
HAL Id: cea-04604956
https://cea.hal.science/cea-04604956v1

Submitted on 7 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite Automata synthesis from interactions
Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre,

Pascale Le Gall

To cite this version:
Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre, Pascale Le Gall. Finite
Automata synthesis from interactions. FormaliSE ’24 -the 2024 IEEE/ACM 12th International
Conference on Formal Methods in Software Engineering, Apr 2024, Lisbonne, Portugal. pp.12-22,
�10.1145/3644033.3644382�. �cea-04604956�

https://cea.hal.science/cea-04604956v1
https://hal.archives-ouvertes.fr

Finite Automata synthesis from interactions
Erwan Mahe

Boutheina Bannour

X.Y@cea.fr

Université Paris-Saclay, CEA, List

Palaiseau, France

Christophe Gaston

Arnault Lapitre

X.Y@cea.fr

Université Paris-Saclay, CEA, List

Palaiseau, France

Pascale Le Gall

pascale.legall@centralesupelec.fr

Université Paris-Saclay,

CentraleSupélec

Gif-sur-Yvette, France

ABSTRACT
Interactions are graphical models representing communication

flows between actors. Well-known interaction languages include

UML Sequence Diagrams orMessage Sequence Charts. Even though

interactions allow for concise and intuitive specifications, their use

remains limited in formal verification, partly because the subsets

of formalized languages often lack expressiveness. As many verifi-

cation methods, such as model-checking or runtime verification,

are routinely available for finite automata, we propose a new ap-

proach to generate finite automata from an expressive interaction

language with operators such as the concurrent region. Our ap-

proach leverages an operational semantics to compute derivatives

of an interaction and assimilate them to states of a finite automata.

In addition, we use term rewriting to merge states on-the-fly so

as to obtain small automata without relying on costly a-posteriori

minimization techniques.

KEYWORDS
Interaction language, Sequence Diagram, Message Sequence Chart,

Non-deterministic Finite Automaton, Operational Semantics, Term

Rewriting

ACM Reference Format:
Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre,

and Pascale Le Gall. 2024. Finite Automata synthesis from interactions. In

Formal Methods in Software Engineering (FormaliSE) (FormaliSE ’24), April
14–15, 2024, Lisbon, Portugal. ACM, New York, NY, USA, 11 pages. https:

//doi.org/10.1145/3644033.3644382

1 INTRODUCTION
Context. Interactions are behavioral models describing communi-

cation flows between actors. Interaction languages include, among

others, Message Sequence Charts (MSC) [15, 38], or UML Sequence

Diagrams (UML-SD) [41]. Their main advantage is their easy-to-

read graphical representation, which we may call Sequence Dia-

grams (SD). Let us describe their main elements using the SD drawn

on Fig.1. Each actor is associated to a vertical line, called a lifeline
(here 𝑙1, 𝑙2 and 𝑙3). Behaviors are described as traces i.e., succes-
sions of atomic communication actions (abbrv. actions) which are

either the emission or the reception of a message by a lifeline. In

the diagrammatic representation, the emission (resp. reception) of

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish

or reproduce this article, or to allow others to do so, for Government purposes only.

Request permissions from owner/author(s).

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0589-2/24/04

https://doi.org/10.1145/3644033.3644382

a message is represented by an arrow exiting (resp. entering) a

lifeline. By extension, message exchanges (i.e., an emission and a

corresponding reception) are represented by contiguous horizon-

tal arrows connecting two lifelines. The name of the emitted or

received message is represented above the corresponding arrow

(e.g.,𝑚1,𝑚2 and𝑚3 in our example).

Figure 1: SD representation

Actions being discrete and

atomic, message exchanges im-

pose a causal order in which the

emission of a message must oc-

cur before its reception (on our

example, 𝑙1 must emit𝑚1 before

𝑙2 can receive it). High-level op-

erators such as various kinds of

sequencing, parallel composition,

choice and repetition can be used

to schedule atomic communica-

tion actions into more complex

structured scenarios. A particularity of interactions is the distinc-

tion between strict and weak sequencing. While the former always

enforces an order between actions, the latter only does so between

actions occurring on the same lifeline. Concurrent regions (ab-

brv. co-regions) further improve expressiveness with the ability to

detail which lifelines allow interleavings and which ones do not.

In practice, co-regions behave like parallel composition on certain

lifelines and like weak sequencing on the others.

Most operators are drawn as annotated boxes (for instance, 𝑙𝑜𝑜𝑝𝑆
denotes a strictly sequential loop in our example). This is not the

case for the weak sequencing operator, which corresponds to the

top-to-bottom direction of the diagram, and for concurrent regions

which are represented using brackets on specific lifelines (e.g., on

𝑙2 in our example). Our example illustrates how weak sequencing

constrains the order between actions, depending on where they

occur. If one considers the order of the emission of𝑚2 w.r.t. that

of𝑚3, weak sequencing forces 𝑙3 to emit𝑚2 before it can emit any

instance of𝑚3 because those two actions occur on the same lifeline

𝑙3. By contrast, if one considers the emission of𝑚1 and that of𝑚2,

weak sequencing allows them to occur in any order because they

occur on two different lifelines (𝑙1 and 𝑙3). In our example, the loop

allows arbitrarily many instances of the reception of𝑚3 to occur

sequentially. The co-region on 𝑙2 then allows the reception of𝑚1

to occur before, in-between or after any of these instances of the

reception of𝑚3.

Interestingly, for a subset of interactions, associated trace lan-

guages are regular. Consequently, it becomes feasible to associate

them with Finite Automata (FA). Integrating interaction languages

with FA significantly broadens their applicability across various

domains, particularly model-checking [2] or monitoring [46]. This

https://orcid.org/0000-0002-5322-4337
https://orcid.org/0000-0002-4943-7807
https://orcid.org/0000-0001-6865-5108
https://orcid.org/0000-0002-2185-4051
https://orcid.org/0000-0002-8955-6835
https://doi.org/10.1145/3644033.3644382
https://doi.org/10.1145/3644033.3644382
https://doi.org/10.1145/3644033.3644382

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Mahe, et al.

is because FA are instrumental in the verification of language in-

clusion [1] and the validation of safety properties [6].

Related work. The synthesis of Non-deterministic Finite Au-

tomata (NFA) has been addressed in [2, 46]. In [2], basic Message

Sequence Charts (bMSC) are described using partial order rela-

tions induced by message send-receive pairs and local orders of

actions on each lifeline. Several bMSC can then be combined to

form graphs of bMSC (bMSC-g), which support more complex be-

haviors. Nodes of a bMSC-g contain a bMSC, and its edges, linking

two bMSC, correspond to concatenating the behaviors specified by

each. This concatenation can be interpreted as strict or weak se-

quencing, corresponding to resp. the synchronous or asynchronous

interpretation of edges in [2]. Synthesis of NFA from bMSC-g then

amounts to linearizing the partial orders associated to each bMSC

node and combining them along graph edges. Yet, although this is

always possible under the synchronous interpretation of edges, [2]

points out that this is not the case in the asynchronous case (thus

the claim that model checking of bMSC-g is undecidable).

(a) bMSC-g (b) with strict sequencing

(c) with weak sequencing (d) intermediate interpretation

Figure 2: Different interpretations of bMSC-g edges

Fig.2a provides an example bMSC-g built over 3 bMSC 𝑏1, 𝑏2 and

𝑏3 s.t. each bMSC 𝑏𝑖 (𝑖 in {1, 2, 3}) involves a message𝑚𝑖 . Under

the synchronous interpretation of graph edges, the trace language

of that bMSC-g would equate to that of the interaction from Fig.2b.

Similarly, under the asynchronous one, it would be that of the in-

teraction from Fig.2c, with the weakly sequential loop operator

(𝑙𝑜𝑜𝑝𝑊) from [36]. While the trace language of the former inter-

action (Fig.2b) is regular, this is not the case for the latter (Fig.2c).

Indeed, it accepts the consecutive emission of 𝑛 message𝑚2 fol-

lowed by their receptions for any integer 𝑛, which leads to the

non-regularity of language [26]. Because NFA cannot capture non-

regular languages, it is impossible to translate this bMSC-g under

the asynchronous interpretation of edges.

While the asynchronous interpretation cannot reliably be used

for NFA synthesis, the synchronous interpretation is rather con-

servative and limits considerably the use of weak sequencing (by

preventing its use outside basic interactions). Indeed, overapproxi-

mating weak sequencing using strict sequencing does not always

produce the same trace language. On Fig.2a, let us consider the

bMSG-g edge from 𝑏1 to 𝑏2. Here, the emission of𝑚2 by 𝑙2 from 𝑏2
might be interleaved with the emission of𝑚1 by 𝑙1 and the reception

of𝑚1 by 𝑙3 from 𝑏1 under the asynchronous interpretation, while

it must occur after them under the synchronous interpretation.

In [46], basic SD (only containing message passing and weak

sequencing, akin to bMSC) are identified within an overall UML-

SD and individually transformed into NFA. Those NFA are then

composed following the structure of the SD. For this, operators

of UML-SD are mapped to operators on NFA [17]. Alternatives

are mapped to NFA union, loops to NFA Kleene star (hence it

corresponds to a strictly sequential loop), parallel fragments to NFA

parallel composition, and both strict and weak sequencing (outside

basic SD) to NFA concatenation. Thus [46] uses the synchronous

interpretation of [2].

Both approaches [2, 46] are compositional by nature. Indeed, NFA
synthesis for complex interactions (represented either by UML-

SD or bMSC-g) is achieved by systematically composing smaller

NFAs using classic NFA operators (concatenation, union, etc.), the

smallest ones corresponding to translations of basic interactions

(with only sequencing and atomic actions). Because there is no

NFA operator equivalent to weak sequencing, the use of weak

sequencing in [2, 46] is thus restricted to basic interactions. Yet,

as illustrated on Fig.2d, a finer interpretation of graph edges is

possible and would permit the use of weak sequencing outside

basic interactions while still preserving the regularity of the trace

language.

Contribution. This paper proposes a novel approach for synthe-

sizing concise NFA from complex interactions. This approach does

not have the limitations of [2, 46] related to weak sequencing. In-

stead of being compositional, our approach could be described as

incremental [44]. We indeed leverage a Structural Operational Se-

mantics (SOS) [42] of interactions (marginally adapted from [36]) to

construct a NFA whose states correspond to successive derivatives
(coined by Brzozowski [8]) of the input interaction. This approach

is similar to related works on NFA synthesis [5, 45] and testing [44]

from regular expressions.

In our approach, there is no difference in the manner with which

weak sequencing is handled w.r.t. the other operators of the interac-

tion language and w.r.t. its context within the input SD. Incidentally,

this allows us to include concurrent regions (which are hybrid op-

erators between weak sequencing and parallel composition) to our

input interaction language, thus making it more flexible and easy

to use (w.r.t. bMSG-g in [2] and the subset of UML-SD from [46]).

It also facilitates integrating other operators in future works.

Additionally, we use term rewriting to merge NFA states on-

the-fly during the synthesis so that each state, instead of corre-

sponding to a single (derivative) interaction rather corresponds to

an equivalence class. This enables the direct synthesis of concise

NFAs without relying on computationally expensive state reduction

techniques, a problem proven to be PSPACE-complete [20].

Paper organisation. Sec.2 covers preliminary notions. In Sec.3, we

present an interaction language and an associated SOS adapted from

[36]. Sec.4 details our method for NFA synthesis. While Lem.4.3

Finite Automata synthesis from interactions FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

ensures we synthesize NFAs with a finite set of states, Th.4.8 proves

they have the same trace language as the corresponding input inter-

action. Sec.5 presents experimental results, including comparisons

of our approach and those based on composition (e.g., [46]). The

paper concludes in Sec.6.

2 PRELIMINARIES
For a set 𝐴, we resp. denote by P(𝐴) and 𝐴∗

the sets of all subsets

of 𝐴 and all finite sequences over 𝐴. The concatenation operation

is denoted by “.” and the empty sequence by 𝜀. For 𝑤 ∈ 𝐴∗
and

for 𝑎 ∈ 𝐴, we resp. denote by |𝑤 | and |𝑤 |𝑎 the length of𝑤 and the

number of occurrences of 𝑎 in𝑤 . A word 𝑢 is said to be a prefix of

𝑤 if there exists a word 𝑣 such that𝑤 = 𝑢.𝑣 .

Given two sets 𝑋 and 𝑌 , we denote by 𝑋 × 𝑌 their Cartesian

product and by 𝑌𝑋
the set of all functions 𝜙 : 𝑋 → 𝑌 of domain 𝑋

and codomain 𝑌 .

Definition 2.1. A NFA is a tuple (𝐴,𝑄, 𝑞0, 𝐹 ,⇝) s.t. 𝐴 is a finite

alphabet, 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is an initial state, 𝐹 ⊆ 𝑄

is a set of accepting states and⇝⊆ 𝑄 × 𝐴 × 𝑄 is a finite set of

transitions.

Non-deterministic Finite Automata (NFA). Def.2.1 recalls the def-
inition of NFA. A transition (𝑞, 𝑥, 𝑞′), with 𝑞 and 𝑞′ states in 𝑄

and 𝑥 ∈ 𝐴 is denoted as 𝑞
𝑥
⇝ 𝑞′ and is said to be labelled by

𝑥 . A path from 𝑞 to 𝑞′ is a finite sequence of 𝑘 > 0 consecu-

tive transitions 𝑞𝑖
𝑥𝑖+1
⇝ 𝑞𝑖+1 with 𝑖 ∈ [0, 𝑘 − 1] s.t. 𝑞0 = 𝑞 and

𝑞𝑘 = 𝑞′. If we denote by 𝑤 the word obtained from concatenat-

ing their labels i.e., 𝑤 = 𝑥1 . · · · .𝑥𝑘 , we may then write 𝑞
𝑤
⇝ 𝑞′.

In particular, we have 𝑞
𝜀
⇝ 𝑞 for any 𝑞 ∈ 𝑄 . The language rec-

ognized by a NFA A = (𝐴,𝑄, 𝑞0, 𝐹 ,⇝) is then the set of words

L(A) = {𝑤 ∈ 𝐴∗ | ∃ 𝑞𝑓 ∈ 𝐹 𝑠.𝑡 . 𝑞0
𝑤
⇝ 𝑞𝑓 }.

Term rewriting. A set of operation symbols F is a structured

set F =
⊎

𝑗≥0 F𝑗 s.t. for any integer 𝑗 ≥ 0, the set of all symbols

of arity 𝑗 is denoted by F𝑗 . Symbols of arity 0 are constants. For

any set of variables X, we denote by TF (X) the set of terms over

X defined as the smallest set s.t., (1) F0 ∪ X ⊂ TF (X) and (2) for
any symbol 𝑓 ∈ F𝑗 of arity 𝑗 > 0 and for any terms 𝑡1, · · · , 𝑡 𝑗
from TF (X), 𝑓 (𝑡1, · · · , 𝑡 𝑗) ∈ TF (X). TF = TF (∅) denotes the set
of ground terms. A function 𝜙 ∈ T X

F is extended as a substitution

𝜙 ∈ T TF (X)
F s.t. ∀ 𝑡 ∈ F0, 𝜙 (𝑡) = 𝑡 and for all terms of the form

𝑓 (𝑡1, · · · , 𝑡 𝑗) with 𝑓 ∈ F𝑗 , 𝜙 (𝑓 (𝑡1, · · · , 𝑡 𝑗)) = 𝑓 (𝜙 (𝑡1), · · · , 𝜙 (𝑡𝑛)).
For any 𝑡 ∈ TF , we denote by 𝑝𝑜𝑠 (𝑡) ∈ P(N∗) its set of positions

[11] which is s.t., ∀ 𝑡 ∈ F of the form 𝑓 (𝑡1, · · · , 𝑡 𝑗) with 𝑓 ∈ F𝑗

we have 𝑝𝑜𝑠 (𝑓 (𝑡1, · · · , 𝑡 𝑗)) = {𝜀} ∪ ⋃
𝑘∈[1, 𝑗] {𝑘.𝑝 | 𝑝 ∈ 𝑝𝑜𝑠 (𝑡𝑘)}.

For any terms 𝑡 and 𝑠 and any position 𝑝 ∈ 𝑝𝑜𝑠 (𝑡), 𝑡 |𝑝 denotes the

sub-term of 𝑡 at position 𝑝 while 𝑡 [𝑠]𝑝 denotes the term obtained

by substituting 𝑡 |𝑝 with 𝑠 in 𝑡 .

Definition 2.2. A set 𝑅 of rewrite rules over TF (X) defines a TRS
as a relation:

→𝑅=

{
(𝑡, 𝑡 ′) ∈ T 2

F

����� ∃ 𝑝 ∈ 𝑝𝑜𝑠 (𝑡), ∃ (𝑥,𝑦) ∈ 𝑅, ∃ 𝜙 ∈ T TF (X)
F

𝑡 |𝑝 = 𝜙 (𝑥) and 𝑡 ′ = 𝑡 [𝜙 (𝑦)]𝑝

}
A rewrite rule 𝑥 { 𝑦 relates two terms 𝑥 and 𝑦 from TF (X). A

set of rewrite rules 𝑅 characterizes a Term Rewrite System (TRS)

(see Def.2.2)→𝑅 which relates ground terms. These terms are s.t. we

can obtain the right-hand-side by applying a rewrite rule modulo

a substitution at a specific position in the left-hand-side i.e., we

have 𝑡 →𝑅 𝑡 [𝜙 (𝑦)]𝑝 with 𝑥 { 𝑦 in 𝑅 and 𝑡 |𝑝 = 𝜙 (𝑥). For instance
the integer expression simplification 3 + (5 + 0) →𝑅 3 + 5 can be

obtained using 𝑅 = {𝑥 + 0 { 𝑥} on X = {𝑥} by applying{ with

𝜙 (𝑥) = 5 at position 2 within 3 + (5 + 0).
Given a TRS →𝑅 , a term 𝑡 ∈ TF is irreducible iff there are no

𝑡 ′ ≠ 𝑡 s.t. 𝑡 →𝑅 𝑡 ′. We denote by →∗
𝑅
the reflexive and transitive

closure of →𝑅 . A TRS is convergent iff all consecutive applications

of→𝑅 from a term 𝑡 necessarily converge to the same irreducible

term, i.e., iff ∃! 𝑡̃ ∈ TF s.t. 𝑡 →∗
𝑅

𝑡̃ and 𝑡̃ is irreducible. For a

convergent TRS→𝑅 , given a term 𝑡 , the notation 𝑡 →!

𝑅
𝑡̃ signifies

that 𝑡̃ is the unique irreducible term s.t. 𝑡 →∗
𝑅
𝑡̃ .

3 INTERACTION LANGUAGE
3.1 Syntax
In the sequel, a finite set 𝐿 of lifelines and a finite set 𝑀 of mes-

sages are supposed given. The set of actions is then denoted by

A = {𝑙Δ𝑚 | 𝑙 ∈ 𝐿, Δ ∈ {!, ?}, 𝑚 ∈ 𝑀}. The notations ! and ?

resp. correspond to emissions and receptions. For any 𝑎 ∈ A of the

form 𝑙Δ𝑚 with Δ ∈ {!, ?}, 𝜃 (𝑎) refers to the lifeline 𝑙 on which it

occurs. Sequences of actions called traces characterize executions
of systems. The set of all possible traces is given by A∗.

𝑐𝑟 {𝑙2 }

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚1 𝑙2?𝑚1

𝑠𝑒𝑞

𝑙3!𝑚2
𝑙𝑜𝑜𝑝𝑆

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙3!𝑚3 𝑙2?𝑚3

Figure 3: Fig.1 as a term

As done in [36], we encode inter-

actions as ground terms TF of a lan-

guage with constants F0 being either
atomic communication actions (ele-

ments 𝑎 ∈ A) or the empty interac-

tion (denoted as ∅) which expresses

the empty behavior 𝜀. Symbols of

arities 1 and 2 are then used to en-

code high-level operators. Def.3.1 for-

malizes our encoding in the fashion

of [36]. The language includes strict

sequencing 𝑠𝑡𝑟𝑖𝑐𝑡 , non-deterministic

choice 𝑎𝑙𝑡 , strictly sequential repetition 𝑙𝑜𝑜𝑝𝑆 and a set of concur-

rent region operators 𝑐𝑟ℓ one per subset ℓ ⊆ 𝐿 of lifelines.

Definition 3.1. The set I of interactions is the set of ground terms

TF built over F s.t.:

F0 = A ∪ {∅} F1 = {𝑙𝑜𝑜𝑝𝑆 }
F2 = {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑎𝑙𝑡} ∪⋃

ℓ⊆𝐿{𝑐𝑟ℓ } ∀ 𝑘 > 2, F𝑘 = ∅

In our formalism 𝑠𝑡𝑟𝑖𝑐𝑡 is used to enforce a strict order between

any two behaviors. We use it to encode the asynchronous passing

or broadcast of a message. For instance, 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑙1!𝑚, 𝑙2?𝑚) encodes
the passing of𝑚 from 𝑙1 to 𝑙2. On Fig.3, which corresponds to an

encoding as a term of I of the SD from Fig.1 we may remark two

instances of this pattern, one for each of the arrows carrying𝑚1

and𝑚3.

𝑠𝑡𝑟𝑖𝑐𝑡 is related to 𝑙𝑜𝑜𝑝𝑆 , the latter being the Kleene closure of

the former. 𝑎𝑙𝑡 corresponds to an exclusive choice between two

alternative behaviors, each specified by an interaction.

The co-region operators encode both parallel composition and

weak sequencing which are usually resp. denoted as 𝑝𝑎𝑟 and 𝑠𝑒𝑞.

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Mahe, et al.

𝑐𝑟 {𝑙2 }

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚1 𝑙2?𝑚1

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚2 𝑙2?𝑚2

(a) with a co-region

𝑎𝑙𝑡

𝑠𝑒𝑞

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚1 𝑙2?𝑚1

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚2 𝑙2?𝑚2

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚1
𝑠𝑒𝑞

𝑠𝑡𝑟𝑖𝑐𝑡

𝑙1!𝑚2 𝑙2?𝑚2

𝑙2?𝑚1

(b) without a co-region

Figure 4: Illustrating the concision and scaleability of co-regions

Indeed, 𝑝𝑎𝑟 corresponds to the case where the two scheduled be-

haviors are concurrent on all lifelines i.e. 𝑝𝑎𝑟 = 𝑐𝑟𝐿 , while we have

𝑠𝑒𝑞 = 𝑐𝑟∅ . This saves the formalism one additional symbol and the

associated set of rules.

In addition, co-regions can be used to express more concisely

specific patterns of communications, e.g. for specifying that some

messages are emitted in a specific order but may be received in

any order. The example of Fig.4 illustrates this on a scenario where

two messages 𝑚1 and 𝑚2 are passed from 𝑙1 to 𝑙2, which occurs

sequentially on 𝑙1 and concurrently on 𝑙2. We can represent this

same behavior either with the interaction on Fig.4a, using a co-

region, or the one on Fig.4b, without. Here, avoiding the use of

𝑐𝑟 {𝑙2 } requires considering two alternative branches: one where

𝑚1 is received first and another where it is𝑚2. The more complex

the behavior underneath a 𝑐𝑟 is, the more alternative branches

and reshuffling of actions would be required to achieve the same

behavior without a co-region.

3.2 Structural operational semantics
We introduce the semantics of interactions in a structural opera-

tional style [42]. It borrows usual rules of process algebraic lan-

guages [12] and considers specific rules (akin to [36, 37]) related

to weak sequencing. We adapt the presentation introduced in [35]

(in which the semantics is proven equivalent to a denotational

formulation à la [22]) to handle concurrent regions
1
.

Definition 3.2 (Evasion). The predicate ↓ ⊆ I × P(𝐿) is s.t. for
any ℓ ⊆ 𝐿, any 𝑖1 and 𝑖2 from I, any 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡} ∪⋃

ℓ ′⊆𝐿{𝑐𝑟ℓ ′ }:

∅ ↓ℓ
𝜃 (𝑎) ∉ ℓ

𝑎 ↓ℓ
𝑖 𝑗 ↓ℓ

𝑗 ∈ {1, 2}
𝑎𝑙𝑡 (𝑖1, 𝑖2) ↓ℓ

𝑖1 ↓ℓ 𝑖2 ↓ℓ

𝑓 (𝑖1, 𝑖2) ↓ℓ 𝑙𝑜𝑜𝑝𝑆 (𝑖1) ↓ℓ

We say that an interaction 𝑖 ∈ I evades a set of lifelines ℓ ⊆ 𝐿 if

it expresses at least one trace that contains no actions occurring on

lifelines of ℓ . Def.3.2 introduces the evasion predicate accordingly.

For example, we always have 𝑙𝑜𝑜𝑝𝑆 (𝑖) ↓ℓ for any loop term 𝑙𝑜𝑜𝑝𝑆 (𝑖)
and any set of lifelines ℓ ⊆ 𝐿 because the loop expresses the empty

behavior 𝜀 which corresponds to repeating it 0 times.

The pruning relation from Def.3.3 characterizes, for any interac-

tion 𝑖 , the existence and uniqueness of another interaction 𝑖′ that

1
see [31] for a Coq proof of the equivalence of denotational and operational semantics

of interactions that include co-regions

exactly accepts all executions of 𝑖 that do not involve any lifelines

in ℓ ⊆ 𝐿.

Definition 3.3 (Pruning). The pruning relation ××→ ⊂ I×P(𝐿) × I
is s.t. for any ℓ ∈ 𝐿, any 𝑥 ∈ {∅} ∪ A, any 𝑖1 and 𝑖2 from I and any

𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑎𝑙𝑡} ∪⋃
ℓ ′⊆𝐿{𝑐𝑟ℓ ′ }:

𝑥 ↓ℓ

𝑥××
ℓ−→ 𝑥

𝑖1××
ℓ−→ 𝑖′

1

𝑙𝑜𝑜𝑝𝑆 (𝑖1)××
ℓ−→ 𝑙𝑜𝑜𝑝𝑆 (𝑖′1)

¬(𝑖1 ↓ℓ)

𝑙𝑜𝑜𝑝𝑆 (𝑖1)××
ℓ−→ ∅

𝑖1××
ℓ−→ 𝑖′

1
𝑖2××

ℓ−→ 𝑖′
2

𝑓 (𝑖1, 𝑖2)××
ℓ−→ 𝑓 (𝑖′

1
, 𝑖′
2
)

𝑖 𝑗××
ℓ−→ 𝑖′

𝑗
¬(𝑖𝑘 ↓ℓ)

{ 𝑗, 𝑘} = {1, 2}
𝑎𝑙𝑡 (𝑖1, 𝑖2)××

ℓ−→ 𝑖′
𝑗

The semantics from [36] relies on the definition of an expression

relation which relates interactions to (1) the actions which are

immediately expressible and (2) the interactions which remain to

be expressed afterwards. With Def.3.4, we can determine which

actions cannot be immediately expressed via the ↛ relation.

Definition 3.4 (Non-expression). The predicate ↛ ⊆ I × A is s.t.

for any 𝑎 ∈ A, any 𝑥 ∈ {∅} ∪A, any 𝑖1 and 𝑖2 from I and any ℓ ⊆ 𝐿:

𝑥 ≠ 𝑎

𝑥 ̸𝑎−→

𝑖1 ̸𝑎−→
𝑙𝑜𝑜𝑝𝑆 (𝑖1) ̸𝑎−→

𝑖1 ̸𝑎−→ (¬(𝑖1 ↓𝐿)) ∨ (𝑖2 ̸𝑎−→)

𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2) ̸𝑎−→

𝑖1 ̸𝑎−→ 𝑖2 ̸𝑎−→
𝑎𝑙𝑡 (𝑖1, 𝑖2) ̸𝑎−→

𝑖1 ̸𝑎−→ (¬(𝑖1 ↓{𝜃 (𝑎) }\ℓ)) ∨ (𝑖2 ̸𝑎−→)

𝑐𝑟ℓ (𝑖1, 𝑖2) ̸𝑎−→
The relation→ given in Def.3.5 uses the predicates from Def.3.2,

Def.3.3 and Def.3.4 to characterize transformations of the form

𝑖
𝑎−→ 𝑖′ where 𝑖 ∈ I is an interaction, 𝑎 ∈ A is an action that is

immediately executable from 𝑖 and 𝑖′ ∈ I is a derivative interaction
characterizing continuations of behaviors specified by 𝑖 that start

with 𝑎.

Definition 3.5 (Expression). The predicate→⊆ I×A×I is defined
by the rules from Fig.5 with 𝑎 ∈ A, (𝑖1, 𝑖2, 𝑖′

1
, 𝑖′
2
) ∈ I4, 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡} ∪⋃

ℓ ′⊆𝐿{𝑐𝑟ℓ ′ } and { 𝑗, 𝑘} = {1, 2}.
The relation from Def.3.5 resembles those found in process alge-

bra. The rules “act”, “loop” and “f-left” are self-explanatory.
The “strict-right” rule enables the execution of actions 𝑎 on the

right of a 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2) under the condition that 𝑖1 terminates (i.e.,

any action from 𝑖2 can only be executed after 𝑖1 terminates). This

termination is possible iff 𝑖1 can express the empty behavior 𝜀 which

is characterized by 𝑖1 ↓𝐿 because 𝜀 is the only behavior which

involves no action occurring on any one of the lifelines of 𝐿. If 𝑎 is

executed, we then consider that 𝑖1 has terminated (otherwise we

might subsequently observe actions 𝑎1 from 𝑖1 which contradicts

the order imposed by 𝑠𝑡𝑟𝑖𝑐𝑡) and there only remains to execute 𝑖′
2

which is s.t. 𝑖2
𝑎−→ 𝑖′

2
.

Similarly, the “cr-right” rule dictates the execution of actions

on the right of a 𝑐𝑟ℓ (𝑖1, 𝑖2) (with ℓ ⊆ 𝐿). It only does so under the

condition that the partial orders imposed by 𝑐𝑟ℓ between the actions

of 𝑖1 and those of 𝑖2 are respected. Let us first consider the two edge

cases ℓ = 𝐿 and ℓ = ∅.

Finite Automata synthesis from interactions FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

act

𝑎
𝑎−→ ∅

𝑖1
𝑎−→ 𝑖′

1

loop

𝑙𝑜𝑜𝑝𝑆 (𝑖1)
𝑎−→ 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖′

1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1))

𝑖1
𝑎−→ 𝑖′

1

f-left

𝑓 (𝑖1, 𝑖2)
𝑎−→ 𝑓 (𝑖′

1
, 𝑖2)

𝑖2
𝑎−→ 𝑖′

2
𝑖1 ↓𝐿

strict-right

𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2)
𝑎−→ 𝑖′

2

𝑖2
𝑎−→ 𝑖′

2
𝑖1××

{𝜃 (𝑎) }\ℓ
−−−−−−−−→ 𝑖′

1

cr-right

𝑐𝑟ℓ (𝑖1, 𝑖2)
𝑎−→ 𝑐𝑟ℓ (𝑖′

1
, 𝑖′
2
)

𝑖 𝑗
𝑎−→ 𝑖′

𝑗
𝑖𝑘 ̸𝑎−→

alt-choice

𝑎𝑙𝑡 (𝑖1, 𝑖2)
𝑎−→ 𝑖′

𝑗

𝑖1
𝑎−→ 𝑖′

1
𝑖2

𝑎−→ 𝑖′
2

alt-delay

𝑎𝑙𝑡 (𝑖1, 𝑖2)
𝑎−→ 𝑎𝑙𝑡 (𝑖′

1
, 𝑖′
2
)

Figure 5: Rules for the expression relation

If ℓ = 𝐿, we are in the presence of the interleaving operator

𝑝𝑎𝑟 = 𝑐𝑟𝐿 . In that case, it is always possible to execute 𝑎 from 𝑖2
because any action 𝑎1 from 𝑖1 can occur either before or after 𝑎. This

is reflected by the fact that {𝜃 (𝑎)} \ 𝐿 = ∅ and that 𝑖1××
∅−→ 𝑖1 always

holds. Hence, we have 𝑖′
1
= 𝑖1 and the predicate 𝑖1××

∅−→ 𝑖1 holds,

which makes rule “cr-right” coincide with the classical right-rule

for interleaving [12].

If ℓ = ∅, we are in the presence of the weak sequencing operator

𝑠𝑒𝑞 = 𝑐𝑟∅ . In that case, let us consider an action 𝑎1 from 𝑖1 occurring

on the lifeline 𝜃 (𝑎) on which 𝑎 occurs. If 𝑎1 must occur whenever

𝑖1 is executed, then it must logically occur before 𝑎 (as imposed by

𝑠𝑒𝑞). Hence, if 𝑎 occurs first, this means 𝑎1 must not occur at all. It

is possible for 𝑖1 not to express 𝑎1 (and any other action occurring

on 𝜃 (𝑎)) iff 𝑖1 ↓{𝜃 (𝑎) } . In that case, in order to compute a derivative

to the execution of 𝑎 from 𝑖2 in 𝑠𝑒𝑞(𝑖1, 𝑖2), we need to clean up 𝑖1
from any action occurring on 𝜃 (𝑎). This is the role of the pruning
predicate ××→, which intervenes in “cr-right” via the condition of

the existence of a 𝑖′
1
s.t. 𝑖1××

{𝜃 (𝑎) }
−−−−−−→ 𝑖′

1
. In the pruned interaction 𝑖′

1
,

we only preserve the behaviors of 𝑖1 that do not contradict the fact

that 𝑎 from 𝑖2 occurs before any action from 𝑖1. For this reason,

and because ℓ = ∅, the “cr-right” rule coincides with the classical

right-rule for weak sequencing [36].

𝑙1!𝑚2 𝑙2?𝑚2

Figure 6: Action expression with co-region and pruning

For all the other cases i.e., whenever ℓ ⊊ 𝐿 and ℓ ≠ ∅, the
condition 𝑖1××

{𝜃 (𝑎) }\ℓ
−−−−−−−−→ 𝑖′

1
of rule “cr-right” makes 𝑐𝑟ℓ behave like

interleaving for actions occurring on lifelines of ℓ and like weak

sequencing for those occurring on 𝐿 \ ℓ . Fig.6 illustrates the use of
co-region and of pruning on an example. Here, 𝑐𝑟 {𝑙1 } enables the
emission of𝑚1 and𝑚2 to occur in any order, but requires that𝑚1

is received before𝑚2 if it is ever received. When we execute 𝑙1!𝑚2,

because it can occur after 𝑙1!𝑚1 due to the concurrent region on 𝑙1,

the pruning predicate ××𝑙1−→ does not force the choice of a branch of

the alternative. However, when we execute 𝑙2?𝑚2, pruning forces

the right branch of the alternative (containing the empty interaction

∅) to be chosen. Otherwise, we would risk having 𝑙2?𝑚1 occur

afterwards, which is forbidden by the weak sequencing.

Let us remark that the 𝑝𝑎𝑟 = 𝑐𝑟𝐿 operator is the most permissive

scheduling operator (among 𝑠𝑡𝑟𝑖𝑐𝑡 and all the 𝑐𝑟ℓ with ℓ ⊆ 𝐿 which

includes 𝑠𝑒𝑞 = 𝑐𝑟∅). Indeed, all the left rules have the same form

and thus allow the same derivations while the right rules contain

restrictive conditions for 𝑠𝑡𝑟𝑖𝑐𝑡 and all 𝑐𝑟ℓ (resp. 𝑖1 ↓𝐿 for 𝑠𝑡𝑟𝑖𝑐𝑡

and 𝑖1××
{𝜃 (𝑎) }\ℓ
−−−−−−−−→ 𝑖′

1
for 𝑐𝑟ℓ with ℓ ⊊ 𝐿), but not for 𝑝𝑎𝑟 = 𝑐𝑟𝐿

because {𝜃 (𝑎)} \ 𝐿 = ∅ and we always have that 𝑖1××
∅−→ 𝑖1 holds. As

a result, any 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡} ∪ ⋃
ℓ⊆𝐿{𝑐𝑟ℓ } allows fewer derivations

than 𝑝𝑎𝑟 = 𝑐𝑟𝐿 by construction.

𝑙1!𝑚

𝑙1!𝑚

(a) without delayed choice

𝑙1!𝑚

(b) with delayed choice

Figure 7: Delayed choice

There are several trace-equivalent (as opposed to bisimilar) man-

ners to define an operational rule for the non-deterministic choice

𝑎𝑙𝑡 operator. Fig.7a and Fig.7b present two such manners. In [33, 34]

they use the manner described on Fig.7a, in which the choice of

alternative branches is made as soon as possible. In this paper, we

rather favor the one described on Fig.7b that is called delayed choice

in [37] as its use will further reduce the number of states of the

generated NFA.

Definition 3.6 (Semantics). 𝜎 : I→ P(A∗) is the least function
(w.r.t. pointwise set-inclusion) satisfying the following rules:

𝑖 ↓𝐿
𝜀 ∈ 𝜎 (𝑖)

𝑡 ∈ 𝜎 (𝑖′) 𝑖
𝑎−→ 𝑖′

𝑎.𝑡 ∈ 𝜎 (𝑖)
The predicates from Def.3.2 and Def.3.5 enable us to define an

operational semantics of interactions in Def.3.6. The set 𝜎 (𝑖) of
traces of an interaction 𝑖 contains all (possibly empty) sequences

𝑎1𝑎2 . . . 𝑎𝑘 of actions such that there exist some execution steps

𝑖
𝑎1−−→ 𝑖1, 𝑖1

𝑎2−−→ 𝑖2, . . . 𝑖𝑘−1
𝑎𝑘−−→ 𝑖𝑘 with 𝑖𝑘 ↓𝐿 . In particular, if the

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Mahe, et al.

sequence is empty, then 𝑖 ↓𝐿 and 𝜀 ∈ 𝜎 (𝑖). We denote by

∗→ the

reflexive and transitive closure of the expression relation →. By

extension, for any two interactions 𝑖 and 𝑖′ related by

∗→, we use

the notation 𝑖
𝑡−→ 𝑖′ to signify that the successive execution of the

actions of a trace 𝑡 ∈ A∗ from 𝑖 leads to 𝑖′. On the other hand, if,

given 𝑖 ∈ I and 𝑡 ∈ A∗ there are no 𝑖′ ∈ I s.t. 𝑖 𝑡−→ 𝑖′, then we may

write 𝑖 ̸ 𝑡−→.

4 DERIVING NFA FROM INTERACTIONS
4.1 Derivative interactions
The gist of our method is to execute the input interaction 𝑖 using the

expression relation→ in order to compute successive derivatives.

The set of equivalence classes (up to a rewrite relation) of these

derivatives then constitutes the set of states of the generated NFA.

For any interaction 𝑖 ∈ I, we define its set of reachable derivatives
reach(𝑖) in Def.4.1.

Definition 4.1 (Reachable derivatives). reach : I→ P(I) is s.t.:

∀ 𝑖 ∈ I, reach(𝑖) = {𝑖′ | 𝑖 ∗→ 𝑖′}

A first step towards NFA generation is to ascertain that the set

reach(𝑖) is always finite (the set of derivatives of regular expres-
sions has been proven finite in [8]). To do so we rely on a measure | |
which corresponds to counting (in the syntactic term) the number

of atomic actions within an interaction (see Def.4.2).

Definition 4.2 (A measure for interactions). We define | | : I→ N
s.t., for any 𝑎 in A, any 𝑓 in F2 and any 𝑖1 and 𝑖2 in I:

|∅| = 0 |𝑎 | = 1

|𝑓 (𝑖1, 𝑖2) | = |𝑖1 | + |𝑖2 | |𝑙𝑜𝑜𝑝𝑆 (𝑖1) | = |𝑖1 |

We prove in Lem.4.3 that the cardinality of reach(𝑖) is bounded.

Lemma 4.3. For any 𝑖 ∈ I, we have |reach(𝑖) | ≤ 2
|𝑖 |

Proof. Let us reason by structural induction over 𝑖 .

Basic cases (𝑖 ∈ {∅} ∪ A): reach(∅) = {∅} (because no rule of
→ can be applied to ∅) hence |reach(∅)| = 1. reach(𝑎) = {𝑎,∅}
(by applying rule “act”, ∅ is reachable) hence |reach(𝑎) | = 2. In

both cases, |reach(𝑖) | ≤ 2
|𝑖 |

(since |∅| = 0 and |𝑎 | = 1).

Inductive cases (𝑖 of the form 𝑓 (𝑖1, 𝑖2) with 𝑓 ∈ {𝑠𝑡𝑟𝑖𝑐𝑡, 𝑎𝑙𝑡, 𝑐𝑟ℓ }
or 𝑙𝑜𝑜𝑝𝑆 (𝑖1)). In the following, we consider two interactions 𝑖1 and

𝑖2 and use the notations: 𝑟1 = reach(𝑖1) and 𝑟2 = reach(𝑖2).
Considering 𝑝𝑎𝑟 = 𝑐𝑟𝐿 , for 𝑖 = 𝑝𝑎𝑟 (𝑖1, 𝑖2), we have reach(𝑖) =

{𝑝𝑎𝑟 (𝑗1, 𝑗2) | 𝑗1 ∈ 𝑟1, 𝑗2 ∈ 𝑟2}. Indeed, from terms of this form, we

can apply either the rule “f-left” or the rule “cr-right”. The former

replaces the sub-term 𝑖1 by a certain 𝑖′
1
leading to a term of the

form 𝑝𝑎𝑟 (𝑖′
1
, 𝑖2). Whichever is the action 𝑎 that is executed we

have {𝜃 (𝑎)} \ 𝐿 = ∅, and thus 𝑖1××
∅−→ 𝑖1. As a result, applying “cr-

right” yields a term of the form 𝑝𝑎𝑟 (𝑖1, 𝑖′
2
), with 𝑖1 being preserved

and 𝑖′
2
reached from 𝑖2. The same two rules are again the only

ones applicable from these terms so that by applying them several

times, successive derivations result in all the terms of the form

𝑝𝑎𝑟 (𝑗1, 𝑗2) with 𝑗1 (resp 𝑗2) reachable from 𝑖1 (resp. 𝑖2), i.e., 𝑗1 ∈ 𝑟1
(resp. 𝑗2 ∈ 𝑟2). Then we have |reach(𝑖) | = |𝑟1 | ∗ |𝑟2 |. By induction

hypothesis, |𝑟1 | ∗ |𝑟2 | ≤ 2
|𝑖1 | ∗ 2 |𝑖2 | , hence |reach(𝑖) | ≤ 2

|𝑖 |
since

|𝑖 | = |𝑖1 | + |𝑖2 |.

For 𝑖 = 𝑓 (𝑖1, 𝑖2)with 𝑓 ∈ ⋃
ℓ⊊𝐿{𝑠𝑡𝑟𝑖𝑐𝑡, 𝑐𝑟ℓ }, we have |reach(𝑖) | ≤

|reach(𝑝𝑎𝑟 (𝑖1, 𝑖2)) |. Indeed, these operators enable fewer interleav-
ings than 𝑝𝑎𝑟 . As, by the previous point, |reach(𝑝𝑎𝑟 (𝑖1, 𝑖2)) | ≤ 2

|𝑖 |
,

we also have |reach(𝑓 (𝑖1, 𝑖2)) | ≤ 2
|𝑖 |
.

For 𝑖 = 𝑎𝑙𝑡 (𝑖1, 𝑖2), let us use, for 𝑥 ∈ {1, 2}, the notations:

𝑟𝑐𝑥 = {𝑖′𝑥 ∈ 𝑟𝑥 | ∀ 𝑡 ∈ A∗ s.t. (𝑖𝑥
𝑡−→ 𝑖′𝑥), we have (𝑖3−𝑥 ̸ 𝑡−→)}

𝑟𝑑𝑥 = {𝑖′𝑥 ∈ 𝑟𝑥 | ∃ 𝑡 ∈ A∗ s.t. (𝑖𝑥
𝑡−→ 𝑖′𝑥) ∧ (∃ 𝑖′

3−𝑥 s.t. 𝑖3−𝑥
𝑡−→ 𝑖′

3−𝑥)}

This implies that 𝑟𝑥 = 𝑟𝑐𝑥 ⊎ 𝑟𝑑𝑥 (i.e., also 𝑟𝑐𝑥 ∩ 𝑟𝑑𝑥 = ∅) and:

reach(𝑖) = 𝑟𝑐
1
∪ 𝑟𝑐

2
∪ {𝑎𝑙𝑡 (𝑖′

1
, 𝑖′
2
) | (𝑖′

1
∈ 𝑟𝑑

1
) ∧ (𝑖′

2
∈ 𝑟𝑑

2
)}

As for any interaction 𝑖 , we have 𝑖
𝜀−→ 𝑖 , we always have 𝑖1 ∈ 𝑟𝑑

1
and

𝑖2 ∈ 𝑟𝑑
2
and thus |𝑟𝑑

1
| > 0 and |𝑟𝑑

2
| > 0. Hence:

|reach(𝑖) | ≤ |𝑟𝑐
1
| + |𝑟𝑐

2
| + |𝑟𝑑

1
| ∗ |𝑟𝑑

2
|

≤ |𝑟𝑐
1
| ∗ |𝑟𝑑

2
| + |𝑟𝑐

2
| ∗ |𝑟𝑑

1
| + |𝑟𝑑

1
| ∗ |𝑟𝑑

2
| (multiply by > 0)

≤ (|𝑟𝑐
1
| + |𝑟𝑑

1
|) ∗ (|𝑟𝑐

2
| + |𝑟𝑑

2
|)

≤ |𝑟1 | ∗ |𝑟2 | (𝑟𝑥 = 𝑟𝑐𝑥 ⊎ 𝑟𝑑𝑥)

≤ 2
|𝑖1 | ∗ 2 |𝑖2 | (by induction)

≤ 2
|𝑖1 |+|𝑖2 | = 2

|𝑖 |

For 𝑖 = 𝑙𝑜𝑜𝑝𝑆 (𝑖1), we have reach(𝑖) ⊆ {𝑖} ∪ {𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖′
1
, 𝑖) | 𝑖′

1
∈

𝑟1 \ {𝑖1}}. Indeed, only the rule “loop” is applicable, so that the

first derivation (if it exists) is of the form 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖′
1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1)). From

there, (1) if we apply “f-left”, we obtain a term 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖′′
1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1))

with 𝑖′′
1
∈ reach(𝑖′

1
). With further applications of the rule “f-left”,

we obtain all the terms of the form 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖†
1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1)) with 𝑖†

1
∈ 𝑟1.

If, on the other hand (2), we apply “strict-right”, it means that 𝑖′
1
↓𝐿

and that we have 𝑙𝑜𝑜𝑝𝑆 (𝑖1)
𝑎−→ 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖∗

1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1)) with 𝑖1

𝑎−→ 𝑖∗
1
so

that we obtain 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖′
1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1))

𝑎−→ 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖∗
1
, 𝑙𝑜𝑜𝑝𝑆 (𝑖1)). As 𝑖∗1

belongs to 𝑟1, by applying the “strict-right” rule, we find yet again

an interaction of the form 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖‡
1
, 𝑖) with 𝑖‡

1
∈ 𝑟1. Thus, we have:

|reach(𝑖) | ≤ 1 + |𝑟1 \ {𝑖1}| = |𝑟1 |
≤ 2

|𝑖1 | = 2
|𝑖 |

□

This enables the construction of a NFA in which each state

corresponds to an interaction. We explain in the following how we

reduce the number of states on-the-fly by simplifying interactions

as they are discovered (using term rewriting). Memorization of

already encountered simplified terms allows us to build the set of

states of the NFA, while identifying transformations 𝑖
𝑎−→ 𝑖′ allows

building its set of transitions. A state corresponding to a term 𝑖 is

accepting iff 𝑖 ↓𝐿 .

4.2 State reduction and synthesis of the NFA
In most cases, the iterative application of the expression relation

→ creates many useless occurrences of ∅ in the derived interac-

tion terms. These sub-terms can be removed without the set of

traces being modified. For example, because of the rule ‘f-left’, the
derivations from 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖,∅) are exactly those from 𝑖 . Hence we say

that 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖,∅) and 𝑖 are semantically equivalent. The construc-

tion of the NFA associated to an interaction can take advantage of

considering such semantically equivalent terms in order to reduce

the number of states given that each state corresponds to a term.

Finite Automata synthesis from interactions FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

In order to set up these simplification mechanisms, we provide in

Def.4.4 a set 𝑅 of rewrite rules aimed at eliminating the useless

occurrences of ∅.

Definition 4.4. Given a variable 𝑥 , we define the set 𝑅 of rewrite

rules over TF ({𝑥}) as follows:

𝑅 =

©­­­­­«
∪𝑓 ∈⋃ℓ⊆𝐿 {𝑠𝑡𝑟𝑖𝑐𝑡,𝑐𝑟ℓ } {𝑓 (∅, 𝑥) { 𝑥, 𝑓 (𝑥,∅) { 𝑥}

∪


𝑎𝑙𝑡 (∅, 𝑙𝑜𝑜𝑝𝑆 (𝑥)) { 𝑙𝑜𝑜𝑝𝑆 (𝑥),
𝑎𝑙𝑡 (𝑙𝑜𝑜𝑝𝑆 (𝑥),∅) { 𝑙𝑜𝑜𝑝𝑆 (𝑥),
𝑎𝑙𝑡 (∅,∅) { ∅,
𝑙𝑜𝑜𝑝𝑆 (∅) { ∅


ª®®®®®¬

These rewrite rules define a TRS→𝑅 which is convergent and

preserves the semantics 𝜎 (as per Lem.4.5).

Lemma 4.5. The TRS characterized by 𝑅 is convergent and seman-
tically sound i.e., for any 𝑖 ∈ I, ∃! 𝑖̃ ∈ I s.t. 𝑖 →!

𝑅
𝑖̃ and we have

𝜎 (̃𝑖) = 𝜎 (𝑖).

Proof. →𝑅 is both terminating and confluent (see the auto-

mated proof in [32] using resp. the TTT2 [23] and CSI [47] tools)

and hence convergent. To prove the semantic equivalence it suf-

fices to prove it for the interactions related by all{∈ 𝑅, which is

trivial. □

Because Lem.4.5 states that the TRS is convergent, for any 𝑖 ∈ I,
there exists a unique 𝑖̃ such that 𝑖 →!

𝑅
𝑖̃ . Given the absence of

ambiguities on the TRS, let us use the notation 𝑖̃ to designate the

simplified form of any interaction 𝑖 ∈ I.
In Def.4.6, we define NFA synthesis as a function nfa which

translates interactions from I to NFA.

Definition 4.6. For any 𝑖0 ∈ I, nfa(𝑖0) = (A, 𝑄, 𝑞0, 𝐹 ,⇝) is the
NFA whose elements are defined by:

𝑄 = {̃𝑖 | 𝑖 ∈ reach(𝑖0)} 𝑞0 = 𝑖0

⇝ = {(̃𝑖, 𝑎, 𝑖′) | (𝑖, 𝑖′) ∈ reach(𝑖0)2, 𝑎 ∈ A, 𝑖 𝑎−→ 𝑖′}
𝐹 = {̃𝑖 | 𝑖̃ ∈ 𝑄, 𝑖̃ ↓𝐿}

In a few words, states of nfa(𝑖0) correspond to unique represen-

tatives of equivalence classes on interactions defined by: 𝑖 ≡ 𝑖′ iff
𝑖̃ = 𝑖′. In particular, the transitions between two simplified inter-

actions 𝑗 and 𝑗 ′ include all the transitions between interactions 𝑖

and 𝑖′ verifying 𝑖̃ = 𝑗 and 𝑖′ = 𝑗 ′. Those results can be generalized

for any convergent and semantically sound TRS for interactions.

In [36] the converge of such a TRS (taking advantage of additional

properties such as idempotence of loops) is proven modulo AC
2
.

The NFA nfa(𝑖0) in Def.4.6 is well defined. Indeed, the set 𝑄

is finite because |𝑄 | ≤ |reach(𝑖) | (there is at most one simpli-

fied interaction per interactions of reach(𝑖)) and |reach(𝑖) | ≤ 2
|𝑖 |

according to Lem.4.3). The subset 𝐹 of accepting states and the

transition relation⇝ are defined thanks to the predicates ↓𝐿 and

→ from Def.3.2 and Def.3.5, which ensures that the trace language

of the synthesized NFA is the same as that of the initial interaction

(i.e., L(nfa(𝑖)) = 𝜎 (𝑖), which is proven in Th.4.8).

Lemma 4.7. For any 𝑖 ∈ I, we have (𝑖 ↓𝐿) ⇔ (̃𝑖 ↓𝐿).
2
modulo Associativity and Commutativity of binary operators c.f. rewriting modulo

theories [11]

Proof. Because 𝜎 (𝑖) = 𝜎 (̃𝑖) we have (𝜀 ∈ 𝜎 (𝑖)) ⇔ (𝜀 ∈ 𝜎 (̃𝑖))
and thus (𝑖 ↓𝐿) ⇔ (̃𝑖 ↓𝐿). □

Theorem 4.8. For any 𝑖 ∈ I, we have L(nfa(𝑖)) = 𝜎 (𝑖)

Proof. Let us consider a trace 𝑡 = 𝑎1 . · · · .𝑎𝑛 ∈ A∗.
If 𝑡 ∈ 𝜎 (𝑖) then (Def.3.6) there exist 𝑖0, · · · , 𝑖𝑛 in reach(𝑖) s.t. 𝑖0 =

𝑖 and ∀ 𝑘 ∈ [0, 𝑛 − 1], 𝑖𝑘
𝑎𝑘+1−−−−→ 𝑖𝑘+1 and 𝑖𝑛 ↓𝐿 . Thus, as per Def.4.6,

we have 𝑞0 = 𝑖0
𝑎1
⇝ 𝑖1

𝑎2
⇝ · · · 𝑎𝑛

⇝ 𝑖𝑛 . Because 𝑖𝑛 ↓𝐿 , we have

𝑖𝑛 ↓𝐿 (Lem.4.7) which implies 𝑖𝑛 ∈ 𝐹 and thus 𝑡 = 𝑎1 . · · · .𝑎𝑛 ∈
L(nfa(𝑖)).

If 𝑡 ∈ L(nfa(𝑖)), there exists states 𝑞1 through 𝑞𝑛 in𝑄 s.t. 𝑞0
𝑎1
⇝

𝑞1
𝑎2
⇝ · · · 𝑎𝑛

⇝ 𝑞𝑛 and 𝑞𝑛 ∈ 𝐹 . Thus, as per Def.4.6, we have 𝑛

interactions 𝑖′
0
to 𝑖′𝑛 s.t. ∀ 𝑘 ∈ [0, 𝑛], 𝑞𝑘 = 𝑖′

𝑘
and ∀ 𝑘 ∈ [0, 𝑛 − 1],

𝑖′
𝑘

𝑎𝑘+1−−−−→ 𝑖′
𝑘+1. Because 𝑞𝑛 = 𝑖′𝑛 ∈ 𝐹 , we have 𝑖′𝑛 ↓𝐿 and thus 𝑖′𝑛 ↓𝐿

(Lem.4.7). Hence, as per Def.3.6, we have 𝑡 ∈ 𝜎 (𝑖′
0
) = 𝜎 (𝑖′

0
). But

because 𝑖′
0
= 𝑞0 = 𝑖̃ , this implies 𝑡 ∈ 𝜎 (̃𝑖) = 𝜎 (𝑖). □

𝑙3!𝑚2

𝑙1!𝑚1 𝑙2?𝑚1

𝑙1!𝑚1 𝑙2?𝑚1

𝑙3!𝑚2

𝑙3!𝑚3 𝑙2?𝑚3 𝑙3!𝑚3 𝑙2?𝑚3 𝑙3!𝑚3 𝑙2?𝑚3

𝑙3!𝑚2

𝑙1!𝑚1 𝑙2?𝑚1

Figure 8: NFA obtained using our incremental approach

Fig.8 represents a NFA obtained using our approach on our ini-

tial interaction example (whose SD and term representations are

resp. given in Fig.1 and Fig.3). Each of the 9 states is represented

by a rectangle that contains the SD representation of the simplified

interaction 𝑖̃ associated to it. The initial state is the target of the

transition exiting •, and rectangles with a double border correspond
to accepting states. Transitions are labeled by the corresponding

atomic actions in A. This example illustrates that our incremen-

tal approach might facilitate explainability and traceability in e.g.,

model-checking or testing, as each state can be uniquely traced

back to an instant in the unfolding of a global scenario represented

by a SD (the representative interaction of the state).

4.3 Remarks on generating small NFA
A FA generated from an interaction describing a real-world system

may be extremely large (in number of states) which poses problems

related to the time for building the FA or the space for storing it.

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Mahe, et al.

State reduction and state minimization aim at obtaining an

equivalent FA with resp. fewer states and as few states as pos-

sible. It is known that a minimal DFA may have an exponentially

larger number of states than that of an equivalent minimal NFA

[25]. For instance, given the alphabet {𝑎, 𝑏}, the regular expression
(𝑎 |𝑏)∗𝑎(𝑎 |𝑏)𝑛 can be encoded as a NFA with 𝑛 + 2 states while an

equivalent minimal DFA has 2
𝑛+1

states. Because interactions can

encode such expressions, choosing NFA as a target formalism is

preferable if we want to optimize towards state reduction. Addition-

ally, operators such as weak sequencing, parallelism and repetition

introduce non-deterministic and cyclic behaviors into interactions.

On the other hand, the problem of state minimization for NFA

is established as PSPACE-complete [20]. Various algorithms exist,

such as Kameda-Weiner [21] or [40, 43]. However, their scalability

remains an issue, as evidenced by several works [9, 14, 18, 19] seek-

ing approximal solutions (i.e., reduced but not minimal NFA) within

a more reasonable time. Still, experimental validations are limited

to small NFAs, typically with at most 15 states [14]. Although more

efficient algorithms exist for specific NFA subclasses (e.g., DFA[16]

or acyclic automata[3, 10]), they cannot be directly applied to mini-

mize FAs obtained from interactions where the minimal FA can be

cyclic and non-deterministic.

It is essential to acknowledge the inherent limitations in gener-

ating compact NFAs from interactions. For basic interactions, using

weak and strict sequencing to compose atomic actions, we may

have, in the worst case, up to 𝑂 (𝑛𝑘) states, where 𝑛 is the number

of actions, and 𝑘 the number of lifelines [2]. The computational cost

for NFA generation from regular expressions with interleaving over

finite words is Ω(2𝑛), where 𝑛 is the number of letters [13, 39]. This

result directly applies to interactions as it recalls Lem.4.3: an NFA

synthesized from an interaction 𝑖 could require 2
|𝑖 |

states, where

|𝑖 | is the number of atomic actions it contains.

This discussion underlines the importance of considering state

reduction during the generation of the NFA itself and not a posteri-

ori. Our method addresses this concern via its on-the-fly merging

of states using term rewriting.

5 EXPERIMENTS
We have implemented our NFA generation method in the tool

HIBOU [27]. Manipulation of FA is handled by the AUTOUR [29]

toolbox. For the sake a simplicity, we do not consider co-regions

𝑐𝑟ℓ with ℓ ∉ {∅, 𝐿} i.e., we only consider the classical 𝑠𝑒𝑞 and 𝑝𝑎𝑟

variants. We performed two sets of experiments on an Intel(R)

Core(TM)i5-6360U CPU (2.00GHz) with 8GB RAM with HIBOU

version 0.8.5. The main set of experiments we present consists in

comparing our incremental method to a compositional approach.

The second applies our method to more realistic use cases from the

literature. The details of the experiments and the artifacts required

to reproduce them are available in [30] and [28].

For the purpose of comparison, we have also implemented a

baseline compositional approach which corresponds to adapting

[46] to our language. It consists of identifying basic interactions,

translating them to NFA (using our method as a fallback) and then

composing them recursively by mapping higher-level interaction

operators to classical NFA operators. Because of the inherent limi-

tations of compositional [2, 46] methods (there is no NFA operator

for weak sequencing, see discussion in Sec.1), we limit ourselves,

for the comparison, to interactions in which 𝑠𝑒𝑞 operators cannot

nest other complex operators (beside other 𝑠𝑒𝑞 and 𝑠𝑡𝑟𝑖𝑐𝑡).

Figure 9: Common grid

To set a scale and thus im-

prove the understanding of

the size of generated NFA

against that of the correspond-

ing input interactions, we use

the common grid represented

on Fig.9. The 𝑥 axis corre-

sponds to |𝑖 | (the number of

actions in an input interac-

tion, see Def.4.2), and the 𝑦

axis corresponds to the num-

ber of states in a generated

NFA. Note that the 𝑦 axis is

in logarithmic scale, allowing

for the visualization of a wide

range of values, although the

distinction between values is

less pronounced.

The straight black line on the left corresponds to 𝑥 ↦→ 2
𝑥
, giving the

upper bound 2
|𝑖 |

on the cardinal of the set reach(𝑖) (Lem.4.3). The

432 points on Fig.9 each corresponds to an interaction involving 𝑛

distinct actions 𝑎1, . . . , 𝑎𝑘 , . . . , 𝑎𝑛 of the form:

𝑝𝑎𝑟 (𝑎1, · · · , 𝑝𝑎𝑟 (𝑎𝑘 , 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎𝑘+1, · · · , 𝑠𝑡𝑟𝑖𝑐𝑡 (𝑎𝑛−1, 𝑎𝑛) · · ·)) · · ·).
If 𝑘 = 0, the interaction is a strict sequencing of the 𝑛 actions, which

yields a minimal NFA of 𝑛 + 1 states. If 𝑘 = 𝑛, the interaction is a

parallel composition of the 𝑛 actions, which yields a minimal NFA

of size 2
𝑛
. The dataset is built by varying 𝑛 from 1 to 48 and 𝑘 from

0 to 8 (hence, 432 interactions with some overlap).

The position of each of the 432 points on Fig.9 corresponds to |𝑖 |
on the 𝑥 axis and the number of states of the minimal NFA asso-

ciated to the trace language of 𝑖 on the 𝑦 axis. With these simple

interactions, both approaches to generating NFA (incremental and

compositional) trivially return the minimal NFA. The data points

form a series of curves. We approximate these curves using func-

tions 𝑥 ↦→ 2
𝑘 ∗ (𝑥 − 𝑘) + 1 (e.g., coincide with 𝑥 ↦→ 𝑥 + 1 for 𝑘 = 0).

These curves serve as a common grid to appreciate and compare

both approaches w.r.t. each other and w.r.t. the size of minimal

NFAs obtained from interactions with the same number of actions

(at |𝑖 | fixed).
Using our grid, we conduct a comparative analysis of both ap-

proaches across 3 datasets illustrated on Fig.10. For each dataset,

the size of generated NFA using our method is depicted on the left

diagram, while the results involving the compositional approach

are shown on the right. As both diagrams have the same referential

grid, it is easy to compare the approaches using the 𝑦 position of

the data points (the NFAs of higher points have exponentially more

states than lower ones given the logarithmic scale on 𝑦). Because

the 𝑝𝑎𝑟 operator has an important effect on the minimal number

of states, we have colored interactions without 𝑝𝑎𝑟 operators using

a lighter color (pink instead of purple on Fig.10a, orange instead of

red on Fig.10b, and a lighter shade of green on Fig.10c).

Fig.10a displays a ’loop-alt’ dataset, containing interactions of the

form: 𝑝𝑎𝑟 (𝑙𝑜𝑜𝑝𝑆 (𝑎𝑙𝑡 (𝑎1, · · · , 𝑎𝑘)), 𝑙𝑜𝑜𝑝𝑆 (𝑎𝑙𝑡 (𝑎𝑘+1, . . . , 𝑎𝑛))), with

Finite Automata synthesis from interactions FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

(a) ‘loop-alt’ dataset

(b) ‘locks’ dataset

(c) ‘random’ dataset

Figure 10: Comparing our approach (left) and composition (right)

variations in 𝑛 and 𝑘 up to 48 and 24 respectively. Using our ap-

proach, whichever are the numbers 𝑛 and 𝑘 , we always have a NFA

with a single state and 𝑛 self transitions. This is not the case for

the compositional approach, in which the number of states grows

rapidly with the number of actions and the degree of parallelization

(up to 625 states for 48 actions).

Fig.10b displays a ‘locks’ dataset that adapts the regular expres-

sion example from Sec.4.3 into digital lock use cases. A digital lock

is represented by an interaction of the form:

𝑠𝑡𝑟𝑖𝑐𝑡 (𝑙𝑜𝑜𝑝𝑆 (𝑎𝑙𝑡 (𝑟1, · · · , 𝑟𝑛)), 𝑟𝑐
1
, 𝑎𝑙𝑡 (𝑟1, · · · , 𝑟𝑛)𝑐

′)
where 𝑟1, . . . , 𝑟𝑑 are 𝑑 reception actions on the same lifeline for

different possible digits in an alphabet. In order to open the lock,

a correct sequence of 𝑐 digits must be entered (𝑟𝑐
1
in the example)

followed by 𝑐′ other digits (𝑎𝑙𝑡 (𝑟1, · · · , 𝑟𝑑)𝑐
′
in the example). Several

such locks may then be composed either strictly sequentially, or

in parallel. The dataset is built by varying the number of locks,

how these locks are related (via 𝑠𝑡𝑟𝑖𝑐𝑡 or 𝑝𝑎𝑟) and, for each lock,

which are the values of 𝑑 , 𝑐 and 𝑐′. As discussed in Sec.4.3, minimal

DFA associated to such interactions have exponentially more states

than their NFA counterpart. Experimental results show that our

approach limits this state space explosion, which is less visible for

the compositional approach.

Fig.10c displays a ‘random’ dataset, containing randomly gener-

ated interactions. This roughly consists in drawing symbols in F
recursively until a term is built. Special cases are made to ensure

finite depth and that we have 𝑠𝑒𝑞 only within basic interactions (so

as to conform to the limitations of the compositional approach). We

generate 350 interactions with less than 50 actions and less than

6 𝑝𝑎𝑟 symbols. While the first two datasets (‘loop-alt’ and ‘locks’)

contain interactions with specific structures that could advantage

our approach, the ‘random’ dataset does not. Still, experimental

results shows that our method consistently outputs smaller NFAs

than the compositional approach.

All materials required to replicate this first set of experiments

are available in [30].

In our second set of experiments, we applied our method to use

cases found in the literature. Without the need for comparison

w.r.t. the compositional approach, we can lift the restriction on

having no 𝑠𝑒𝑞 outside basic sub-interactions. More precisely, the

compositional approach, applied to any interaction 𝑖 ∈ I, does not
necessarily produce a nfa A s.t. L(A) = 𝜎 (𝑖). For L(A) = 𝜎 (𝑖) to
hold, it is necessary that, for all the sub-terms 𝑠𝑒𝑞(𝑖1, 𝑖2) of 𝑖 outside
basic interactions, we have 𝜎 (𝑠𝑒𝑞(𝑖1, 𝑖2)) = 𝜎 (𝑠𝑡𝑟𝑖𝑐𝑡 (𝑖1, 𝑖2)) i.e. it
is equivalent to interpret the corresponding edge on the bMSG-

g synchronously or asynchronously. Generally, while lower-level

specifications (which need to be implementable) respect this prop-

erty, this is rarely the case for higher-level requirements.

𝑖 nfa(𝑖)
|𝐿 | |𝑎 | |𝑄 | |⇝ | time

ABP [37] 4 60 68 94 8, 1𝑚𝑠

HR [24] 6 24 101 214 7, 5𝑚𝑠

Sensor [7] 12 26 168 368 14, 8𝑚𝑠

Platoon 3 [4] 3 17 90 189 3, 1𝑚𝑠

Platoon 4 [4] 4 31 752 1 874 57, 5𝑚𝑠

Platoon 5 [4] 5 48 6 440 18 855 2 338𝑚𝑠

Figure 11: Use cases

In [28], we provide all the necessary materials to reproduce

these experiments and summarize metrics obtained from using our

method to 4 use cases, including a low-level specification of the Al-

ternating Bit Protocol [37] (ABP) and three high level requirements

for: a DApp system for managing Human-Resources [24] (HR), a

system for querying sensor data [7] (Sensor) and a connected pla-

toon of autonomous rovers [4] (Platoon). For the Platoon use case,

we consider several interaction models, each corresponding to a

number of rovers. Fig.11 presents some of these metrics, |𝐿 | and |𝑎 |
resp. corresponding to the number of lifelines and actions in the

term structure of the interaction 𝑖 while |𝑄 | and |⇝ to, resp., the

FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal Mahe, et al.

numbers of states and transitions in the synthesized NFA nfa(𝑖).
The “time” column gives the time required to compute the NFA.

6 CONCLUSION
We have proposed an approach for synthesizing Non-deterministic

Finite Automata (NFA) from interactions. In contrast to previous

approaches [2, 46], that are based on composition using classical

NFA operators, our approach relies on computing the set of inter-

actions that can be derived from the initial interaction 𝑖 using a

structural operational semantics. As this set is finite, we use it as the

set of states of the NFA we synthesize from 𝑖 . State reduction can be

performed on-the-fly using term rewriting, thus avoiding the use of

costly NFA reduction techniques. Further research on semantically

sound rewrite systems for interactions may further improve this

state reduction by allowing more states to be merged. Moreover,

unlike [2, 46], our method handles interactions in which weak se-

quencing may nest other complex operators such as alternatives,

parallel composition or loops.

Additionally, an instrumented comparison of our method and a

compositional approach adapted from [46] underlined the ability

of our method to consistently synthesize compact NFAs, their size

(in number of states) being lower (sometimes significantly) than

that of NFAs obtained via composition. Further experiments on use

cases from the literature endorse the flexibility and applicability of

our method.

The results of this paper open new perspectives regarding model-

checking and online runtime verification from interactions. An-

other avenue of research concerns finer characterizations of in-

teractions by adapting properties of graphs of MSC related to the

implementability of systems.

Acknowledgements. The research leading to these results has re-

ceived funding from the European Union’s Horizon Europe pro-

gramme under grant agreement No 101069748 – SELFY project.

This work has been partially supported by the French National

Research Agency under the France 2030 label (NF-HiSec ANR-22-

PEFT-0009). The views reflected herein do not necessarily reflect

the opinion of the French government.

REFERENCES
[1] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, and Tomáš

Vojnar. 2010. When Simulation Meets Antichains. In Tools and Algorithms for the
Construction and Analysis of Systems, Javier Esparza and Rupak Majumdar (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 158–174.

[2] Rajeev Alur and Mihalis Yannakakis. 1999. Model Checking of Message Sequence

Charts. In CONCUR ’99: Concurrency Theory, 10th International Conference, Eind-
hoven, The Netherlands, August 24-27, 1999, Proceedings (Lecture Notes in Computer
Science, Vol. 1664), Jos C. M. Baeten and Sjouke Mauw (Eds.). Springer, 114–129.

https://doi.org/10.1007/3-540-48320-9_10

[3] Jerome Amilhastre, Philippe Janssen, and Marie-Catherine Vilarem. 2001. FA

Minimisation Heuristics for a Class of Finite Languages. In Automata Implemen-
tation, Oliver Boldt and Helmut Jurgensen (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 1–12.

[4] Maroneze Andre, Massonnet Philippe, Dupont Sebastien, Nigam Vivek, Plate

Henrik, Sykosch Arnold, Cakmak Eren, Thanasis Sfetsos, Jimenez Victor, Am-

paran Estibaliz, Martinez Cristina, Lopez Angel, Garcia-Alfaro Joaquin, Segovia

Mariana, Rubio-Hernan Jose, Blanc Gregory, Debar Herve, Carbone Roberto,

Ranise Silvio, Verderame Luca, Spaziani-Brunella Marco, Yautsiukhin Artsiom,

Morgagni Andrea, Klein Jacques, Bissyande Tegawende, and Samhi Jordan. 2020.

Assessment specifications and roadmap. In Technical report, EC (Ed.). SPARTA

project.

[5] Valentin Antimirov. 1995. Partial derivatives of regular expressions and finite

automata constructions. In STACS 95, Ernst W. Mayr and Claude Puech (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 455–466.

[6] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT

Press.

[7] Mohamed Bakillah, Steve H. L. Liang, Alexander Zipf, and Mir Abolfazl Mostafavi.

2013. A dynamic and context-aware semantic mediation service for discovering

and fusion of heterogeneous sensor data. J. Spatial Inf. Sci. 6, 1 (2013), 155–185.
https://doi.org/10.5311/JOSIS.2013.6.104

[8] Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4

(1964), 481–494. https://doi.org/10.1145/321239.321249

[9] Jean-Marc Champarnaud and Fabien Coulon. 2003. NFA Reduction Algorithms

by Means of Regular Inequalities. In Developments in Language Theory, Zoltan
Esik and Zoltan Fulop (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

194–205.

[10] Jan Daciuk, Bruce W. Watson, Stoyan Mihov, and Richard E. Watson. 2000. Incre-

mental Construction of Minimal Acyclic Finite-State Automata. Comput. Linguist.
26, 1 (mar 2000), 3–16. https://doi.org/10.1162/089120100561601

[11] Nachum Dershowitz and Jean-Pierre Jouannaud. 1991. Rewrite Systems. MIT

Press, Cambridge, MA, USA, 243–320.

[12] Wan Fokkink. 2009. Process Algebra: An Algebraic Theory of Concurrency. In

Algebraic Informatics, Symeon Bozapalidis and George Rahonis (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 47–77.

[13] Wouter Gelade. 2010. Succinctness of regular expressions with interleaving,

intersection and counting. Theor. Comput. Sci. 411, 31-33 (2010), 2987–2998.

https://doi.org/10.1016/j.tcs.2010.04.036

[14] Jaco Geldenhuys, Brink van der Merwe, and Lynette van Zijl. 2010. Reducing

Nondeterministic Finite Automata with SAT Solvers. In Finite-State Methods and
Natural Language Processing, Anssi Yli-Jyra, Andras Kornai, Jacques Sakarovitch,
and Bruce Watson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 81–92.

[15] Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar, Milind A. Sohoni,

and P. S. Thiagarajan. 2005. A theory of regular MSC languages. Inf. Comput.
202, 1 (2005), 1–38. https://doi.org/10.1016/j.ic.2004.08.004

[16] John E. Hopcroft. 1971. An n Log n Algorithm for Minimizing States in a Finite
Automaton. Technical Report. Stanford, CA, USA.

[17] John E. Hopcroft and Jeffrey D. Ullman. 1979. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley.

[18] Lucian Ilie, Gonzalo Navarro, and Sheng Yu. 2004. On NFA Reductions. Springer
Berlin Heidelberg, Berlin, Heidelberg, 112–124. https://doi.org/10.1007/978-3-

540-27812-2_11

[19] Lucian Iliea and Sheng Yu. 2002. Algorithms for Computing Small NFAs. In

Mathematical Foundations of Computer Science 2002, Krzysztof Diks and Wojciech

Rytter (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 328–340.

[20] Tao Jiang and B. Ravikumar. 1991. Minimal NFA problems are hard. In Au-
tomata, Languages and Programming, Javier Leach Albert, Burkhard Monien, and

Mario Rodriguez Artalejo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

629–640.

[21] T. Kameda and P. Weiner. 1970. On the State Minimization of Nondeterministic

Finite Automata. IEEE Trans. Comput. C-19, 7 (1970), 617–627. https://doi.org/10.

1109/T-C.1970.222994

[22] Alexander Knapp and Till Mossakowski. 2017. UML Interactions Meet State

Machines - An Institutional Approach. In 7th Conf. on Algebra and Coalgebra
in Computer Science (CALCO) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 72).

[23] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. 2009.

Tyrolean Termination Tool 2. In Rewriting Techniques and Applications, Ralf
Treinen (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 295–304.

[24] Giorgia Lallai, Andrea Pinna, Michele Marchesi, and Roberto Tonelli. 2020. Soft-

ware Engineering for DApp Smart Contracts Managing Workers Contracts. In

Proceedings of the 3rd Distributed Ledger Technology Workshop Co-located with
ITASEC 2020 (CEUR Workshop Proceedings, Vol. 2580). CEUR-WS.org.

[25] Ernst Leiss. 1981. Succinct representation of regular languages by boolean

automata. Theoretical Computer Science 13, 3 (1981), 323–330. https://doi.org/10.

1016/S0304-3975(81)80005-9

[26] P.Madhusudan and B.Meenakshi. 2001. BeyondMessage SequenceGraphs. In FST
TCS 2001: Foundations of Software Technology and Theoretical Computer Science,
21st Conference, Bangalore, India, December 13-15, 2001, Proceedings (Lecture Notes
in Computer Science, Vol. 2245), Ramesh Hariharan, Madhavan Mukund, and

V. Vinay (Eds.). Springer, 256–267. https://doi.org/10.1007/3-540-45294-X_22

[27] Erwan Mahe. 2022. HIBOU tool. https://github.com/erwanM974/hibou_label.

[28] Erwan Mahe. 2023. applying an incremental approach to NFA synthesis on

interaction use cases from the literature. https://github.com/erwanM974/hibou_

nfagen_concrete_usecases.

[29] Erwan Mahe. 2023. AUTOUR toolbox. https://github.com/erwanM974/autour_

core.

[30] Erwan Mahe. 2023. comparing incremental and compositional approaches to

NFA synthesis from interactions. https://github.com/erwanM974/hibou_nfa_

synthesis_benchmark.

https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.5311/JOSIS.2013.6.104
https://doi.org/10.1145/321239.321249
https://doi.org/10.1162/089120100561601
https://doi.org/10.1016/j.tcs.2010.04.036
https://doi.org/10.1016/j.ic.2004.08.004
https://doi.org/10.1007/978-3-540-27812-2_11
https://doi.org/10.1007/978-3-540-27812-2_11
https://doi.org/10.1109/T-C.1970.222994
https://doi.org/10.1109/T-C.1970.222994
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1007/3-540-45294-X_22
https://github.com/erwanM974/hibou_label
https://github.com/erwanM974/hibou_nfagen_concrete_usecases
https://github.com/erwanM974/hibou_nfagen_concrete_usecases
https://github.com/erwanM974/autour_core
https://github.com/erwanM974/autour_core
https://github.com/erwanM974/hibou_nfa_synthesis_benchmark
https://github.com/erwanM974/hibou_nfa_synthesis_benchmark

Finite Automata synthesis from interactions FormaliSE ’24, April 14–15, 2024, Lisbon, Portugal

[31] Erwan Mahe. 2023. coq proof for the equivalence of interaction semantics

with co-regions. https://github.com/erwanM974/coq_interaction_semantics_

equivalence_with_coregions.

[32] Erwan Mahe. 2023. proof of convergence for interaction simplification. https:

//github.com/erwanM974/hibou_trs_simplify_empty.

[33] Erwan Mahe, Boutheina Bannour, Christophe Gaston, Arnault Lapitre, and Pas-

cale Le Gall. 2021. A Small-Step Approach to Multi-Trace Checking against Inter-

actions. In Proceedings of the 36th Annual ACM Symposium on Applied Computing
(Virtual Event, Republic of Korea) (SAC ’21). Association for Computing Machin-

ery, New York, NY, USA, 1815–1822. https://doi.org/10.1145/3412841.3442054

[34] Erwan Mahe, Christophe Gaston, and Pascale Le Gall. 2020. Revisiting Semantics

of Interactions for Trace Validity Analysis. In Fundamental Approaches to Software
Engineering, Heike Wehrheim and Jordi Cabot (Eds.). Springer International

Publishing, Cham, 482–501.

[35] Erwan Mahe, Christophe Gaston, and Pascale Le Gall. 2022. Equivalence of

Denotational and Operational Semantics for Interaction Languages. In Theoretical
Aspects of Software Engineering - 16th International Symposium, TASE 2022, Cluj-
Napoca, Romania, July 8-10, 2022, Proceedings (Lecture Notes in Computer Science,
Vol. 13299), Yamine Aït Ameur and Florin Craciun (Eds.). Springer, 113–130.

https://doi.org/10.1007/978-3-031-10363-6_8

[36] Erwan Mahe, Christophe Gaston, and Pascale Le Gall. 2024. Denotational and

operational semantics for interaction languages: Application to trace analysis.

Science of Computer Programming 232 (2024), 103034. https://doi.org/10.1016/j.

scico.2023.103034

[37] Sjouke Mauw and Michel Adriaan Reniers. 1997. High-level message sequence

charts. In SDL ’97 Time for Testing, SDL, MSC and Trends - 8th International SDL
Forum, Proceedings. Elsevier, 291–306.

[38] Sjouke Mauw and Michel Adriaan Reniers. 1999. Operational Semantics for

MSC’96. Computer Networks 31, 17 (1999), 1785–1799. https://doi.org/10.1016/

S1389-1286(99)00060-2

[39] A.J. Mayer and L.J. Stockmeyer. 1994. The Complexity of Word Problems - This

Time with Interleaving. Information and Computation 115, 2 (1994), 293–311.

https://doi.org/10.1006/inco.1994.1098

[40] B. F. Melnikov. 1999. A new algorithm of the state-minimization for the non-

deterministic finite automata. Korean Journal of Computational and Applied
Mathematics (may 1999), 277–290. https://doi.org/10.1007/BF03014374

[41] Zoltán Micskei and Hélène Waeselynck. 2011. The many meanings of UML 2

Sequence Diagrams: a survey. Software & Systems Modeling 10, 4 (2011), 489–514.
[42] Gordon Plotkin. 2004. A Structural Approach to Operational Semantics. The

Journal of Logic and Algebraic Programming 60-61 (07 2004), 17–139. https:

//doi.org/10.1016/j.jlap.2004.05.001

[43] Libor Polak. 2004. Minimalizations of NFA Using the Universal Automaton. In

Proceedings of the 9th International Conference on Implementation and Application
of Automata (Kingston, Canada) (CIAA’04). Springer-Verlag, Berlin, Heidelberg,
325–326. https://doi.org/10.1007/978-3-540-30500-2_37

[44] Grigore Roşu and Mahesh Viswanathan. 2003. Testing Extended Regular Lan-

guage Membership Incrementally by Rewriting. In Rewriting Techniques and
Applications, Robert Nieuwenhuis (Ed.). Springer Berlin Heidelberg, Berlin, Hei-

delberg, 499–514.

[45] Koushik Sen and Grigore Roşu. 2003. Generating Optimal Monitors for Extended

Regular Expressions. Electronic Notes in Theoretical Computer Science 89, 2 (2003),
226–245. https://doi.org/10.1016/S1571-0661(04)81051-X RV ’2003, Run-time

Verification (Satellite Workshop of CAV ’03).

[46] Jocelyn Simmonds, Yuan Gan, Marsha Chechik, Shiva Nejati, Bill O’Farrell,

Elena Litani, and Julie Waterhouse. 2009. Runtime Monitoring of Web Ser-

vice Conversations. IEEE Trans. Serv. Comput. 2, 3 (2009), 223–244. https:

//doi.org/10.1109/TSC.2009.16

[47] Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp. 2011. CSI – A Con-

fluence Tool. In Automated Deduction – CADE-23, Nikolaj Bjørner and Viorica

Sofronie-Stokkermans (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

499–505.

Received 15 12 2023; accepted 13 01 2024

https://github.com/erwanM974/coq_interaction_semantics_equivalence_with_coregions
https://github.com/erwanM974/coq_interaction_semantics_equivalence_with_coregions
https://github.com/erwanM974/hibou_trs_simplify_empty
https://github.com/erwanM974/hibou_trs_simplify_empty
https://doi.org/10.1145/3412841.3442054
https://doi.org/10.1007/978-3-031-10363-6_8
https://doi.org/10.1016/j.scico.2023.103034
https://doi.org/10.1016/j.scico.2023.103034
https://doi.org/10.1016/S1389-1286(99)00060-2
https://doi.org/10.1016/S1389-1286(99)00060-2
https://doi.org/10.1006/inco.1994.1098
https://doi.org/10.1007/BF03014374
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.1007/978-3-540-30500-2_37
https://doi.org/10.1016/S1571-0661(04)81051-X
https://doi.org/10.1109/TSC.2009.16
https://doi.org/10.1109/TSC.2009.16

	Abstract
	1 Introduction
	2 Preliminaries
	3 Interaction Language
	3.1 Syntax
	3.2 Structural operational semantics

	4 Deriving NFA from interactions
	4.1 Derivative interactions
	4.2 State reduction and synthesis of the NFA
	4.3 Remarks on generating small NFA

	5 Experiments
	6 Conclusion
	References

