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Abstract. Upcoming certification actions related to the security of ma-
chine learning (ML) based systems raise major evaluation challenges that
are amplified by the large-scale deployment of models in many hardware
platforms. Until recently, most of research works focused on API-based
attacks that consider a ML model as a pure algorithmic abstraction,
but new implementation-based threats have been revealed, emphasiz-
ing the urgency to propose both practical and simulation-based meth-
ods to properly evaluate the robustness of models. A major concern is
parameter-based attacks (such as the Bit-Flip Attack – BFA) that high-
light the lack of robustness of typical deep neural network models when
confronted by accurate and optimal alterations of their internal param-
eters stored in memory. Setting in a security testing purpose, this work
practically reports, for the first time, a successful variant of the BFA on
a 32-bit Cortex-M microcontroller using laser fault injection. It is a stan-
dard fault injection means for security evaluation, that enables to inject
spatially and temporally accurate faults. To avoid unrealistic brute-force
strategies, we show how simulations help selecting the most sensitive set
of bits from the parameters taking into account the laser fault model.

Keywords: Hardware Security, Fault Injection, Evaluation and certification,
Machine Learning, Neural Network

1 Introduction

The massive deployment of Machine Learning (ML) models in a large spectrum
of domains raises several security concerns related to their integrity, confidential-
ity and availability. For now, most of the research efforts are essentially focused
on models seen as abstractions, i.e. the attack surface is focused on so-called
API-based attacks, excluding threats related to their implementation in devices
that may be physically accessible by an adversary, as it the case for embedded
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ML models. The flaws intrinsically related to the models and the physical ones
may be used jointly to attack an embedded model or exploit data leakages.

A typical API-based attack and one of the major threat against models are
the adversarial examples [1] that aims at fooling the prediction of a model with
input-based alteration at inference time. However, recent works demonstrated
that physical attacks are realist threats by targeting critical elements of a model
such as activation functions [2] or its parameters (parameter-based attacks) [3]
as studied in this work.

In such a security context, with the demonstration of worrying attack vec-
tors, there is an urgent need of certification for AI-based systems more espe-
cially for critical ones (see the European AI Act [4]). Therefore, alongside the
demonstration of new attacks and the development of defenses, an important
challenge relies on the availability of proper robustness evaluation and accurate
characterization methods in addition to both simulation and experimental tools
and protocols. Model robustness evaluation is one of the most important chal-
lenge of modern artificial intelligence and several remarkable works from the
Adversarial Machine Learning community have already raised major issues for
adversarial examples [5], with many defenses relying on weak evaluations. Deal-
ing with embedded neural network models and weight-based adversarial attacks,
this challenge encompasses both safety and security concerns: parameters stored
in memory may be altered by random faults because of hostile environments or
strong energy consumption limitations [6] and also be the target of an adversary
that aims at optimally threatening a model.

2 Related works and objectives

2.1 Parameter-based attacks

Implementation-based threats
An important part of the ML security literature concerns algorithmic or so-called
API-based attacks that exploit input/ouput pairs and additional knowledge from
the model in case of white-box attacks. A large body of work shows that these
threats concern every stage of the ML pipeline [7], both at training and inference
steps, and threaten the confidentiality (model and data), integrity and availabil-
ity of the models. However, these attacks do not consider that the adversary
may have a direct interaction with the algorithm as it can be the case for an
embedded AI system. Implementation-based attacks precisely exploit software
or hardware flaws as well as the specific features of the device. For example,
side-channel analysis [8] have been demonstrated for model extraction as an
efficient way to extract information from the model architecture or the values
of the parameters [9]. Alongside safety-related efforts that evaluate the robust-
ness of ML models against random faults, some works demonstrate that models,
and more especially deep neural networks, are highly sensitive to fault injec-
tion analysis [10] that alter the data, the parameters as well as the instructions
flow [2,11].
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Weight-based adversarial attacks

New attack vectors have been highlighted and more essentially parameter-based
attacks (also named weight-based adversarial attacks). Let’s consider a super-
vised neural network modelMW (x), with parametersW (also referred as weights),
trained to optimally map an input space X = Rd (e.g., images) to a set of labels
Y. M is trained by minimizing a loss function L

(
MW (x), y

)
(typically the cross

entropy for classification task) that quantifies the error between the prediction
ŷ = MW (x) and the correct label y. As formalized in [3] or [6] with Eq. 1, a
parameter-based attack aims at maximazing the loss (i.e., increase mispredic-
tions) on a small set of N test inputs. As for the imperceptibility criterion of
adversarial examples, the attacker may add a constrain over the perturbation
by bounding the bit-level Hamming distance (HD) between the initial (W ) and
faulted parameters (W ′), corresponding to an adversarial budget S.

max
W ′

N−1∑
i=0

L
(
M

(
xi;W

′), yi)︸ ︷︷ ︸
mispredictions

s.t.

adv budget︷ ︸︸ ︷
HD(W ′,W ) ≤ S (1)

A state-of-the-art parameter-based attack is the Bit-Flip Attack (hereafter
BFA) [3] that aims to decrease the performance of a model by selecting the most
sensitive bits of the stored parameters and progressively flip these bits until
reaching an adversarial goal (in [3] or [12], the objective is to ultimately degrade
the model to a random-guess level). The selection of the bits is based on the
ranking of the gradients of the loss w.r.t. to each bit ∇bL, computed thanks to a
small set of inputs. First, each selected bit is flipped (and restored) to measure
the impact on the model accuracy. Then, the most sensitive bit is permanently
flipped according to the gradient ascendant as defined in [3].

Adversarial goals

Parameter-based attacks are not limited to the alteration of the target model
integrity. BFA has been recently demonstrated for powerful model extraction
in [13] with an Intel i5 CPU platform: RowHammer is used to perform a BFA
on the parameters of a model stored in DRAM (DDR3). The threat model
in [13] follows a typical model extraction setting: the adversary knows the model’s
architecture but not the internal parameters and has only access to a limited
portion of the training dataset (< 10%). His goal is to build a substitute model as
close as possible as the target model (performance theft). Interestingly, this joint
use of RowHammer and BFA is performed in a side-channel analysis fashion:
the observation of the induced faults enables to make assumptions on the value
of some bits of the parameters. Then, the knowledge of these bits enables to
efficiently trained a substitute model, by constraining the value range of the
parameters, with high fidelity compared to the target model.
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2.2 Scope and objectives

Because parameter-based attacks are the basis of both powerful integrity and
confidentiality threats, their practical evaluation on the different platforms where
fault injection may occur is becoming a critical need for present and future
standardization and certification actions of critical AI-systems. We position our
work on a different set of platforms than the main works related to the BFA
(CPU platforms with DRAM), that is MCU platforms (Cortex-M with Flash
memory), yet a very important family of embedded AI systems regarding the
massive deployment of ML models on MCU-based devices for a large variety of
domains. Our main positioning is as follows:

– We set this work in a security evaluation and characterization context. There-
fore we do not position ourselves through an adversary but an evaluator
point of view.

– Our scope is parameter-based threats for neural network embedded in 32-bit
microcontroller (hereafter MCUs).

– For that purpose, we use Laser Fault Injection (hereafter, LFI) as an ad-
vanced and very spatially and temporally accurate injection means, a refer-
ence technique that is used in many security evaluation centers.

State-of-the-art is focused on simulation-based evaluations or on RowHam-
mer attacks (i.e., exclusively DRAM platforms that excludes MCU). To the best
of our knowledge, this work is the first to demonstrate the practicability and suit-
ability of the characterization of a weight-based adversarial perturbation against
Cortex-M MCU thanks to LFI.

2.3 Related works

Since the presentation of the BFA in [3], several works analyzed the intrinsic
mechanisms of the attack as well as potential protections [12,14] and evaluated its
properties according to the threat model, training parameters and model archi-
tecture [15]. The standard BFA is untargeted since the induced misclassifications
are not chosen by the adversary. Therefore, some works also proposed targeted
versions [16] with specific target inputs and/or labels. Other recent works pro-
pose alternative methods to efficiently select the most sensitive parameters to
attack [6,17]. For our work, we use and adapt (for LFI) the standard BFA of [3]
as it is the state-of-the-art baseline for weight-based adversarial attacks.

To the best of our knowledge, the only work related to laser injections for
MCU-based platform against embedded neural networks has been proposed
in [2]. Our work differs by the target device and the elements we target in
the model. In [2], the authors used an 8-bit microcontroller (ATMega328P) and
a 32-bit neural network implemented in C (a mulitlayer perceptron trained on
the MNIST data set). They only focused on the activation functions by induc-
ing instruction skips (i.e., the faulted instructions are not executed, as if they
were skipped). They used a laser and only targeted the last hidden layer. We
used a Cortex-M 32-bit microcontroller and embedded 8-bit quantized neural
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network thanks to a state-of-the-art open source library (Neural Network on
Microcontrollers1, hereafter NNoM [18]) for model deployment. Our attack vec-
tor (BFA-like attack) and fault model enable to evaluate the robustness of a
model against an advanced adversary that aims at significantly altering the per-
formance of a model with a very limited number of faults or extract information
about parameter values for model extraction.

Thus, our work is also closely linked to [11] that demonstrated at USENIX’20
a complete exploitation of the BFA with RowHammer on an Intel i7-3770 CPU
platform. Although we target a different type of platforms with 32-bit MCU and
another fault injection means (LFI), we share the same objective to go beyond
simulations and propose a complete practical evaluation of a parameter-based
attacks against embedded quantized DNN models.

3 Evaluator assumptions and experimental setups

3.1 Goal and evaluator assumptions

Objectives. The main objective of the evaluator is to evaluate the robustness
of a model against precise fault injections by significantly decrease the average
accuracy on a labelled test set. More precisely, the ion scenario corresponds to
a generic untargeted case (i.e., the incorrect labels are not controlled by the
evaluator). Note that a targeted scenario (for specific test samples or target
labels) is possible [19] but out of the scope of our experiments. A secondary
objective is to minimize the evaluation cost with a strategy that reduces the
number of faults to be injected (i.e., avoid an exhaustive search that may be
unrealistic according to the complexity of the target model).

Evaluator hypothesis. Classically for security testing, the evaluator simu-
lates a worst-case adversary that has a perfect knowledge of the model (white-box
attack) and is able to query the model without limitation. The evaluator has a
full access to the device (or clones of the device) and can perform elementary
characterizations to adapt and optimize the fault injection set-up.

3.2 Single bit-set fault model on Flash memory

We considere an accurate fault model relevant for laser injections previously ex-
plained and demonstrated for NOR-Flash memory of Cortex-M MCU by Colom-
bier and Menu [20,21]: the bit-set fault model. As its name suggests, it consists
in setting a targeted bit to a logical 1. When the bit was already at 1 the fault
has no effect. When targeting a Flash memory at read time with a laser pulse,
the induced bit-set is transient: it affects the data being read at that time while
the stored value is left unmodified. Authors from [20] explained the underlying
mechanism of the bit-set fault injection with the creation of a photoelectric cur-
rent induced by the laser in a floating-gate (FG) transistor that flows from its

1 https://github.com/majianjia/nnom/

https://github.com/majianjia/nnom/


6 M. Dumont et al.

drain to the ground. This current is added to the legitimate one so that the total
current is above the reference that makes the bit read as a logical 1.

LFI is a local fault injection means, its effect is restricted to the bit line
connected to the FG transistor inside the laser spot area. More precisely several
current components are induced in the affected transistors, depending on the
laser spot diameter: up to two adjacent bits can be faulted simultaneously [21].

3.3 Target and laser bench setup

Device under test (DUT). Our target board embeds an ARM Cortex-M3
running at 8MHz. It includes 128 kB of Flash memory and is manufactured in
the 90 nm CMOS technology node. The dimension of the chip is 3 x 2.5mm. Since
LFI requires the surface of the die being visible, the microcontroller packaging
was milled away with engraving tools to provide an access to its laser-sensitive
parts. The chip was then mounted into a test board compatible with the Chip-
Whisperer CW308 platform2.

Laser platform. Our laser fault analysis platform integrates two indepen-
dent laser spots with a near infrared (IR) wavelength of 1, 064 nm, focused
through the same lens. Each laser spot has a diameter ranging from 1.5 to 15 µm
depending on the lens magnification. Both spots can move inside the whole field
of view of the lens with minimum distortion. The laser source can reach a max-
imum given power of 1, 700mW. The delay between the trigger and the laser
shot can be adjusted with a step of a few nanoseconds. An infrared camera is
used to observe the laser spot location on the target and a XY stage enables to
move the objective above the entire DUT surface.

3.4 Datasets and models

Although theoretical and simulation-based works exclusively used complex deep
neural networks trained for vision tasks (e.g., ResNet on ImageNet), it does not
represent a large part of real-world applications that take benefit from classical
fully-connected architecture (or multilayer perceptron, hereafter MLP) that fit
and perform well on the overwhelmingly widespread constrained platforms we
studied in this paper.

We considered two classical ML data sets for our fault injection experiments:
The IRIS dataset consists of 150 samples, each containing 4 real-value inputs
(width and length of the petal and sepal of iris flowers) and labelled according
to 3 classes (3 different iris species). A shallow fully-connected model with few
neurons and one layer is sufficient for an efficient classification of this dataset. We
trained two models both with one hidden layer made of one and four neurons
respectively. These simple models provide an easy insight on the bit-set fault
model effect before characterizing deeper models.

The MNIST dataset is composed of gray-scale handwritten digits images
(28x28 pixels) from 0 to 9. We reduced the complexity of our model by com-
pressing the input data with a classical principal component analysis (PCA).

2 https://rtfm.newae.com/Targets/CW308 UFO/

https://rtfm.newae.com/Targets/CW308 UFO/
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Our model is a MLP with a single intermediate layer of 10 neurons and ReLU as
activation function. The resulting model has 620 trainable parameters (including
bias). After training, the model reaches 92% of accuracy on the test set.

3.5 Model implementation on MCU

These models were trained with TensorFlow. Few tools are available to em-
bed previously trained models in microcontroller boards such as TensorFlow
Lite, X-Cube-AI or NNoM. We chose NNoM as it is an efficient and convenient
open source platform that fits our security testing objectives. NNoM offers 8-bit
model quantization (weights and activations with a standard uniform symmet-
ric powers-of-two quantization scheme) and a complete white-box access to the
inference code that enables to draw a timing profile of the sensitive operations
we target (reading values from the Flash memory).

� �
1 while (rowCnt){
2 //pA : address , stored input

value
3 //pB : address , stored weight

value
4 for (int j = 0; j < dim_vec; j++)

{ //loop on all neuron
parameters

5 q7_t inA = *pA++; //load
input to inA , address increment

6 q7_t inB = *pB++; //load
weight to inB , address increment

7 ip_out += inA * inB; // neuron
weighted sum

8 }
9 *pO++ = (q7_t)__NNOM_SSAT (( ip_out

>> out_shift), 8); //store
output

10 rowCnt --;}� �
(a) C code of the weighted-sum computa-
tion in a fully-connected layer.

� �
1 ;q7_t inB = *pB++ ;Weight n+1

initialization
2 ldr r3, [r7, #80] ;Loading the

address of the weight n
3 adds r2, r3 , #1 ;Next weight

address
4 str r2, [r7, #80] ;Input value

loading into r2 reg
5 ldrsb.w r3 , [r3] ;Weight value

loading. LASER SHOT
6 strb r3, [r7 ,#23] ;Store of the

weight in SRAM reg� �
(b) Assembler code of line 6 of listing 1a.
Our target is the load instruction, line 5.

Fig. 1: C and Assembler codes from the NNoM inference.

Listing 1a is an extract of the C code source of the core calculation of an
inference from NNoM, that is the weighted sum between the inputs (i.e. the
input data or the outputs of the previous layer) and the model parameters be-
fore the non-linear activation is applied. It consists in loading the neuron input
and weight values (inA and inB, line 5 and 6), then process the multiplication
and accumulation in an intermediate output value (ip out, line 7). Line 9 cor-
responds to the NNoM quantization procedure. The assembler code in listing 1b
corresponds to the weight initialization of Listing 1a, line 6. The weight value,
stored into the Flash memory, is loaded into register r3 (line 5 in red). Based
on our single bit-set fault model, if a laser beam is applied during the execution
of the load instruction, a bit-set could be induced directly on the loaded value.
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To characterize the impact of the laser pulse, we synchronize the laser thanks
to a trigger signal in the C code before line 6 and monitor the parameter value
before and after the trigger using UART communication.

4 A parameter-based attack with LFI

4.1 Initial characterization on a neuron

To analyze the efficiency and practicality of LFI we first demonstrated the ac-
curacy of the induced faults on a single neuron composed of four inputs. Then,
we scaled up to functional models trained on IRIS and MNIST to analyze the
impact at a model-level.

An important preliminary experience is to set up our laser bench on our
DUT. For conciseness purpose, we do not detail all the Flash memory mapping
procedure neither the selection of the laser parameters. For that purpose, we
thoroughly followed the experimental protocol from [20] and fixed the laser power
to 170mW and the pulse width to 200 ns. By selecting the lens magnification
×5, we chose a spot diameter of 15µm to have a wide laser effective area.

Then, we implemented with NNoM a 4-weights neuron. We set the Y-position
to 100 µm to only focus on the X-axis motion. Fig. 2a shows that, when moving
along the X-axis of the Flash memory, bit-sets are induced one after another on
the whole 32-bit word line and the four quantized weights are precisely faulted.
We repeated this experience with different weight values and noticed a perfect
reproducibility (as also reported in [20] or [21]). By noticing positions of weights
and their most significant bit (MSB), we easily conclude the little endian con-
figuration of the Flash memory. Fig. 2b illustrates how the weights are stored
according to the laser bench X-axis.

4.2 Target multilayer perceptron models

Since we can change the value of parameters related to a neuron and therefore
alter the elementary neuron calculations, the next step consisted in analyzing
the impact of such faults on the integrity of a target model and in measuring
the potential drop of accuracy.

For that purpose, we used a MLP model trained on IRIS (accuracy of 96%
on the test set) and composed of a 4-input layer, 10-neurons hidden layer and
3-output layer. For each X-step, we evaluated the robustness of the model by
feeding it with 50 test samples (i.e., 50 inferences). Classically, we computed
the adversarial accuracy by comparing the output predictions to the correct
labels and measure the accuracy drop in comparison to the nominal performance
without faults.

During one inference, all the weight loading instructions triggered a laser shot
(i.e. in total 40 shots for the hidden layer). By targeting one bit line at a given
X-position of the laser, only weights on the same address column are faulted with
a bit-set. For illustration, as pictured in Fig. 2b, LFI actually induced bit-sets in
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(a)

(b)

(c) LFI with one spot (d) LFI with two spots

Fig. 2: (a) Bit-set faults (red dots) induced on the 4 weights of a neuron (the
original decimal and binary values are given). (b) Flash memory schematic sec-
tion filled with quantified weights parameters model (with m the mth word-line).
(c, d) Impact on the accuracy of Laser Fault Injection on a MLP model (IRIS
dataset). Average accuracy over 50 inferences (blue) and number of faulted bits
(orange).

refaire plus lisible

the MSBs of weights w0, w4, w8, w4m (with m the mth word-line), which belong
to the targeted bit line.

Fig. 2c shows the impact of the laser shots on the model accuracy (blue
curve) on the test set. The X-axis corresponds to the position of the laser in
the Flash memory. Four regular patterns of accuracy drop corresponding to the
four stored weights are clearly visible. The observed accuracy drops (5 to 6 per
pattern) match the coordinates of the MSBs with a decreasing correlation. For
MSB bits, the model is close to a random-guess level (i.e. around 30%). The
orange curve provides the number of faulted bits. On average, around 6 bit-sets
are induced and the most harmful configuration corresponds to only 5 bit-sets
(at 790 µm) leading to an adversarial accuracy of 30%.

One limitation of the fault model, presented in this experiment, is that only
1/4 of all weights could be faulted during one inference. However, since our laser
platform integrates a second spot, we experimented a configuration where one
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Fig. 3: Impact on the accuracy of LFI on a MLP model trained on MNIST.
Average accuracy over 100 inferences (blue) and number of faulted bits (orange).

spot targets the first bit line (i.e the MSB of the weight column w3 in Fig. 2b)
and the second spot targets the bit line #16 (i.e the MSB of the weight column
w1). Then, the two spots move jointly along the X-axis, from 0 to 700µm and
700 to 1, 400 µm respectively. As a result, two weight columns can be targeted
during one inference, and half of the weights are likely to be faulted. As reported
in Fig. 2d more bit-set faults were injected (up to 12), and the accuracy drop
for non-MSB bits is more important. Note that the whole parameters model can
be targeted at the same time with a four-spot laser as in [22].

To extend the previous experiments, we embedded the 8-bit MLP model
trained on MNIST (see section 3.4). The model gathers more parameters with
600 weights (i.e. 4,800 bits) and 20 biases. It reaches an average accuracy of
92.5% on the test set. We strictly kept the same experimental set-up. Results
are presented in Fig. 3. On average, we observe more induced bit-sets with
the most important drop of accuracy (65.5%) reached with only 25 bit-sets at
X = 1, 100 µm. We also point out that, in some cases, a very slight improvement
of the accuracy appeared.

In comparison with the previous results (Fig. 2c) for IRIS, we note that bit
lines are less distinctive. Indeed, even if the position of the most significant bits
can be identified, other bits are difficult to distinguish. Actually, in Fig. 2b the
bit line (green box) represents all single bit lines connected to the same bit
index for different 32-bit words addresses. Since the MNIST model has more
parameters, almost all bit lines are linked to a weight parameter value stored in
Flash memory. The laser spot, with a size of 15 µm, is larger than a single bit
line, explaining why bit line indexes are hardly discernible. Moreover, depending
on the laser position, the effective area of the spot can encompass two different
bit line indexes.
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(a) Influence of the faulty bit number
on the accuracy for the weight column
2 (simulation results).

(b) Experimental and simulation results
of a LFI BSCA attack targeting the 20
most sensitive MSB of the 2nd weight
column.

Fig. 4: Guided-LFI on a MLP model trained on MNIST

4.3 Advanced guided-LFI

Simulation-based constraints. So far, we exhaustively attack all the parame-
ters stored in memory. This brute-force strategy may be impractical with deeper
models. Therefore, an important adversarial objective is to optimally select the
most sensitive bits to fault. For that purpose, as in [11] , we adapted the bit
selection principle of the standard BFA [3] to our laser fault model. We refer to
this adapted attack as BSCA (Bit-Set Constrained Attack).

As recommended in [15] and [6], we also adapted the adversarial objective
by introducing an adversarial budget representing a maximum of faults the eval-
uator is able to process. Indeed, the random-guess level objective of [3] over-
estimates the number of faults and raises variability issues because of the last
necessary bit-flips needed to ultimately reach the objective [15]. Therefore, we
set the adversarial budget to 20 bit-sets.

As inputs, the BSCA has the target modelMW , its parametersW , the weight
column index m in the Flash memory, the bit line index b and an adversarial
budget S. The output of the BSCA is a new model Mm,b

W ′ with W ′ and W that
differ only by at most S bit-sets. Then, we can compute an adversarial accuracy
on Mm,b

W ′ and measure the accuracy drop compared to the nominal performance

of Mm,b
W . The BSCA proceeds through the following steps:

1. The BFA3 ranks the most sensitive bits of W according to ∇bL.
2. Exclude the bits already set to 1 and not related to m and b.
3. Pick the best bit-set and perform the fault permanently in M .
4. Repeat the process until reaching S.
5. The output is the faulted model Mm,b

W ′ .
6. Perform BSCA over all the weight columns and bit line and keep the faulted

model, simply referred as MW ′ , with the worst accuracy (Acc) evaluated on

a test set
(
Xtest, Y test

)
: MW ′ = argminm,b Acc(Mm,b

W ′ , Xtest, Y test)

3 [3]: https://github.com/elliothe/BFA/
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The same MLP MNIST model as in section 4.2 is used for the BSCA. First,
we simulated the BSCA to find the 20 most significant weights to fault for
each weight column. For illustration purpose, Fig 4a shows the effect of bit-set
induced on the 8 bits of a weight only for the second weight column (with the
MSB refered as Bit #0). The accuracy is given according to the number of bit-
sets induced during the inference. Among the most sensitive weights from the
second column, only few bit-sets on the most significant bits efficiently alter the
model performance. Bit-sets on other bits have less or even no influence on the
accuracy.

Experiments and results. The basic idea is to use the BFA to guide the
LFI. For that purpose, we need to put to the test that LFI reach (near) identical
performance than what expected by simulation with the BSCA.

We ran a BSCA simulation (in Python) over all the weight columns and
bit lines that pointed out the MSB of the second column weight as the most
sensitive. Therefore, contrary to the previous experiments, the laser source was
triggered only when the 20 most sensitive weights were read from the Flash. The
laser location was set accordingly to X = 760µm. The laser power was increased
to 360mW to ensure a high fault injection success rate on weights stored in
distant addresses.

The model accuracy was evaluated over 100 inferences. The blue curve in
Fig.4b represents our experimental results while the red one is the BSCA sim-
ulations for the MSB. First, we can notice that experimental and simulation
results are almost similar, meaning that we can guide our LFI with high re-
liability and confidence. The fact that experimental results are slightly more
powerful than simulations may be explained by the impact of the width of the
laser spot on nearby memory cells. For an adversarial budget of only 5 bit-sets
(0.1% faulted bits) the embedded model accuracy drops to 39% which represents
a significant loss and a strong integrity impact compared to the nominal perfor-
mance of 92.5%. Moreover, after 10 bit-sets (accuracy to 25%), the most effective
faults have been injected and the accuracy did not decrease anymore. This is
an important observation in a security evaluation context since it positions the
level of robustness of the model according to the adversarial budget.

5 Discussions

This work presents a complete LFI characterization of the robustness of a DNN
model embedded on a Cortex-M platform when exposed to a state-of-the-art
weight-based adversarial attack. Being the first work covering this scope, it paves
the way to further analysis on other model architectures and platforms (e.g.,
system-on-chip). We highlight some research tracks that may contribute to the
development of reliable evaluation protocols and tools.

Use other weight-based adversarial attacks. Parameter-based attack
still lacks of maturity (contrary to adversarial examples with recent attacks
specifically designed for robustness evaluation purposes [23]) and recent works
highlight limitations of the BFA [6,15,17] and propose improvements or alterna-
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tives. Thus, considering or combining more attack methods would improve the
evaluation by simulating a more powerful adversary.

bof bofWiden the underlying threat model. Being in an evaluation and
characterization context, we set in a worst-case scenario by simulating an adver-
sary that has access to clone devices and able to perform spatial and temporal
profiling works in order to precisely trigger the laser shots on the DUT. An in-
teresting further experience would be to combine side-channel analysis as in [24]
in which the injection timing is controlled by monitoring and matching power
waveform patterns.

Evaluation of protections. Our work evaluates the intrinsic robustness
of a model against a well-defined type of threat for which some protections
have been proposed. Additionally to traditional countermeasures against fault
injection (e.g., redundancy techniques) [10], specific defense schemes against BFA
encompass weight clipping, model pruning [25], clustering-based quantization
[2, 26], code-based detectors [27] or adversarial training [6]. To the best of our
knowledge, none of these defenses have been practically evaluated against fault
attack means such as RowHammer, glitching or LFI. As for adversarial examples
(with so many defenses regularly broken afterwards) the definition of proper and
sound evaluations of defenses against parameter-based attacks against embedded
ML models is a research action of the highest importance.

6 Conclusion

This paper addresses the major issue of the robustness evaluation of embedded
DNN that are increasingly deployed in large variety of devices. We focused our
work on weight-based adversarial attacks that target the parameters of a model
stored in memory. We present the first characterization of that threat with a laser
fault injection technique and a bit-set fault model against a 8-bit quantized deep
neural network model, embedded in a Cortex-M 32-bit microcontroller, a typical
platform in many IoT applications. After analyzing the practicality of our fault
model on a shallow model trained on the IRIS dataset, we scaled-up our exper-
iment on a wider multilayer perceptron model trained on the MNIST dataset.
We demonstrate that we can efficiently guide the laser fault injection attack by
adapting a state-of-the-art parameter-based attack (the Bit-Flip Attack): only
a few bit-sets were necessary to significantly decrease the model’s accuracy. Our
results reveal a high accordance between simulation and practical results. This
work paves the way to further experiments and analysis in order to build re-
liable evaluation methodologies for upcoming standardization and certification
schemes of embedded AI-systems.
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