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Abstract. Model extraction is a growing concern for the security of AI
systems. For deep neural network models, the architecture is the most
important information an adversary aims to recover. Being a sequence of
repeated computation blocks, neural network models deployed on edge-
devices will generate distinctive side-channel leakages. The latter can
be exploited to extract critical information when targeted platforms are
physically accessible. By combining theoretical knowledge about deep
learning practices and analysis of a widespread implementation library
(ARM CMSIS-NN), our purpose is to answer this critical question: how
far can we extract architecture information by simply examining an EM
side-channel trace? For the first time, we propose an extraction method-
ology for traditional MLP and CNN models running on a high-end 32-bit
microcontroller (Cortex-M7) that relies only on simple pattern recogni-
tion analysis. Despite few challenging cases, we claim that, contrary to
parameters extraction, the complexity of the attack is relatively low and
we highlight the urgent need for practicable protections that could fit
the strong memory and latency requirements of such platforms.

Keywords: Side-Channel Analysis · Confidentiality · Machine Learning
· Neural Network · Model Architecture

1 Introduction
Deployment of Deep Neural Network (DNN) models continues to gain mo-

mentum, typically with Internet of Things (IoT) applications with microcontroller-
based platforms. However, their security is regularly challenged with works fo-
cused on availability, integrity and confidentiality threats [17]. Latter topic keeps
gathering growing attention from the adversarial Machine Learning (ML) com-
munity with Model Extraction [2,7,8] becoming a major concern.

An attacker performs a model extraction attack either to steal a well-trained
model performance or to precisely recover its characteristics to obtain a clone
model. Additionally, it would allow the adversary to enhance his level of control
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over the victim system to design more adapted and powerful attacks. Therefore,
model extraction attacks have been the subject of a growing number of works
in recent years with different adversarial scenarios regarding the level of knowl-
edge related to the model and the training data distribution. In the literature,
model architecture and parameters are usually studied separately. Many efforts
have been brought to parameters recovery with milestones works relying on the
assumption that model architecture is known by the attacker [2,5,7,13,18]. How-
ever, such an assumption is quite strong and can be questioned as architecture
details are generally not disclosed. However, whatever the attacker’s objectives,
knowledge of victim model architecture significantly increases adversarial ability.

This work is focused on architecture extraction of models embedded on 32-
bit microcontrollers thanks to ARM CMSIS-NN library. Our purpose is to know
how far an adversary can extract information from a victim model architecture
by jointly exploiting the knowledge of the deployment library and very limited
side-channel (EM) traces (averaged trace from a single input). Surprisingly and
worryingly, we show that (with methods and classical ML expertise) almost all
the most important information and hyper-parameters are reachable because of
the high repetitiveness of the underlying computations. More particularly, for
convolutional neural networks, we demonstrate a Russian doll effect: one regu-
lar EM pattern is related to one hyper-parameter and zooming in presents other
patterns related to others hyper-parameters, and so on.

Illustrations, code and data availability. This work relies on the visual
analysis of side-channel traces with many (colored) illustrations to explain our
approach. For conciseness purpose, we select the most representative ones. We
propose additional contents in a public repository4 with codes and data (traces).

2 Background

2.1 Neural network models

We consider a supervised deep neural network MW , with W its internal param-
eters. When fed with an input x ∈ Rd, the model outputs a set of prediction
scores MW (x) ∈ RK with K, the number of labels. Then, the output predicted
label is ŷ = argmax(MW (x)). We note AM the architecture of the model M
that corresponds to the organisation of its layers. AM is defined by the nature
of each layer, their connections, size and hyper-parameters (non-trainable ones,
e.g. the number of convolutional kernels). We note L the number of layers. In
this work, we only consider feedforward models with layers stacked horizontally.

MultiLayer Perceptron (MLP) are composed of several vertically stacked
neurons (or perceptron) called dense layers (also named fully-connected or even
linear). Each perceptron first processes a weighted sum of its trainable param-
eters w and b (called bias) with the input x = (x0, ..., xn−1) ∈ Rn. Then,
it non-linearly maps the output thanks to an activation function σ: a(x) =

4 https://github.com/RJoud/ARCH_XTR.git

https://github.com/RJoud/ARCH_XTR.git
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σ(w0x0 + ... + wn−1xn−1 + b), where a is the perceptron output. For MLP, a
neuron from layer l gets inputs from all neurons belonging to previous layer l−1.

Convolutional Neural Network (CNN) process input data with a set of con-
volutional kernels (also called filters). The kernels are usually low-dimensional
squared matrices (e.g. 3 × 3 for image classification). In addition, kernels third
dimension matches the number of channels of the input tensor Cin (e.g. for RGB
images, Cin = 3). As such, for a convolutional layer (hereafter shorted to conv.
layer) composed of K kernels of size Z × Z × Cin applied to an input tensor of
size Hin × Hin × Cin (we use square inputs for simplicity), the weight tensor
W will have the shape [K,Z,Z,Cin] (i.e. K · Cin · Z2 parameters without bias,
(K+1) ·Cin ·Z2 otherwise). Additionally, The number of output tensor channels
is Cout = K. Eq. 1 is a convolution (without bias) expressed as dot-products
between kernel and local regions of the input tensor, classically processed by a
sliding window. With Y the output tensor, we have ∀k, l, n ∈ J0, HinJ2×J0, CoutJ:

Yk,l,n = σ
(Cin−1∑

m=0

Z−1∑
i=0

Z−1∑
j=0

Wi,j,m,n ·Xk+i,l+j,m

)
(1)

Other hyper-parameters are Padding P and Stride S that, respectively, adds
extra dimensions (P ) to handle the borders of the input tensor5 and enables to
downsample (by S) the sliding6. The output tensor shape is defined as in Eq. 2.

Hout =
Hin − Z + 2 · P

S
+ 1 (2)

Usually, a conv. layer is followed by a pooling layer that aims at reducing the
dimensions of the output tensor by locally reducing it with some statistics. A
classical approach is to apply a Max pooling or an Average pooling with a 2× 2
kernel (we note Zpool = 2) over the output tensor Y of size Hout ×Hout × Cout

so that the resulting tensor is half the size (Hout/2)× (Hout/2)× Cout.

Activation functions (σ) inject non-linearity through layers. Typical func-
tions map the output of a dense or conv. layer into specific space like [0,+∞[
(ReLU), [−1,+1] (Tanh) or [0, 1] (Sigmoid, Softmax ). A widely used function is
the Rectified Linear Unit defined as ReLU(x) = max(0, x). The same activation
function is applied to all units of a layer and thus can be functionally considered
as an independent layer, as in this work.

2.2 Model deployment on Cortex-M platforms

Several tools are available to deploy DNN on Cortex-M platforms such as TF-
LM7, Cube.MX.AI8 (STMicroelectronics), NNoM [12] or MCUNet [10]. Most of

5 With P = 0, borders are not considered and the output tensor is shorter
6 S = 1 is the standard default sliding, one element at a time.
7 https://www.tensorflow.org/lite/microcontrollers
8 https://www.st.com/en/embedded-software/x-cube-ai.html

https://www.tensorflow.org/lite/microcontrollers
https://www.st.com/en/embedded-software/x-cube-ai.html
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them are based on the CMSIS-NN library from ARM [9]. In this work, we study
implementations based on NNoM with CMSIS-NN as back-end.

NNoM [12] (standing for Neural Network on Microcontroller) is an open-
source, high-level neural network inference library dedicated to microcontrollers.
It allows to easily implement DNN models previously trained on Keras-Tensorflow,
while supporting complex structures (e.g. Inception or ResNet). Converted NNoM
models are layer-wise quantized to reduce memory footprint. Scaling factor of the
quantization scheme is restricted to powers of two, allowing to perform efficient
shifting operations rather than divisions. Back-end operations can be performed
by NNoM’s eigenfunctions or by efficient CMSIS-NN ones when compatible.

CMSIS-NN [9] is a collection of optimized neural network basic operations,
developed for Cortex-M processor cores. They enhance performance and reduce
memory footprint with different optimisation techniques that depend on the tar-
get platform. They handle quantized variables on 8 or 16 bits. Implementations
considered hereafter manipulate 8-bit variables. Using such variables enables to
leverage on Single Instruction Multiple Data (SIMD).

2.3 Model Extraction

The goal of model extraction attacks is to steal a victim model MW with dif-
ferent possible adversarial goals [7]. A task-performance objective [15,19] is to
steal the performance of MW to reach equal or better one at lower cost (e.g.,
save prohibitive training time). In that case, knowledge of (exact) victim model
architecture or parameter values is not necessary. In a fidelity scenario, attacker
wants to craft a substitute model M ′Θ that mimics MW as close as possible. M ′
should provide the same predictions as M (correct and incorrect ones). This sim-
ilarity between M and M ′ is typically defined by measuring the agreement at
the label-level [7], i.e. argmax(M ′Θ(x)) = argmax(MW (x)) for every x sampled
from a target distribution X . A more complex and optimal objective (Function-
ally Equivalent Extraction) targets equal predictions (M ′(x) = M(x),∀x ∈ X ).
Importantly, the strongest Exact Extraction attack (AM = AM ′ , W = Θ) is
impracticable by simply exploiting input/output pairs from victim model [7].
Fidelity-oriented scenarios receive a growing interest because of challenging ex-
traction processes, more essentially for the parameters. When dealing with pa-
rameter extraction, a usual assumption is that the adversary knows AM . This is
the case for cryptanalysis-like approaches [2,7], active learning techniques [16,19]
and recent efforts relying on physical attacks such as side-channel (SCA) [1,8]
or fault injection (FIA) [18,6] analysis. Interestingly, whatever the adversarial
goal, victim model architecture is a crucial information: it is compulsory for fi-
delity scenarios, and its knowledge significantly strengthen attacker’s abilities to
succeed in task-performance ones [15].

3 Related works and contributions
A growing number of works investigates architecture extraction with physical at-
tacks. Proposed techniques are essentially based on Side-Channel Analysis (SCA)
such as Timing Analysis (TA), Simple Power/EM Analysis (SPA/SEMA) or
Cache Attacks (CA) targeting various physical targets (FPGA, microcontrollers
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Table 1: Related State-of-the-Art works. n.s.: Not Specified

Attack Physical target Targeted models Used technique

[4] MLaaS CNN TA & Regression
[22,21] FPGA BNN SEMA
[11] FPGA CNN & ResNet SEMA
[3] GPU CNN SEMA & TA
[1] µC MLP & CNN CEMA
[20] µC CNN SPA & ML
ours µC MLP & CNN SEMA only

(µC), GPU and cloud services hosting DNN models referenced as MLaaS for
Machine Learning as a Service). These works are summed up in Table 1. Usu-
ally, architecture and parameters are extracted distinctively, however Batina et
al. propose in [1] to identify layer boundaries while performing parameters ex-
traction with Correlation EM Analysis (CEMA). Correlation scores are used
to deduce if currently targeted neuron belongs to the same layer as previous
targeted one or not. In other words, if CEMA fails, then that means we pass
through the next layer. Since parameters extraction with CEMA is highly chal-
lenging, as detailed in [8], this method raises practical issues and, to the best
of our knowledge, has not been fully demonstrated. Other SCA techniques have
been used like TA as in [4] to recover model numbers of layers. SCA are also
occasionally combined with other approaches such as learning-based clone re-
construction [22,18] or ML-based classification of traces among a limited set of
architectures [20]9. More recently, [11] presents a complete analysis of the impact
of FPGA implementations of CNN on the related electromagnetic activity and
proposes and evaluates an obfuscation-based countermeasure.

In this work, our goal is to highlight leakages related to the architecture
of embedded DNN models. We are considering models implemented on a 32-
bit microcontroller thanks to NNoM library [12] that relies on the widely used
CMSIS-NN module [9]. Both of these tools are open-source and as such, we
logically consider the attacker has a total access to their code. Acquisitions pre-
sented all along this work are obtained with 16 averaged traces all acquired while
performing the inference algorithm from a single input belonging to the test set
(not used during model training). We deliberately set in such a minimalist set-
ting to assess the level of information that could be extracted by an adversary
that has almost no prior knowledge about the victim model and limited experi-
mental data available. This work is not intended to be exhaustive with regards
to the extraction of every hyper-parameter of every possible layer types. As most
of reference papers in model extraction field, we focus on most common layers

9 In [20], authors consider 4 variants of AlexNet, Inceptionv3, ResNet-50 and 101, for
a total of 16 architectures.
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inputs

predictions MaxPooling [2,2]

Ne
Dense layer, Ne neurons
+ ReLU

Ne

K-Z

Output Dense layer, Ne neurons
+ Softmax

Various Conv. layer,
K kernels of size ZxZK-Z K-Z

CNN (MNIST)

16 10

(16) (10)

16-3 32-3

(28,28,16)(28,28,1) (7,7,32)
flatten: (1568)

(14,14,32)(14,14,16)

MLP (MNIST)

1632 10

(32) (16)(784) (10)

CNN (Cifar-10)

(32,32,3)

32 10

(32) (10)

16-3 64-3

(16,16,32) (8,8,64)(8,8,32)

32-3

(32,32,16) (16,16,16) (4,4,64)
Flatten: (1024)

Fig. 1: Detailed architecture of considered models. Various conv.
implementations are detailed in Section 6.1

and related parameters, i.e. by targeting MLP and CNN models. Furthermore,
all our traces, implementations (and complementary results) are publicly avail-
able in order to foster new experiments on this topic that we claim to be highly
critical in the actual large-scale model deployment context.

4 Experimental setup

4.1 Models and datasets

We use two traditional benchmarks MNIST10 (28x28 digit grayscale images,
10 labels) and Cifar-1011 (32x32 color images, 10 labels). Therefore, we have
Hin = 28 and Cin = 1 for MNIST and Hin = 32 and Cin = 3 for Cifar-10.
For MNIST, we trained a MLP and a CNN with the TensorFlow platform that
achieved respectively 96% and 98% on the test set. For Cifar-10, we trained
a CNN that reached 76% on the test set. Architectures of these models are
illustrated in Fig. 1. Colors are used to identify the layer and the shape of each
output tensor is shown under each layer. Dense layers (green) have Ne neurons
and convolutional layers (blue, olive and cyan) have K square kernels of size Z.
Classical stride (= 1) and padding value (same) are used, they don’t impact the
output shape. We only use Max pooling layer (orange) with a kernel size of 2
so that the output tensor is reduced by half. Used activation function is ReLU,
except for the last layer with SoftMax function.

10 http://yann.lecun.com/exdb/MNIST/
11 https://www.cs.toronto.edu/~kriz/cifar.html

http://yann.lecun.com/exdb/MNIST/
https://www.cs.toronto.edu/~kriz/cifar.html
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Table 2: Adversarial objective: list of the hyper-parameters to extract

Target Parameters Notation Target Parameters Notation

AM
# layers L

Conv. Layer

Output shape Hout

Type of layers ∅ # kernels K

Dense Layer # neurons Ne Kernel size Z

MaxPool Output shape Hout Stride, Padding S, P

Filter size Zpool Activation Layer ReLU or not ∅

4.2 Target device and setup

Our experimental platform is an ARM Cortex-M7 based STM32H7 board that
can embed state-of-the-art models thanks to its large memories (2 MBytes of
Flash and 1 MByte of SRAM). For this first work, interruptions are disabled
during model inferences as well as cache optimization available on the board.
We measured EM emanations coming from the unopened chip with a Langer
probe (EMV-Technik LF-U 2,5, freq. range from 100 kHz to 50 MHz) that is
connected to an amplifier (Fento HVA-200M-40-F) with a 200 MHz bandwidth
and 40 dB gain. Acquisitions are collected thanks to a Lecroy WavePro 604HD-
MS oscilloscope. Additional specifications are in the public repository.

5 Threat model

The attacker aims to recover the architecture of an unknown quantized vic-
tim model (MW ) with as much detail as possible. Table 2 lists all the information
the adversary wants to extract thanks to EM traces. The attack context corre-
sponds to a particular black-box setting. Indeed, the adversary has no knowl-
edge of model architecture nor parameters but is aware of the task performed
by the model and the usage of CMSIS-NN module. Adversary is also expected
to have appropriate Deep Learning expertise including the most classical and
logical layer sequences. The attacker is able to acquire EM side-channel infor-
mation leaking from the board embedding the targeted DNN model. However,
we consider the attacker does not perturb program execution and collect only
traces stemming from usual inferences. As we assume a minimal practical set-
ting, adversary is restricted to a single test input. Exploited trace results from
the averaging of few inferences with this specific input12.

Furthermore, we want to point out that in such context, the adversary has
access to every needed resources for profiling attacks. Target board is known as
well as CMSIS-NN back-end usage, allowing to set a dictionary linking layers
with various characteristics to their corresponding EM activity. Simple pattern
detection tools could also be used to speedup extraction process. However, usage
of such tools or profiling techniques is not in the scope of this work.

12 Raw traces are available in the public repository.
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6 Layers analysis
At the model scale, inference is a feedforward process with the computation

of each layer performed one after the other. The output tensor of one layer
becomes the input tensor of the next one. In this section, we focus at layer scale
with a two-step methodology. First, we analyze the CMSIS-NN implementation
of each layer of our models to reveal repetitions of regular computation blocks
that should appear in our EM traces. More particularly, we aim to link these
countable patterns to hyper-parameters of the layer. Second, we experimentally
evaluate if these theoretical assumptions are confirmed in our EM traces and
assess the complexity of the extraction and potential limitations.

Our approach is based on the principle that the attack is performed according
to the computational flow: when the adversary targets layer l, we suppose that
analysis of layer l − 1 is complete and thus its output tensor shape is known,
meaning that input tensor shape of layer l is mastered as well13.

6.1 Convolutional layer

CMSIS-NN convolution functions are all based on the same two-step process, as
presented in Alg. 1: Im2col and General Matrix Multiply (GeMM) algorithms.
Im2col is a standard optimization trick that implements a convolution through a
matrix product rather than several dot-products as defined in Eq. 1. The trick is
to prepare all the local areas obtained from sliding window into column vectors
and expand the kernel values into rows. Then, convolution is equivalent to a
single matrix multiplication that allows an important execution speedup but at
the expense of an increased memory footprint. To reduce the latter, CMSIS-NN
iteratively performs Im2col with small sets of column vectors [9]. Depending on
input and output tensors size, three different functions are proposed14:

– arm_convolve_HWC_q7_fast() (blue conv. layers in Fig. 1) is for Cin multi-
ple of 4 (due to SIMD read and swap) and Cout multiple of 2 (due to matrix
multiplication applied on 2 × 2 elements). The computation is speedup for
the padding management by splitting the input tensor into 3× 3 patches.

– arm_convolve_HWC_q7_RGB() (olive conv. layers in Fig. 1) is exclusively
optimized for 3 channels inputs (hard-coded condition checks).

– arm_convolve_HWC_q7_basic() (cyan conv. layers in Fig. 1) is used other-
wise and has a very similar structure as the RGB variant.

Output shape (Hout)

Code analysis. Whatever the (optimization) differences between the three im-
plementations listed above, extraction of Hout relies on the same principle. As
presented in Alg. 1, outer loops iterate over the tensor size Hout (reminder: we
consider square inputs) to run the core computations with the im2col trick then
matrix multiplication (GeMM). These computations are time consuming and

13 Obviously, we expect that the size of the inputs feeding the model is known by the
adversary (e.g., 28× 28 for MNIST and 32× 32× 3 for Cifar-10).

14 Equivalent functions are available for non-squared input tensor.
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Algorithm 1 General conv. implementation
Input: Iin Input tensor of size H2

in · Cin, ker (Kernel tensor), S, P , Iout Output tensor of size
H2

out · Cout

Output: Filled Iout

1: for iy ← 0, iy < Hout, iy + +1 do ▷ Iterate over Hout (y-axis)
2: for ix ← 0, ix < Hout, ix + +1 do ▷ idem (x-axis)
3: buffin ← im2col(Iin, iy, ix, S, P,Hin, Cin) ▷ Apply im2col conversion
4: if len(buffin) == 2× Cin × Z2 then ▷ Check if 2 input columns are set
5: GeMM(buffin, ker, Cout, Cin × Z2, Iout) ▷ Perform matrix-multiplication
6: buffin ← 0 ▷ Buffer reset
7: end if
8: end for
9: end for

are likely to induce clear visible EM activities, especially GeMM step (Alg.2 de-
scribed after). GeMM is called every two iterations (line 4, if statement) when
the buffer buffin is filled with two input columns thanks to im2col (line 3). As
a result, GeMM function (line 5) is called Hout × Hout/2 times during Alg. 1
execution. If we set Np as the number of regular patterns resulting from GeMM
function over the part of the EM trace corresponding to the targeted conv. layer,
then we can link Np to Hout as: Np = Hout ×Hout/2, i.e. Hout =

√
2×Np.

(a) 1st conv. (basic), MNIST CNN, 392
expected patterns

(b) Zoom in on (a) 23 visible patterns

(c) 2nd conv. (fast), MNIST CNN, 98
visible patterns

(d) 3rd conv. (fast), Cifar-10 CNN, 32
visible patterns

Fig. 2: Overviews of conv. layers EM activity related to Hout

Observations and limitations. Thanks to this analysis, we assess our traces for
each conv. layer of the two CNN models (MNIST and Cifar-10) and observe
the correct number of patterns Np as noticed in Tab. 3. Fig 2a illustrates the
first conv. layer for MNIST with Np = 392 patterns (Fig. 2b gives a zoom on
23 patterns between 35 and 40 ms). Fig 2c and 2d illustrate fast conv. layers
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of either MNIST or Cifar-10 CNN with respectively Np = 98 and 32 patterns.
After counting Np, we easily deduce Hout values. According to observed layers,
number of patterns can be important and hard to count by hand. However, since
these patterns are clear and accurate (see Fig. 2b and 2d), an attacker could
take advantage of basic pattern detection tools (out of the scope of this work)
to make the counting easier.

Next, we zoom in one pattern to focus on the GeMM function and look
for other regular patterns that may be related to other hyper-parameters, more
particularly the number of kernels K and their size Z.

Number of kernels (K)

Code analysis. Matrix-multiplication computation is described in Alg. 2. It mainly
consists of an outer for loop iterating over the number of output channels (Cout)
divided by 2, referenced as rowCnt and defined at line 1. We remind that for a
conv. layer: Cout = K. Thus, being able to count the iterations of the for loop
(lines 2-9) enables to recover K. If Np is the number of regular EM patterns
resulting from computations inside this loop, then we assume that K = 2×Np.

Algorithm 2 Matrix-product for conv. (GeMM)
Input: buffin, ker, Cout, Cin × Z2, Iout, bias (bias tensor)
Output: Partly filled Iout

1: rowCnt← Cout >> 1 ▷ Set rowCnt = K/2
2: for rowCnt > 0, rowCnt−−1 do ▷ Iterate over K/2
3: sum, sum1, sum2, sum3 = init_sum(bias, Cin × Z2)

4: colCnt← (Cin × Z2) >> 2 ▷ Set colCnt as in Eq. 3
5: for colCnt > 0, colCnt−−1 do
6: simd_mac(sum, sum1, sum2, sum3,buffin, ker)
7: end for
8: apply_mac(sum, sum1, sum2, sum3, Cout, Iout)
9: end for
10: Manage_remainder_if_any(Cout,buffin, bias, Cin×Z2)

Table 3: Hout and
expected # patterns

Mnist Cifar-10
Layer Hout Np Hout Np

1 28 392 32 512
2 14 98 16 128
3 ∅ ∅ 8 32

Observations. We evaluate the number of regular patterns appearing on our
traces when zooming in the first pattern we previously extracted Hout from. For
each conv. layer, we observe groups of new regular patterns composed of the
expected number Np. Furthermore, these groups are observed throughout the
EM activity related to the entire conv. layer, corresponding to every call of the
GeMM function of Alg. 1. These regular patterns are composed of a spike (Sa)
followed by a segment of lower frequency activity (La) (Fig. 3b and 3d). Fig 3a
and 3c represent targeted outer for loop iterations for the first two conv. layers
of MNIST CNN with respectively Np = 8 and 16, that corresponds to K = 16
and 32 kernels. Such observations have been successfully made for every other
conv. layers for both Cifar-10 and MNIST CNN models.

Size of kernel (Z)

Code analysis. Like the number K of kernels, their size Z is also manipulated
in Alg. 2. The inner for loop (lines 5-7) iterates over the variable colCnt which
directly depends on Z. This part represents the core computation of convolution
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(a) 1st conv., 8 visible patterns, K = 16 (b) Zoom over 1st conv.

(c) 2nd conv., 16 visible patterns, K = 32 (d) Zoom over 2nd conv.

Fig. 3: Single GeMM execution traces with zoom for MNIST conv. layers

(with SIMD-based accumulations, line 6). colCnt assignation (line 4) is as Eq. 3:

colCnt = 1
4 (Cin × Z2) (3)

Thus, as before, we expect that if these very regular computations result in
regular EM patterns, then we can estimate Z. However, such a statement is based
on the knowledge of Cin. As previously mentioned, the attacker is supposed to
master the dimensions of the output tensor of the previous layer, meaning that he
knows Cin. So, if EM activity related to the inner for loop can be distinguished
from the rest with Np regular patterns, then Z is estimated as

√
(4×Np)/Cin.

Observations. When observing EM activity between two spikes defined previ-
ously as La (Fig. 3), repetitive patterns can be spotted as in Fig. 4. EM activi-
ties related to SIMD-based accumulations of the second and third conv. layer of
Cifar-10 CNN are shown respectively in traces 4a and 4b. For the second layer,
Cin = 16 and Np = 36 patterns can be counted, giving correctly Z = 3 according
to previous assumption. Same correct result is obtained for the third layer with
Cin = 32 and Np = 64 visible patterns.

Limitations. It is important to note that dividing Cin × Z2 by 4 can induce
remainders to be treated separately afterwards. In this case, another EM activity
will appear after the colCnt expected patterns. Alternatively, patterns to be
seen and counted are becoming pretty small and can be hard to distinguish one
another. Moreover, the value of Cin strongly impacts the number of patterns to
differentiate. As an example, number of input channels in the first convolution
layer of MNIST CNN is necessarily equal to 1 as input are grayscale images.
With 3 × 3 kernels, only two patterns shall appear, with division remainder
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(a) 2nd conv., Cifar-10 CNN
36 visible patterns with Cin = 16

(b) 3rd conv., Cifar-10 CNN,
72 visible patterns with Cin = 32

Fig. 4: Zoom in Matrix-product EM activity with kernels of size Z = 3

treated afterwards that emits different EM activity. In other words, K can be
challenging to recover, especially when Cin is small.

Stride (S) and Padding (P )

Once Hin, Hout and Z are known, based on the fact that P < Z and thanks to
Eq. 2, S and P can be deduced. By computing S for possible P values, only a
single integer value will result for S.

6.2 Pooling layer: Output dimensions (Hout) and kernel size (Zpool)

Code analysis. CMSIS-NN implementation (Alg. 3) of max-pooling relies on two
computational blocks. First one (lines 1-6) handles the pooling along x-axis with
two nested loops iterating over Hin and Hout. From an adversary’s point of view,
the second block (lines 8-11) is the most interesting since it completes the pooling
over the y-axis with a single loop over Hout only. Pooling operation is classically
performed with two steps: (1) selection and allocation of local areas, then (2)
statistic computation (here, maximum). Thus, we expect to observe two distinct
EM activities related to these separated loops with the last (and shorter) one
directly related to Hout. Then we can deduce Zpool = Hout/Hin.

Observations. EM activity of an entire MaxPool layer is represented in Fig 5a
(2nd pooling, MNIST CNN). As expected, we observe two distinct blocks of EM
emanations, the second one revealing patterns that are more distinguishable.
When zooming over this second part, as in Fig 5b (1st pooling, Cifar-10), these
patterns are composed of two segments, one with low amplitude activity followed
by another of higher amplitude. We guess that it corresponds to the two steps of
the pooling computation. The number Np of these patterns can easily be hand-
counted and matches Hout value. We have been able to do equivalent observations
for all the MaxPool layers of our CNN models. Experimentally, we note that
analyzing the first block to retrieve both Hin and Hout is feasible but more
complex than simply counting Hout with the second block.

6.3 Dense layer: Number of neurons (Ne)

Code analysis. Alg. 4 describes function dedicated to dense layers. It is built
around a for loop iterating over the rowCnt variable that is the number of
neurons Ne divided by 4 (line 1), since neurons are handled by groups of 4.
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Algorithm 3 MaxPool - arm_maxpool_q7_HWC
Input: Iin input tenor of size H2

in · Cin, Iout output tenor of size H2
out · Cout, P , S, Hker

Output: Filled Iout

1: for iy ← 0, iy < Hin, iy + +1 do ▷ Pooling along x axis
2: for ix ← 0, ix < Hout, ix + +1 do
3: winstart, winstop ← set_window(iy, ix, Iin, Hker, P, S)
4: compare_and_remplace_if_larger(winstart, winstop, iy, ix, Iin)
5: end for
6: end for
7: trigger_up() ▷ Pooling along y axis
8: for iy ← 0, iy < Hout, iy + +1 do ▷ Directly iterates over Hout

9: rowstart, rowstop ← set_rows(iy, Iin, Iout, Hker, P, S)
10: compare_replace_then_apply(rowstart, rowstop, Iin, Iout)
11: end for
12: trigger_down()

(a) Overview of 2nd maxpool of MNIST
CNN, Hout = 7

(b) Zoom over 2nd loop of 1st Maxpool of
Cifar-10 CNN, Hout = 16, triggers set as

in Alg. 3 at lines 7 and 12

Fig. 5: MaxPool layers of CNN models

Indeed, init_sum_with_bias function (line 3) sets four sum variables. They are
used for weighted sum computation (and bias value addition) through multiply-
accumulate SIMD operations (__SMLAD), performed in simd_mac (line 6). We are
likely to observe Np regular patterns emanating from this loop, with Ne = 4×Np.

Observations. We observe significant EM activity that results from neurons han-
dling as illustrated in Fig. 6. Observed patterns are mainly composed of uniform
blocks separated by clear spikes (especially visible on Fig. 6a). Logically, related
EM pattern length directly depends on the number of inputs to the layer and
therefore to neurons. Then, dense layers managing broader inputs are easier to
analyse. By counting the Np spike-separated blocks of each dense layers of our
MLP and CNN, we checked the link between this number of occurrences Np and
the number of neurons Ne of the layer. Fig. 6a and 6b illustrate the two dense
layers of the MNIST MLP model with respectively 8 and 4 patterns correspond-
ing to Ne = 32 and Ne = 16 neurons. As well, Fig 6c and 6d show dense layers
with respectively Ne = 16 (4 patterns) and Ne = 32 (8 patterns) neurons.

Limitations (special cases). As neurons are grouped in sets of 4, some special
cases occur when remaining neurons still need to be computed. The line 10 of
Alg. 4 checks remainders and handles them throughout the following for loop.
Neurons are then handled one by one as only a single sum is initialised then
used in mac call at line 15. To illustrate this phenomenon, we trained an addi-
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Algorithm 4 Dense layer - arm_fully_connected_q7_opt
Input: Iin input vector of size Hin, ker weight vector of size Ne, bias bias matrix of size Ne, Iout

output vector of size Hout, P , S, Hker

Output: Filled Iout

1: rowCnt← Ne >> 2 ▷ Nb. neurons divided by 4
2: for rowCnt > 0, rowCnt−−1 do ▷ Iterate directly over Ne/4
3: sum, sum1, sum2, sum3 = init_sum_with_bias(bias, rowCnt)
4: colCnt← Hin >> 2
5: for colCnt > 0, colCnt−−1 do
6: simd_mac(sum, sum1, sum2, sum3, ker, colCnt)
7: end for
8: apply_mac(sum, sum1, sum2, sum3, rowCnt, Iout)
9: end for
10: rowCnt← Ne & 0x3 ▷ Manage remainders if any
11: for rowCnt > 0, rowCnt−−1 do
12: sum = init_sum_with_bias(bias, rowCnt)
13: colCnt← Hin >> 2
14: for colCnt > 0, colCnt−−1 do
15: mac(sum, ker, colCnt)
16: end for
17: apply_mac(sum, rowCnt, Iout)
18: end for

(a) 1st dense layer, MNIST MLP, Ne = 32 (b) 2nd dense layer, MNIST MLP,
Ne = 16

(c) Dense layer, MNIST CNN, Ne = 16 (d) Dense layer, Cifar-10 CNN, Ne = 32

Fig. 6: Overview of dense layer EM activity corresponding to general cases

tional MLP model on MNIST (noted SP-MLP), composed of 4 dense layers with
respectively 23, 18, 13 and 10 neurons. These correspond to different remainders.

Fig. 7 shows EM activity of each layer for SP-MLP. For the 23-neuron layer,
we clearly observe on Fig. 7a 3 blocks that stand out after the core sequence of
5 patterns. This directly matches what is expected with 5 groups of 4 neurons
completed with the 3 remaining ones managed independently. However, similar
analysis cannot be performed on the two other traces. This difficulty comes from
input tensor shape reduction from first layer to the second and third ones. To
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verify that neurons are managed in the same way for both of these, triggers
are raised and lowered inside the outer for loop over rowCnt (represented as
rectangles in Fig. 7d and 7e). In addition, it illustrates problematic pattern shape
changes induced by usage of triggers around observed piece of code. Indeed, they
become more visible in Fig. 7d and 7e compared to Fig. 7b and 7c.

(a) 1st dense, N = 23 ⇔ 5 + 3 patterns

(b) 2nd dense N = 18 ⇔ 4 + 2 patterns (c) 3rd dense N = 13 ⇔ 3 + 1 patterns

(d) Same as (b) with triggers (e) Same as (c) with triggers

Fig. 7: EM activity overview of dense layers for the custom SP-MLP model.
Expected patterns clearly appear for the first layer, not for the 2nd and 3rd

6.4 Activation layer

The nature of the Activation Functions (AF) is an important information since
it strongly affects input flow from one layer to the next. It is especially useful for
parameter extraction as it can modify layers input distribution and potentially
their signs (e.g., ∀x ∈ R, ReLU(x) ≥ 0). Many different AF exist with Sigmoid,
Tanh, Softmax (mainly for the model output normalization) and ReLU as the
most popular. The first three imply an exponential or division computation that
are time consuming. ReLU is predominantly the most popular AF because of
training efficiency and its low computation requirements. Therefore, we mainly
focus on the distinction between ReLU from Sigmoid and Tanh functions (i.e.,
the extraction goal is to answer the question: is the AF ReLU or not? ). Mea-
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Layer ReLU Sigmoid ( 1
ReLU

) Tanh ( 1
ReLU

)

0 1.84ms 8.24ms (×4.5) 8.24ms (×4.5)
1 0.92ms 3.21ms (×3.5) 3.58ms (×3.9)
2 7.60µs 15.60µs (×2) 20.64µs (×2.7)

(a) Layer duration according to AF
(b) 2nd ReLU layer

(c) 2nd Sigmoid layer (d) 2nd Tanh layer

Fig. 8: Zoom over the beginning of second activation layers with their duration

suring computation time of entire AF layer can give strong evidence (as also
investigated in [1]) because ReLU function is processed faster than the other
two as shown in Table (a) from Fig. 8. Such approach takes on its full meaning
when considering potential template capacity of the attacker.

However, we observe that looking at the EM patterns gives additional hints
that help distinguish ReLU. For that purpose, we trained three MNIST CNN
models with the same architecture but different AF (one per model: ReLU,
Sigmoid or Tanh). Traces of Fig. 8 are zoomed in on the beginning of each second
AF layer. Trace 8b, corresponding to ReLU, exhibits regular and distinguishable
patterns (duration of few µs). Sigmoid and Tanh traces also present groups of
peaks repeated throughout traces. However, these are more complex and less
explicit than ones related to ReLU and the order of magnitude of their duration
is greater, especially for Sigmoid traces. From these observations, distinction
between ReLU and the two other AF is quite straightforward. Noteworthy, it is
not a clear-cut between Sigmoid and Tanh.

7 Architecture extraction methodology
At first, an adversary may exploit the nature of the task performed by the

model. In some cases, it can give hints about the type of the victim model.
A model performing a computer vision task is likely to be built around CNN
principle. However, there are no strict rules that match a task to a model type.
We claim that task knowledge may provide a set of possible layer types that a
first analysis of the trace overall structure must confirm. Moreover, preliminary
knowledge also encompasses classical deep learning practices, more precisely the
logical order of layers. If the first layer is identified as a convolutional one, a
standard association is another conv. layer or a pooling one.
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(a) MLP colored layers (b) Cifar-10 CNN colored layers

(c) MNIST CNN colored layers (d) Cifar-10 CNN spectrogram

Fig. 9: Average EM trace for the 3 models. Spectrogram for Cifar-10 CNN.

The first information to extract is the overall structure of AM with two
information: the number of layers, L and their natures. Then, the attacker focuses
on each layer one after the other and, according to their nature, extracts a set
of hyper-parameters easing to design a substitute model M ′Θ.

Step 1: Finding the number of layers. When analyzing the general shape of the
averaged EM trace, the very first observation is that it can be straightforwardly
split into several blocks by identifying the boundaries that separate them. A
frequency spectrum can highlight the separation between the blocks. The Fig. 9d
illustrates how this processing can made easier the layer splitting for the Cifar-10
CNN. Without difficulty, for the three models studied in this work, this simple
analysis gives the exact number L of layers for each model architecture AM .
Fig. 9 illustrates the identified blocks for our models with the same colors as
in Fig. 1. To validate that layers truly correspond to blocks and for illustration
purpose only, triggers have been added to clearly mark out layer boundaries.

Step 2: Identifying layers’ nature. Having the position of the L layers on the EM
trace, the attacker knows the intrinsic layer complexity that directly influences
the execution times. Typically, pooling and AF layers are far less complex than
the main computational ones (in our case, dense and conv.) that they usually
follow. Thus, the real challenge is to correctly initiate the extraction process by
identifying the first layer as a dense or a conv. layer. A correct extraction of the
first layer is fundamental, since the course of the attack, as well as assumptions
made on AM , come out of this good start. To successfully achieve this distinction
between dense and conv. layer, the attacker relies on a twofold analysis:
– Complexity / execution times. First insight is provided by simple timing anal-

ysis. Although insufficient, this analysis may dispel doubts between some
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layer hypotheses. Complexity is estimated in different ways in the litera-
ture but a standard way is to consider the number of Multiplications and
Accumulations (MACs). Such metric directly stems from computations and
input/output dimensions. MAC complexity of conv. and dense layers are as
follow: MACConv2D = (Z2×Cin)× (H2

out×Cout), MACdense = Hin×Hout.
Complexity of the first layer of both MNIST models are 112896 MACs for
the CNN and 25088 MACs (x4.5 less) for the MLP. Thus, usually, conv. layer
takes longer to execute than dense one (with similar inputs)15.

– Patterns: the attacker mostly leverages on specific EM activities. As detailed
in Section 6, the regularities and repetitions of patterns are very different
between dense and conv. layers and confusion is very unlikely. Thus, layer’s
nature is identified before accurately extracted the related hyper-parameters.
Once the first layer is identified, ML expertise and usual layers sequence

knowledge can provide additional hints about next layers nature. This encourages
the attacker to extract AM by analysing model layers consecutively.

Step 3: Extracting hyper-parameters. Once the overall architecture is known, the
attacker follows the analysis presented in Section 6 to recover hyper-parameters.

8 Discussions and Perspectives
Our main objective is to estimate how much information about the architec-

ture of a victim model an adversary can extract by exploiting limited side-channel
traces. This information can considerably help the attacker to perform powerful
adversarial attacks against the integrity or confidentiality of the victim model.
Even though we demonstrate that very critical information can be deduced by
the methodical analysis of both an EM trace and the implementation details
of the deployment library (here, CMSIS-NN), the use of pattern extraction and
recognition tools may significantly ease extraction process by automating most
steps and potentially help in extracting more hyper-parameters. We believe that
this work paves the way for such further analysis as other efforts that would
aim to widen the scope of analyzed architectures and layers. More particularly,
batch normalization or tensor arithmetic layers as in state-of-the-art ResNet
models or Attention blocks as in Transformer models are relevant candidates for
future works. We also highlight that variants of the standard convolution have
been proposed for (computational) efficiency purpose (e.g., Depthwise Separable
Convolution) [14]. To the best of our knowledge, all these variants rely on highly
repetitive and regular computations as the convolution with im2col and GeMM,
therefore it should not fundamentally differ from what we exposed in this work.

Moreover, the impact of experimental setup simplifications (i.e., disable of
interruptions and cache optimizations) must be studied in complementary stud-
ies. Such changes could harden hyper-parameters recovery and directed research
focused on protection dedicated to model architecture. To the best of our knowl-
edge, they are very few of them, especially for microcontroller platform. Authors
15 Obviously, if the dense layer had x4.5 more neurons, MAC complexity between dense

and conv. would be equal but having a too large number of neurons (i.e. trainable
parameters) for dense layers is usually unsuitable with classical overfitting issues.
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of [11] propose an obfuscation strategy for FPGA accelerators. They leverage on
optimization parameters of convolution computation to mitigate EM emanations
coming from conv. layers. Porting similar protection to microcontroller could be
challenging due to limited resources and model performance to be preserved.

9 Conclusion
When dealing with DNN model extraction attack, architecture is crucial.

Whatever the attacker’s objective, a complete or even partial recovery provides
an essential advantage. With this work, we highlight that the attack surface for
such a threat is significantly extended by side-channel analysis. More impor-
tantly, regarding our application scope, we demonstrate that there is no need
for complex exploitation methods (e.g., with heavy supervised profiling step)
because of the strong repetitiveness and regularity of most of performed com-
putations that make SEMA a surprisingly powerful tool. Typically, the Russian
dolls effect that we exploit for conv. layers (enabling the recovery, one after the
other, of several important hyper-parameters) is highly representative of this
confidentiality flaw that we claim to be a very worrying concern.

Although we highlight some limitations or more complex special cases that
need to be handled in future works, our concern is not based only on the relative
simplicity of the attack, but also on the hard challenges related to the devel-
opment of efficient and practical protections, compliant with the constrains of
32-bit microcontrollers. With ongoing regulatory frameworks for AI systems and
upcoming security certification actions, model architecture obfuscation appears
as the key defense challenge, that we urgently need to solve in order to bring
robustness to the large-scale deployment of ML systems.
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