064 nm, spot diameter: [1.5, 15] µm, maximum
power: 1, 700mW.

– Experience: power=170mW, pulse width = 200 ns, lens magnification ×5,
spot diameter = 15 µm

Distribution of recovered bits

(a) CNN with Certain inputs (b) CNN with Uncertain inputs

(c) MLP with Certain inputs (d) MLP with Uncertain inputs

Fig. 4: Distribution of recovered bits w.r.t. number of inputs.

Illustration of the overall extraction method

Fig. 5: The adversary crafts inputs and performs a safe-error attack exploiting
faulted predictions with bit-set fault injections on the parameters stored in mem-
ory. The objective is to partially recover the bits of the parameters to efficiently
train a substitute model that mimics the victim model with high fidelity.
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