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Abstract

Over the years, Hedin’s GW self-energy has been proven to be a rather accurate

and simple approximation to evaluate electronic quasiparticle energies in solids and

in molecules. Attempts to improve over the simple GW approximation, the so-called

vertex corrections, have been constantly proposed in the literature. Here, we derive,

analyze, and benchmark the complete second-order term in the screened Coulomb in-

teraction W for finite systems. This self-energy named G3W2 contains all the possible

time orderings that combine 3 Green’s functions G and 2 dynamic W . We present

the analytic formula and its imaginary frequency counterpart, the latter allowing us

to treat larger molecules. The accuracy of the G3W2 self-energy is evaluated on well-

established benchmarks (GW100, Acceptor 24 and Core 65) for valence and core quasi-

particle energies. Its link with the simpler static approximation, named SOSEX for

static screened second-order exchange, is analyzed, which leads us to propose a more

consistent approximation named 2SOSEX. Notably, both our formula for the G3W2

expression and our numerical results differ from the expression published in a recent

1



study by Wang et. al. [J. Chem. Theory Comput. 17, 5140 (2021)] In the end, we

find that neither the G3W2 self-energy nor any of the investigated approximations

to it improve over one-shot G0W0 with a good starting point. Only quasi-particle

self-consistent GW HOMO energies are slightly improved by addition of the G3W2

self-energy correction. We show that this is due to the self-consistent update of the

screened Coulomb interaction leading to an overall sign change of the vertex correction

to the frontier quasiparticle energies.

1 Introduction

Hedin’s GW approximation1 has become a wide-spread method to evaluate the electronic

quasiparticle energies.2,3 While first introduced for extended systems,1,4–7 it has recently

permeated to molecular systems,8–32 and even more recently to the core state binding en-

ergy.33–35 The success of the GW approximation owes much to its cost-effectiveness: GW is

both rather simple and reasonably accurate.

However, almost as old asGW itself, there have been attempts to go beyond the mereGW

self-energy. In the framework of the many-body equations as formulated by Hedin,1,36 these

corrections are coined “vertex correction”, since they necessarily involve the complicated

3-point vertex function Γ̃. The vertex corrections appear in two distinct locations in the

equations, firstly as a correction to the polarizability and secondly as a correction to the

self-energy itself. The first kind of vertex corrections are less computationally demanding

and have been tried first.8,37–39 But a recent work40 indicates the vertex corrections in the

polarizability systematically only have a mild effect, even though there exists a series of

studies that include both vertices at once.41–44

Here, we focus on the latter type of vertex corrections: those that modify the electronic

self-energy itself. The polarizability is kept at the simple random-phase approximation level.

Quite the opposite, for the self-energy the intrinsic 3-point nature of the vertex function

cannot be avoided and the practical derivations and calculations have to cope with this ad-
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Figure 1: Dynamical G3W2 Goldstone-Feynman diagram. Red wiggly lines represent the
screened Coulomb interactions W , straight black lines with an arrow the Green’s functions
G. Entry and exit points of the self-energy are marked with a square.

ditional complexity. Here we focus in particular on the second-order diagram that we name

G3W2 following Kutepov45 and whose Feynman-Goldstone representation is given in Fig-

ure 1. Gradual progress has been made towards the complete inclusion of the second-order

term. Most of the complexity arises from the screened Coulomb interaction W (ω) that is a

dynamic quantity as opposed to the bare Coulomb interaction v. Earlier simpler approxi-

mations such as the second-order exchange (SOX) and the second-order screened exchange

(SOSEX) exist. SOX is obtained when the two W are replaced by v. This approximation

has been known for long46 but its performance is very poor.15,47 The next step, SOSEX,

consists of one dynamic W (ω) and one static v.48 SOSEX performance is somewhat bet-

ter than SOX.47 The complete calculation of the dynamic G3W2 term has been recently

claimed by Wang, Rinke, and Ren.49 Note that statically screened approximations to G3W2

using W (ω = 0) instead of the dynamic W (ω) has been also proposed in the literature50

with interesting performance.51,52 There are clues from the homogeneous electron gas model

that the G3W2 diagram contains undesired features for extended systems.53,54 However an

evaluation for molecular systems is missing as of today.

In this article, we concentrate on the fully dynamic G3W2 self-energy. We derive its ana-

lytic formula as well as its complex frequency numerical quadrature. Our expressions depart
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from the one reported in Ref. 49. A double frequency integral has to be performed in our

equations, which makes the practical calculations very challenging. We analyze the differ-

ent contributions to the G3W2 self-energy induced by the possible different time-orderings.

Consistent numerical results are obtained with different expressions and two independent

codes, MOLGW55 and BAND.56,57 Thanks to our analytic expressions for both G3W2 and

SOSEX, we are able to accurately evaluate them for the core states. We then test the per-

formance of G3W2 and its approximations (SOX, SOSEX) on well-established benchmarks

(GW100,20 Acceptor24,58 and a subset of CORE6535).

2 G3W2 self-energy derivation

2.1 G3W2 self-energy obtained from Hedin’s equations

There are many equivalent ways to obtain the analytic expression of the self-energy diagram

drawn in Fig. 1. We follow here the functional path as exposed by Hedin in his seminal

paper.1 More specifically, we closely stick to Strinati’s review notations,59 except for the

exchange-correlation self-energy that we denote Σ instead of M .

The exact electronic self-energy Σ reads

Σ(1, 2) = i

∫
d3d4G(1, 4)W (1+, 3)Γ̃(4, 2; 3), (1)

where the numbers, such as 1, conventionally represent a combined index over space and

time (r1,t1). G is the time-ordered Green’s function, W is the dynamically screened Coulomb

interaction, and Γ̃(4, 2; 3) is the irreducible 3-point vertex function. These three functions

have been already mentioned in the introduction. According to Strinati,59 the irreducible

vertex has a closed expression:

Γ̃(4, 2; 3) = δ(4, 2)δ(4, 3) +

∫
d5678

δΣ(4, 2)

δG(5, 6)
G(5, 7)G(8, 6)Γ̃(7, 8; 3). (2)
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Obviously, Eq. (2) is tremendously complex involving 3- and 4-point functions. The usual

GW approximation is obtained when Eq. (2) is truncated to the mere δ-functions (first term

in the right-hand side). This approximation introduced in Eq. (1) indeed yields

Σ(1, 2) = iG(1, 2)W (1+, 2). (3)

Let us approximate Γ̃(4, 2; 3) in a slightly more sophisticated way. In Eq. (2), consider

that the irreducible vertex in the right-hand side is simply

Γ̃(7, 8; 3) ≈ δ(7, 8)δ(7, 3). (4a)

In addition, use the GW self-energy in the derivative of Σ with respect to G in the same

Eq. (2), which gives

δΣ(4, 2)

δG(5, 6)
≈ iW (4, 2)δ(4, 5)δ(2, 6), (4b)

which amounts to neglecting the derivative of W with respect to G.

With these two simplifications, Eq. (2) reduces to

Γ̃(4, 2; 3) ≈ δ(4, 2)δ(4, 3) + iW (4, 2)G(4, 3)G(3, 2), (5)

which is a lot less complex than the original expression.

Plugging Eq. (5) into the expression of the exact self-energy reported in Eq. (1), we

obtain our desired expression:

Σ(1, 2) = iG(1, 2)W (1+, 2) + i2
∫

d3d4G(1, 4)W (1+, 3)G(4, 3)W (4, 2)G(3, 2). (6)

The self-energy in Eq. (6) consists of two terms: the usual GW approximation and an

additional correction (in other words a “vertex correction”) that we name G3W2. The

diagrammatic representation of G3W2 precisely matches the diagram of Figure 1. Note that
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the G3W2 expression has a double time integral, which still make it quite a challenge for

numerical applications.

2.2 G3W2, 2SOSEX, SOSEX, and SOX

It is insightful (and convenient for numerics as we will see later) to split the dynamic G3W2

self-energy correction into static and dynamic parts thanks to the introduction of the inter-

mediate bare Coulomb interaction v.

Dropping the space and time indices for conciseness, one can decompose the G3W2

self-energy into 4 terms:

ΣG3W2 = i2
∫

GWGWG

= i2
∫

GvGvG

+i2
∫

G [W − v]GvG

+i2
∫

GvG [W − v]G

+i2
∫

G [W − v]G [W − v]G. (7)

The first term is the well-known SOX term.46 The sum of the two first terms form the

SOSEX self-energy introduced by Ren and coworkers.48

The second and the third terms are equal since they are completely symmetric through

the exchange of integrated indices. We hence propose to name “2SOSEX” the sum of the 3

first terms in Eq. (7). Of course, the last term that contains a genuine time-dependence in

both interactions is the most computationally involved.

From the present perspective, there is no specific reason to use SOSEX rather than

2SOSEX. We will study in section 3 the actual performance of each truncation strategy.
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2.3 Expression in real frequency domain

For practical implementation and understanding, it is very convenient to work in the fre-

quency domain. As the first terms in Eq. (7) are already known, we now focus on the last,

fully-dynamic one.

In the following we introduce Wp for the polarizable part of W as

Wp(1, 2) = W (1, 2)− v(1, 2)δ(t1 − t2). (8)

In many-body perturbation theory at equilibrium, the time-dependencies of Σ, G, and

W are only a time differences: e.g. G(1, 2) = G(r1, r2, t1 − t2).
46 Omitting space variables

for conciseness, the last term in Eq. (7) reads

ΣG3Wp2(t1 − t2) = i2
∫

dt3dt4G(t1 − t4)Wp(t3 − t1)G(t4 − t3)Wp(t2 − t4)G(t3 − t2). (9)

We have used the symmetriesWp(1, 3) = Wp(3, 1) andWp(4, 2) = Wp(2, 4) for convenience.
59

Then we Fourier-transform of all these functions. The detailed steps that lead to the final

expression are given in appendix A. Finally, the fully-dynamic term ΣG3Wp2 in the frequency

domain reads

ΣG3Wp2(ω) =

(
i

2π

)2 ∫
dω′

∫
dω′′G(ω + ω′)Wp(ω

′)G(ω + ω′ + ω′′)Wp(ω
′′)G(ω + ω′′). (10)

The expression with times had two integrals and it still contains two integrals in the

frequency domain.

2.4 Analytic formula

In this section, we derive a fully analytic formula for Eq. (10). This is not only useful

for a deeper understanding, but also it is in practice, since some implementations, such as

MOLGW55 or Turbomole,17 indeed use this strategy.
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When starting from a mean-field Kohn-Sham or generalized Kohn-Sham self-consistent

solution with (real-valued) eigenstates φp(r) and eigenvalues ϵp, the corresponding Green’s

function G(ω) reads

G(r, r′, ω) =
occ∑
i

φi(r)φi(r
′)

ω − ϵi − iη
+

virt∑
a

φa(r)φa(r
′)

ω − ϵa + iη
. (11)

We use the usual convention where the indices a, b, c run over virtual molecular orbitals

(MO), i, j, k over occupied MO, and p, q, u, v, w over all the MO. η symbol stands for a

small positive real number that enforces the proper location of the poles in the complex

plane: above the real axis for occupied states (εi < µ) and below the real axis for virtual

states (εa > µ). Note that we assume real wavefunctions without loss of generality for finite

systems.

The polarizable part of W also can be written analytically provided that the Casida-like

equation has been solved for the random-phase approximation.17,55,60 Wp(ω) is a sum of pairs

of poles ±Ωs, which account for resonant and antiresonant neutral excitations:55

Wp(r, r
′, ω) =

∑
s

ws(r)ws(r
′)

[
1

ω − Ωs + iη
− 1

ω + Ωs − iη

]
. (12)

Here and in the following the pole index s (and later also t) runs over the pairs of poles.

Again, the small real positive η enforces the correct location of the poles for a time-ordered

function. Ωs are defined as positive energies as obtained from the diagonalization of the

Casida-like equation. The resonant excitation count amounts to No × Nv in a finite basis

set, where No is the number of occupied MO and Nv the number of virtual MO.

With these two expressions for the non-interacting G and for Wp in Eqs. (11) and (12),

there is no obstacle against the complete derivation of G3W2 as expressed in Eq. (10). One

can apply the complex analysis tools (contour closing and residue theorem) to each of the

25 = 32 cases for occupied or virtual MO in G and resonant or antiresonant poles in Wp.

Fortunately, 14 terms are strictly zero becase of the poles’ location. The 18 remaining
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terms have been calculated manually. A calculation for the term involving 3 occupied MO

and 2 anti-resonant poles in Wp is given as an example in Appendix B.

Introducing wpq
s =

∫
drφp(r)φq(r)ws(r), we present the sum of the 18 terms that has

been split according to the occupation of the 3 Green’s functions:

Σooo
pq (ω) =

∑
ts

∑
ijk

wpi
t · wjk

t · wqk
s · wij

s

(ω − ϵi + Ωt − 2iη) · (ω − ϵj + Ωt + Ωs − 3iη) · (ω − ϵk + Ωs − 2iη)

(13a)

Σvvv
pq (ω) =

∑
ts

∑
abc

wpa
t · wbc

t · wqc
s · wab

s

(ω − ϵa − Ωt + 2iη) · (ω − ϵb − Ωt − Ωs + 3iη) · (ω − ϵc − Ωs + 2iη)

(13b)

Σvoo+oov
pq (ω) =

∑
ts

∑
ajk

wpa
t · wjk

t · wqk
s · waj

s

(ω − ϵk + Ωs − 2iη) · (Ωs + ϵa − ϵj − 3iη)

×
[

2

ω − ϵa − Ωt + 2iη
− 2

ω − ϵj + Ωs + Ωt − 3iη

]
. (13c)

Σovv+vvo
pq (ω) =

∑
ts

∑
ibc

wpi
t · wbc

t · wqc
s · wib

s

(ω − ϵc − Ωs + 2iη) · (Ωs − ϵi + ϵb − 3iη)

×
[
− 2

ω − ϵi + Ωt − 2iη
+

2

ω − ϵb − Ωs − Ωt + 3iη

]
(13d)
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Σovo
pq (ω) =

∑
ts

∑
ibk

wpi
t · wbk

t · wqk
s · wib

s

ω − ϵi − ϵk + ϵb − 3iη

×
[

2ϵb − ϵi − ϵk + Ωt + Ωs

(ω − ϵb − Ωt − Ωs + 3iη) · (Ωs + ϵb − ϵi − 3iη) · (Ωt + ϵb − ϵk − 3iη)

− 2

(Ωt + ϵb − ϵk − 3iη) · (ω − ϵk + Ωs − 2iη)

− 1

(ω − ϵi + Ωt − 2iη) · (ω − ϵk + Ωs − 2iη)

]
(13e)

Σvov
pq (ω) =

∑
ts

∑
ajc

wpa
t · wjc

t · wqc
s · waj

s

ω − ϵa − ϵc + ϵj + 3iη

×
[

2ϵj − ϵa − ϵc − Ωt − Ωs

(ω − ϵj + Ωt + Ωs − 3iη) · (Ωs − ϵj + ϵa − 3iη) · (Ωt − ϵj + ϵc − 3iη)

+
2

(Ωt − ϵj + ϵc − 3iη) · (ω − ϵc − Ωs + 2iη)

− 1

(ω − ϵa − Ωt + 2iη) · (ω − ϵc − Ωs + 2iη)

]
(13f)

In the previous equations, we have kept explicit the counts of η for debugging. The

locations of the poles appear as consistent for a fermionic time-ordered function, with poles

above the real axis for (ϵi−Ωs) and for (ϵi+ϵk−ϵb) and poles below the real axis for (ϵa+Ωs)

and for (ϵa − ϵc + ϵj). Remember that Ωs are positive by definition.

It should be noticed that terms with 3 occupied MO or 3 virtual MO are present. This

type of terms are absent in the static SOSEX48 and its dynamic extension proposed in Ref.

49.

The computational scaling of Eqs. (13a-13f) is as high as N7, since each sum over states

gives N and each sum over excitations yields N2.
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2.5 Imaginary frequency expression

For practical calculations, it is desirable to perform the frequency integrals thanks to a

quadrature instead. As the poles of both G and Wp lie in the vicinity of the real axis, it is

customary in this field to analytically continue the function to the complete complex plane

and perform the quadrature on the imaginary axis. More precisely, the imaginary axis should

separate the occupied and virtual states. This is achieved by selecting an origin µ that lies

in the HOMO-LUMO gap.

Sometimes authors prefer to shift the energies ϵp so that µ is set zero.48,61,62 While

this procedure is perfectly valid, it may mask some of analytic properties of the formulas.

In the following, we write the imaginary frequency expression of G3W2 with explicit µ

dependencies:

ΣG3Wp2
pq (µ+ iω) =

(−1

2π

)2 ∫ +∞

−∞
dω′

∫ +∞

−∞
dω′′

∑
u

∑
v

∑
w

(wv|Wp(iω
′)|pu)(qw|Wp(iω

′′)|uv)
(µ+ iω + iω′ − ϵu)(µ+ iω + iω′ + iω′′ − ϵv)(µ+ iω + iω′′ − ϵw)

. (14)

This equation is the imaginary axis counterpart of the real axis formula: the i prefactor

is replaced by (-1) and the frequencies ω, ω′, ω′′ always come with a i factor. Note that the

chemist notation is used here:

(wv|Wp(iω
′)|pu) =

∫
dr

∫
dr′φw(r)φv(r)Wp(r, r

′, iω′)φp(r)φu(r). (15)

The derivation of Eq. (14) is sketched in appendix C. If one splits each of the sums in Eq. (14)

into individual summations over occupied and virtual states, one can see that Eq. (14) splits

into 8 terms. These correspond to the 8 possible time-orderings of the three Green’s functions

in the G3W2 contribution to the self-energy can be matched with the terms Eqs. (13a-13f).

Equation (14) can be evaluated with a double quadrature on ω′ and ω′′. Assuming that

the grid design does not change with the system size, Eq. (14) presents a N5 scaling with
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a larger prefactor, since all sums run over occupied and virtual states. Notably, Eq. (14) is

different than the one in Ref. 49, which only contains a single imaginary frequency integral.

In the end, we obtain the self-energy for selected frequencies (µ + iω) that needs to

be analytically continued to the real frequency axis.63,64 This last mathematical operation is

reliable only in the vicinity of µ. Core states cannot be reliably treated with this approach.33

From the imaginary frequency expression in Eq. (14), various approximations to the full

G3W2 self-energy are obtained. If one replaces one of the Wp by v one obtains the SOSEX

self-energy expression of Ren and coworkers.48 Choosing W (iω′′) = v allows us to perform

the integral over ω′′ in Eq. (14) analytically,

ΣSOSEX
pq (µ+ iω) =− 1

2π

∫
dω′

∑
u

∑
v

∑
w

(fv − fw)
(wv|Wp(iω

′)|pu)(qw|uv)
(µ+ iω + iω′ − ϵu)(iω′ + ϵv − ϵw)

=− 1

2π

∫
dω′

∑
u

∑
v

∑
w

(fv − fw)
(uv|qw)(pu|Wp(iω

′)|vw)
(iω′ + ϵv − ϵw)(µ+ iω + iω′ − ϵu)

,

(16)

where the fv denote occupation numbers, i.e. fv = 1 if v denotes an occupied states, and

fv = 0 if v denotes a virtual state. The factor (fu − fv) effectively sets half of the 8 terms in

Eq. (14) to zero. If we instead replace W (iω′) by v, we get

ΣSOSEX
pq (µ+ iω) = − 1

2π

∫
dω′′

∑
u

∑
v

∑
w

(fu− fv)
(wv|pu)(qw|Wp(iω

′′)|uv)
(iω′′ + ϵu − ϵv)(µ+ iω + iω′′ − ϵw)

. (17)

One can see that both expressions are equivalent upon appropriate change of variables.

Replacing both Wp by v (Wp(iω
′) → v) and distinguishing explicitly between occupied

and virtual states, one obtains the SOX self-energy

ΣSOX
pq (µ+ iω) = −

occ∑
i,j

virt∑
a

(pi|ja)(qj|ia)
µ+ iω − ϵi + ϵa − ϵj

−
virt∑
a,b

occ∑
i

(pa|bi)(qb|ai)
µ+ iω − ϵa + ϵi − ϵb

, (18)

in which one might replace v by Wp(iω = 0) to obtain the statically screened G3W2 self-

energy.50,51 Due to the static nature of the interactions in Eq. (18), only 2 of the 8 possible

time-orderings in Eq. (14) have a non-zero contribution to the self-energy.
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3 Results for molecules

3.1 Implementations in MOLGW and BAND

The formulas presented in the previous section have been implemented in two independent

quantum chemistry codes, MOLGW55 and BAND.56,57

In MOLGW, we have implemented both the fully analytic expression reported in Eqs. (13a-

13f) and the imaginary frequency expression from Eq. (14). In BAND, we have focused on

numerical efficiency and only the imaginary frequency technique has been implemented. The

results in Sec. 3.2 and 3.5 have been obtained with the analytical expression in MOLGW. The

majority of calculations for GW100 and ACC24 have been performed using the imaginary

frequency expression in BAND. The systems containing 5th row atoms in GW100 atoms re-

quire the use of effective core potentials (ECP) for def2-TZVPP, which are not implemented

in BAND. Therefore, also these calculations have been performed with MOLGW.

3.1.1 Technical Details

MOLGW Both implementations in MOLGW (analytic and imaginary frequency quadra-

ture) can use frozen core approximation to reduce the active space. This is particularly

important in the analytic implementation because of the large number of neutral excitations

(poles) in Wp. This approximation has been shown to be very mild in the past.16

To represent the 4-center Coulomb interaction, we use the automatic generation of the

auxiliary basis designed in Ref. 65, which corresponds to the “PAUTO” setting in Gaussian.66

Besides this, there is no further approximation or technical convergence parameter in the

analytic formula. For the imaginary frequency quadrature, we follow the same recipes as

those described hereafter for BAND.

BAND All calculations in BAND are performed with frozen core orbitals in all post-

SCF parts of the calculation. The exceptions are the results reported in the SI67 used

13



to compare against FHI-AIMS, which are all-electron results. The GW calculations are

performed using the analytical frequency integration expression for the self-energy.17,55,60

Only the quasiparticle self-consistent GW qsGW 68–70 calculations are performed using the

atomic-orbital based algorithm from Ref. 71.

All 4-center integrals are calculated using the pair-atomic density fitting scheme in the

implementation of Ref. 72. The size of the auxiliary basis in this approach can be tuned by

a single threshold which we set to εaux = 1× 10−12 in all calculation if not stated otherwise.

We further artificially enlarge the auxiliary basis by setting the BoostL option.72

In the implementation of the G3W2 contribution, we distinguish between the integration

grid and the grid of values of µ + iω at which the self-energy is evaluated using numerical

integration. Both grids have been generated using the recipe in Ref. 73. To perform the

integrations in a numerically stable way, it is necessary to split the expression according

to the r.h.s. of the second equation in Eq. (7). The double imaginary frequency integral

only converges if it is restricted to the polarizable part of W . Therefore, we evaluate the

contribution due to GWpGWpG, the polarizable part of SOSEX, GWpGvG and the static

contribution GvGvG separately using respectively Eqs. (14), (16) and (18) and calculate the

full G3W2 self-energy according to Eq. (7). Even after splitting of the polarizable part of W ,

the double frequency integration converges slowly and we found that for some systems in the

GW100 database up to 128 integration points are needed to converge this term. The actual

number of frequency points used in each calculation is given in the supplemental information

(Table S2).67

We evaluate the contributions to the G3W2 self-energy at 16 points along the µ + iω-

axis and analytically continue them to the real axis. The SOSEX, 2SOSEX, and G3W2

self-energy corrections are then evaluated at the positions of the GW QP energies. This

corresponds to a linearization of the non-linear QP equations. This approximation is well

justified in the valence region since the GW QP peak will generally be very close to the

GW +G3W2 peak and one expects the self-energy to be a relatively smooth function of ω.51
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3.1.2 Comparison of MOLGW and BAND results

In Table 1, we report the HOMO energy of the Ne atom obtained from Hartree-Fock (HF)

starting point using the same basis set, namely Def2-TZVPP and 128 frequency points used

in the numerical integrations. For all the self-energy approximations, GW , GW+SOSEX,

or GW +G3W2, the agreement across the codes and the numerical techniques is extremely

good (1 meV at most). The (tiny) differences between BAND and MOLGW can certainly

be ascribed to the diverse auxiliary bases used to expand the Coulomb interaction.

As described in the SI,67 the vertex corrections here are evaluated in a “one-shot” fashion

at the position of the GW QP energies. This approximation is implemented in BAND to

make the calculations computationally feasible. In Table S4, we compare the BAND results

to the analytical implementations in MOLGW with graphical solution of the QP equations.

The results show that the effect of the one-shot approximation is small and that it can be

used safely in all calculations.

Furthermore, with BAND, we have tested that the imaginary frequency formula in

Eq. (14) is not sensitive to the origin of the imaginary axis (provided it is inside the HOMO-

LUMO gap). This property is important for the sanity of the formula. For instance, the

vertex formula in Ref. 49 does not fulfill this property according to our evaluation.

Now that we have demonstrated the precision of our codes, we can turn the analysis of

the G3W2 properties in realistic molecular systems.

Table 1: HOMO energy of Ne within GW +G3W2 obtained with one-shot evaluation of the
self-energies based on HF input. A Def2-TZVPP basis set was used in both codes, MOLGW
and BAND. In BAND, we have tweaked the imaginary axis origin µ for stability check.

MOLGW BAND

Analytic Frequency grid Frequency grid Frequency grid Frequency grid
µ = 0 eV µ = -10 eV µ = 0 eV µ = +10 eV

GW -21.3513 -21.3512 -21.3504 -21.3504 -21.3504
GW+SOSEX -21.9344 -21.9349 -21.9335 -21.9335 -21.9335
GW+G3W2 -21.7214 -21.7199 -21.7200 -21.7203 -21.7204
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3.2 Basic properties
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Figure 2: Decomposition of the G3W2 dynamical part into analytic terms for H2O within
pcSseg-3 basis based on PBEh(0.50). Expectation value for the O1s, the HOMO and the
LUMO are given. Beware the change in y-axis scale.

Here we analyze the basic properties of the G3W2 self-energy for simple molecular sys-

tems. First, we concentrate on the analytic formula in Eqs. (13a-13f). While the computa-

tional scaling of all these terms is formally N7, it is interesting to investigate the magnitude

of each of these terms. In particular, in large basis sets, the number of virtual states Nv is

much larger than the number of occupied states No and we expect that the term Σvvv in

Eq. (13b) will be the most expensive one to calculate.

In Fig. 2, we report the 6 terms in Eqs. (13a-13f) evaluated with PBEh(0.50) inputs for

the water molecule (in the GW100 geometry20). We show the expectation value of the self-
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energies at the corresponding PBEh(0.50) eigenvalue, which is in general a very reasonable

guess for valence states55 and core states.35 While the total G3W2 self-energy is large for

a core state (∼ 2 eV), it is rather weak for the HOMO (∼ 0.1 eV) and very weak for the

LUMO (∼ 0.01 eV).

For the core state, the term Σooo largely prevails. Σvov, Σovv +Σvvo, and Σvvv are hardly

visible on the scale of our plot. They will be safely neglected in the core state evaluation in

Section 3.5. Quite the opposite for valence electrons, the HOMO and LUMO states of H2O

have similar weights for all the contributions and then none of them can be neglected.
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Figure 3: Starting point dependence of the HOMO quasiparticle energy for CO and H2O with
Def2-TZVPP basis set, for the different vertex approximation. The CCSD(T) reference47 is
shown as an horizontal line.

The starting point dependence of one-shot GW (i.e. G0W0) is well documented in the lit-

erature (see e.g. Ref. 16). The strong dependence of GW+SOSEX has also been studied by

Ren and coworkers.74 In Fig. 3 we analyze the starting point effect for all the vertex approxi-

mations mentioned in this work GW (no vertex), GW+SOX, GW+SOSEX, GW+2SOSEX,

GW + G3W2 for the HOMO energy of 2 molecules, CO and H2O. To do so, we tune the

content of exact-exchange α in PBEh functional from 0 to 1, with 0 giving the usual semi-

local PBE functional and 0.25, PBE0. For all the studied approximations, the effect of the

starting point is large. The PBE starting point, a terrible start for the quasiparticle energies

of molecular systems, quite luckily induces a GW+SOSEX HOMO that compares well with
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CCSD(T). It is interesting to note that the GW +G3W2 curve is almost parallel to the GW

one: the G3W2 induces then a constant downward shift. However, for the starting points

that yield good HOMO energies compared to GW or to CCSD(T) (α ∼ 0.50 – 0.75), the

G3W2 correction brings the result away from the correct value. Only with a low value of

α ∼ 0.25 can GW +G3W2 beat simple GW .

3.3 GW100 ionization potentials

Figure 4: Errors of HOMO QP energies for G0W0 and different approximations of the G3W2
vertex correction with respect to CCSD(T) reference values47 for GW100 using HF and
OTRSH starting points. All values are in eV.

Table 2: Mean absolute deviations of G0W0 and different approximations of the G3W2 vertex
correction with respect to CCSD(T) reference values47 for GW100 using HF and OTRSH
starting points. All values are in eV.

GW GW+ SOSEX GW+ 2SOSEX GW +G3W2

HF 0.30 0.44 0.51 0.49
OTRSH 0.13 0.28 0.32 0.30
qsGW 0.23 0.32 0.21 0.17
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3.3.1 Generalized Kohn-Sham starting points

We focus first on the “one-shot” evaluation of the self-energy based on generalized Kohn-

Sham. There are an infinite variations of Kohn-Sham starting points that could be used.

Here we decide to concentrate on two remarkable ones: Hartree-Fock (HF) and optimally-

tuned range-separated hybrid (OTRSH).75,76 Firstly, HF is the most commonly used starting

point for “post Hartree-Fock” methods in the quantum chemistry. Though not the most

accurate choice, this approximation is useful for comparison and benchmarking. Secondly,

OTRSH is less used in the literature however it has been shown recently to minimize the

mean-error for G0W0 IPs for the GW100 set.77 In the present work we use a PBE-based

version of OTRSH78,79 where the short-range exchange is that of Henderson and coworkers.80

The range-separation parameter γ is determined so that the “GW correction” vanishes as

proposed in Ref. 77, while exact-exchange scaling parameters α = 0.2 and β = 0.8 are kept

constant.

Figure 4 shows the errors distributions of the G0W0, G0W0 + SOSEX, G0W0 + 2SOSEX

and G0W0 + G3W2 HOMO QP energies for HF and OTRSH starting points compared to

the CCSD(T) reference values of Ref. 47 for the GW100 set. Mean absolute deviations

(MAD) for all methods are shown in Table 2. With a MAD of 0.13 eV, G0W0@OTRSH is

among the best performing GW methods for the GW100 set77 and any vertex corrections to

the self-energy worsens the agreement with CCSD(T). The same observation can be made

for G0W0@HF. For both starting points, the addition of SOSEX leads to higher IPs (more

negative HOMOs) on average and also the spread of errors increases substantially, as can

be seen from the distributions in Figure 4. Symmetric screening of the SOX term in the

form of G0W0 + 2SOSEX slightly increases the average error compared to G0W0+SOSEX.

However, it reduces the spread of the error again, indicating the 2SOSEX is a more consistent

approximation to the full G3W2 term than SOSEX alone. Finally, the addition of the double

frequency integral, leading to the full G0W0+G3W2 term, has only little effect on the MADs

and the shape of the error distributions. This result has already been suggested by Figure 3

19



which shows that for large content of exchange α, 2SOSEX and G3W2 give similar results.

Also Table S267 shows that the contribution from the double frequency integral is typically

of the order of only a few tens meV and only exceeds 100 meV in very few cases.

This observation suggests that 2SOSEX would be a consistent and suitable approximation

to the complete G3W2 term. However, our data also clearly shows that it does not improve

over G0W0.

3.3.2 Quasiparticle self-consistent GW starting point

Turning to the qsGW results shown in Fig. 4 we observe that the vertex correction shifts

the qsGW results in the opposite direction than for G0W0. qsGW alone overestimates the

CCSD(T) IPs, but qsGW + G3W2 lowers them, bringing them in better agreement with

the reference values. However, the vertex correction also produces clear outliers. One of

them is Helium, one of the simplest systems in GW100, for which qsGW + G3W2 deviates

from CCSD(T) by more than 1.2 eV. This shows that G3W2 is also not a robust method

to improve over qsGW . Our construction of the qsGW Hamiltonian is based on ref. 70,

even though alternative constructions have been shown to give slightly improved results for

GW100.81

In Table S567 we also present results for qsGW0 for a few selected systems, where W is

kept fixed after the first SCF cycle. These results show that the update of W , not the update

of G is responsible for the qualitatively different behavior of qsGW compared to G0W0. As

for G0W0, the G3W2 diagram increases the qsGW0 IPs.

Finally, we notice that vertex corrections to qsGW for periodic semi-conductors and

insulators have so far only been investigated in the polarizability.82–85 This is due to a well-

known argument70 that a non-interacting Green’s function behaves as an effective vertex

correction to the self-energy. Therefore, the vertex should not be added to the self-energy to

avoid that it is effectively double counted. Our results question the validity of this argument.
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3.4 ACC24 ionization potentials and electron affinities

After having analyzed the G3W2 term for GW100, we turn to the ACC24 set58 of 24 organic

acceptor molecules with stable anions. This also allows for a meaningful comparison of

LUMO QP energies and HOMO-LUMO gaps. We focus here on G0W0 based on the OTRSH

starting point which has been shown to give very good results also for the ACC24 set.21

Figure 5: Errors ofG0W0@OTRSH with different approximations of theG3W2 vertex correc-
tion with respect to CCSD(T) reference values for ACC24 for HOMO, LUMO and HOMO-
LUMO gaps. All values are in eV. For some molecules, the G3W2 corrections have been
performed using cc-pVTZ or aug-cc-pVDZ due to prohibitively high costs. See supporting
information for details.

Table 3: Mean absolute deviations of G0W0@OTRSH and different approximations of the
G3W2 vertex correction with respect to CCSD(T) reference values for ACC24 for HOMO,
LUMO, and HOMO-LUMO gap. All values are in eV.

GW GW+ SOSEX GW+ 2SOSEX GW +G3W2

HOMO 0.09 0.15 0.34 0.26
LUMO 0.07 0.33 0.57 0.42
HOMO-LUMO gap 0.14 0.46 0.91 0.68

For the OTRSH starting point, Figure 4 shows the errors distributions of the G0W0,

G0W0 + SOSEX, G0W0 + 2SOSEX and G0W0+G3W2 HOMO, LUMO and HOMO-LUMO

gaps using against the CCSD(T) reference values of Ref. 58 for the ACC24 set. The cor-

responding MADs are shown in Table 3. We do not use the basis set limit extrapolated
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reference values from Ref. 58 but instead CCSD(T)/aug-cc-pVTZ results as reference. For

the four molecules for which results with aug-cc-pVTZ are not available, we compare against

CCSD(T)/aug-cc-pVDZ. We notice that also a comparison at the aug-cc-pVTZ does not

eliminate basis set errors since the CCSD(T) converges faster to the complete basis set limit

than GW for individual QP energies.16 Only for HOMO-LUMO gaps, the rates of conver-

gence are comparable.

Also, due to the high computational cost we calculate the vertex corrections at aug-cc-

pVTZ for only about half of the 24 molecules while for the other we use either cc-pVTZ or

aug-cc-pVDZ. For a discussion of the basis set limit convergence and details on the choice

of basis for each system we refer to Tables S7 and S8.67 For the molecules for which we

can afford aug-cc-pVTZ, we see that the results are almost identical to cc-pVTZ (MADs of

5-6 meV for HOMO and LUMO for the different vertex corrections). Also aug-cc-pVDZ is

relatively close to TZ, with MADs of 60 meV for HOMO and 90 meV for LUMO for the full

G3W2 correction. We therefore believe that this comparison reveals the qualitative behavior

of the vertex corrections we test here.

For the HOMO energies we observe the same trend as for the GW100 set and notice that

G0W0@OTRSH reproduces the CCSD(T) reference values with a MAD of 0.09 eV very well.

The same can be observed for the LUMO energies. Here, the vertex corrections increase the

LUMO energies considerably. In combination with the decreased HOMO energies, this leads

to a major increase of the HOMO-LUMO gaps. TheG0W0@OTRSH +G3W2 HOMO-LUMO

gap has an average signed error of 0.68 eV, more than 0.5 eV worse than G0W0@OTRSH

with 0.14 eV only.

3.5 Core levels

Core level binding energies have been recently addressed in the framework of GW .33–35 We

use the opportunity offered by the fully analytic expressions reported in Eqs. (13a)-(13f) to

accurately evaluate GW and G3W2 self-energies for core levels.
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Figure 6: Mean signed deviation (upper panel) and mean absolute deviation (lower panel)
in eV for 28 core state energies taken among the smallest molecules in CORE65 benchmark
set35 evaluated within pc-Sseg-3 basis based on PBEh(0.45). This plot uses binding energies,
which is the negative of the quasiparticle energies, as opposed to the rest of this study. Note
that the PBEh(0.45) bars in gray are truncated for the sake of visualization.

Building on the work of Meija-Rodriguez et. al.,86 we employ an accurate basis set that

was designed in particular to describe core electrons, namely pc-Sseg-3. Using Golze’s recom-

mendation,35 we evaluate the self-energy using a one-shot procedure based on PBEh(0.45).

Relativistic corrections are added a posteriori with the values prescribed by Golze and

coworkers.35 In the CORE65 set,3 the reference binding energies are taken from various

experiments.

The calculations based on the analytic approach to G3W2 are very demanding and

hereafter we neglect the contributions to the self-energy that involve two or three virtual

orbitals. We have seen in Sec. 3.2 that these terms are of the order of a few meV for

core levels. Even with this approximation, the calculations remain challenging. Figure 6

reports the MSD and MAD for 28 core states out of the 65 energies gathered in the original

CORE65 set. We have excluded the largest molecules because of computational burden and

O2 because of spin. The comprehensive results are given in Table S9 in the supplemental

material.67

From Figure 5, we see that GW yields the best result and that GW+SOX deteriorates

much. Gradually adding screening through SOSEX, 2SOSEX, and then full G3W2 goes in
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the correct direction. For core levels, the vertex corrections are indeed sizeable. It should

be noted though, that the PBEh(0.45) starting point was specifically selected in Ref. 35 to

minimize the G0W0 error. Tuning α in PBEh(α) could improve GW + G3W2. But such a

study is beyond the scope of the present work.

4 Conclusion

In this work, we have derived and evaluated the formulas for the self-energy diagram drawn

in Figure 1, which contains two dynamically screened Coulomb interactions W (ω) and three

Green’s functions: this is the diagram namedG3W2 by Kutepov.45 We propose two formulas:

a fully analytic one that is useful for analysis, reference and core levels and a numerical one

that uses a double complex frequency quadrature that is more efficient for the HOMO-

LUMO region. The latter expression departs from the single complex frequency quadrature

published earlier by Wang et. al.49

Based on well-established molecular benchmarks for ionization potentials (GW100),20

electron affinities (ACC24),21 and core levels (CORE65),35 we conclude that in general the

GW +G3W2 self-energy does not improve over the simpler GW self-energy. When designing

simpler semi-static approximations to G3W2, in the spirit of SOSEX,48 we propose a new

approximation that we name 2SOSEX that better approximates the complete G3W2 self-

energy.

The strategy to keep the RPA screening and introduce vertex corrections only in the

self-energy is certainly not sufficient, as already suggested long time ago by Del Sole and

coworkers.41 This should be the subject of future investigation.
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A Fourier-transforming ΣG3W p2 to real frequencies

This appendix shows all the steps to obtain the frequency-dependent expression of the dy-

namic part of the G3W2 self-energy, starting from the expression with times as obtained

from Hedin’s equation.

Let us recall here Eq. (9):

ΣG3Wp2(t1 − t2) = i2
∫

dt3dt4G(t1 − t4)Wp(t3 − t1)G(t4 − t3)Wp(t2 − t4)G(t3 − t2) (19)

and let us introduce the difference time variables:

τ = t1 − t2 (20a)

τ ′ = t1 − t3 (20b)

τ ′′ = t4 − t2 (20c)

Combining these 3 variables, we obtain the other 3 needed time differences:

t1 − t4 = τ − τ ′′ (20d)

t4 − t3 = −τ + τ ′ + τ ′′ (20e)

t3 − t2 = τ − τ ′. (20f)
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Integration over t3 and t4 are then transformed to τ ′ and τ ′′ without other change:

Σ(τ) = i2
∫

dτ ′dτ ′′G(τ − τ ′′)Wp(−τ ′)G(−τ + τ ′ + τ ′′)Wp(−τ ′′)G(τ − τ ′). (21)

At the stage, we Fourier-transform all the times using the following definitions:

G(ω) =

∫
dτeiωτG(τ) (22a)

and

G(τ) =
1

2π

∫
dωe−iωτG(ω). (22b)

Σ is forward-transformed whereas the G and the Wp are backward-transformed:

Σ(ω) =
i2

(2π)5

∫
dτdτ ′dτ ′′eiωτ

∫
dω1dω

′dω2dω
′′dω3

× e−iω1(τ−τ ′′)e+iω′τ ′e−iω2(−τ+τ ′+τ ′′)e+iω′′τ ′′e−iω3(τ−τ ′)

×G(ω1)Wp(ω
′)G(ω2)Wp(ω

′′)G(ω3) (23)

Performing the integrals over τ, τ ′, τ ′′ variables yields 3 δ functions:

∫
dτeiτ(ω−ω1+ω2−ω3) = 2πδ(ω − ω1 + ω2 − ω3) (24a)∫
dτ ′eiτ

′(ω′−ω2+ω3) = 2πδ(ω′ − ω2 + ω3) (24b)∫
dτ ′′eiτ

′′(ω′′+ω1−ω2) = 2πδ(ω′′ + ω1 − ω2). (24c)

This allows one to eliminate ω1, ω2, and ω3:

ω1 = ω + ω′ (25a)

ω2 = ω + ω′ + ω′′ (25b)

ω3 = ω + ω′′. (25c)
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Finally, this yield the result announced in the main text in Eq. (10):

ΣG3W p2(ω) =

(
i

2π

)2 ∫
dω′

∫
dω′′G(ω + ω′)Wp(ω

′)G(ω + ω′ + ω′′)Wp(ω
′′)G(ω + ω′′). (26)

B Analytic calculation of Σooo
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Figure 7: Goldstone-Feynman diagram for Σooo.

In this appendix, we write the step-by-step derivation of the part of the self-energy that

involves 3 occupied MO in G, labeled i, j, k and 2 resonant poles in Wp, labeled t and s.

The corresponding Feynman-Goldstone diagram is drawn in Figure 7, where the time arrow

is shown. The analytic expression of this diagram involve the following frequency parts:

i

2π

∫
dω′ i

2π

∫
dω′′ 1

ω + ω′ − ϵi − iη
× 1

ω′ − Ωt + iη

× 1

ω + ω′ + ω′′ − ϵj − iη
× 1

ω′′ − Ωs + iη
× 1

ω + ω′′ − ϵk − iη
(27)

First we perform the integral i
2π

∫
dω′′ using the residue theorem. We draw a contour

consisting the real axis and an arc below the real axis. This contour encloses the poles with

negative imaginary part and there is only one: ω′′ = Ωs− iη. The residue theorem then gives

−2πi
1

ω + ω′ + Ωs − ϵj − 2iη
× 1

ω + Ωs − ϵk − 2iη
. (28)

The leading negative sign comes from the anticlockwise closing of the contour. The second
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term in Eq. (28) has no ω′ dependence and is a simple prefactor.

Second we have to perform the integral over ω′:

i

2π

∫
dω′ 1

ω + ω′ − ϵi − iη
× 1

ω′ − Ωt + iη
× 1

ω + ω′ + Ωs − ϵj − 2iη
. (29)

The first two factors come from Eq. (27) and the last one from Eq. (28).

We use the residue theorem again with a contour consisting of the real axis and an arc

in the lower part of the complex plane. The contour is oriented anticlockwise. There is

only one pole with a negative imaginary part: ω′ = Ωt − iη. The application of the residue

theorem reads

−2πi
1

ω + Ωt − ϵi − 2iη
× 1

ω + Ωt + Ωs − ϵj − 3iη
. (30)

Gathering the two factors in Eq. (30) and the last factor in Eq. (28), we obtain the

complete frequency dependence:

1

ω − ϵi + Ωt − 2iη
× 1

ω − ϵj + Ωt + Ωs − 3iη
× 1

ω − ϵk + Ωs − 2iη
. (31)

Now inserting the correct spatial numerators, we get the final expression for Σooo
pq (ω):

Σooo
pq (ω) =

∑
ts

∑
ijk

wpi
t · wjk

t · wqk
s · wij

s

(ω − ϵi + Ωt − 2iη) · (ω − ϵj + Ωt + Ωs − 3iη) · (ω − ϵk + Ωs − 2iη)
. (32)

This is the complete occupied-occupied-occupied self-energy. Indeed, the other terms that

involve anti-resonant excitations in Wp have all the poles located in the same upper-half of

the complex plan and therefore vanish.
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C Fourier-transforming ΣG3W p2 to imaginary frequen-

cies

The derivation of (14) is very similar to the derivation of (10) described in detail in ap-

pendix A. The only difference is than one needs to work with Laplace transforms which

connect the real time axis to the complex plane. While these expressions are generally

not unique, we choose a definition which matches the expression often used in space-time

formulations of GW 61

G(µ+ iω) = i

∫ ∞

−∞
e−(µ+iω)τG(τ)dτ (33a)

G(τ) = − i

2π

∫ ∞

−∞
e(µ+iω)τG(µ+ iω)dω . (33b)

τ is a real time argument. Both transformations are well-defined as long as µ separates

the HOMO and LUMO energies. Consistent with these definitions, the imaginary-frequency

single-particle Green’s function can be defined by

G(r, r′, µ+ iω) =
∑
p

1

µ+ iω − ϵp
. (34)

To arrive at (14), one starts from (21) and forward transforms Σ using (33), while all G and

Wp are backward-transformed. One then arrives at

ΣG3W2(µ+ iω) =

(−1

2π

)2 ∫
dω′dω′′G(µ+ iω + iω′)G(µ+ iω + iω′ + iω′′)

×G(µ+ iω + iω′′)W (iω′)W (iω′′) ,

(35)

and using (34) for all G one arrives at (14).
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(27) Vlček, V.; Li, W.; Baer, R.; Rabani, E.; Neuhauser, D. Swift GW beyond 10,000

electrons using sparse stochastic compression. Phys. Rev. B 2018, 98, 075107.

(28) Lange, M. F.; Berkelbach, T. C. On the Relation between Equation-of-Motion Coupled-

Cluster Theory and the GW Approximation. J. Chem. Theory Comput. 2018, 14,

4224–4236.

32



(29) Wilhelm, J.; Golze, D.; Talirz, L.; Hutter, J.; Pignedoli, C. A. Toward GW Calculations

on Thousands of Atoms. JPCL 2018, 9, 306–312.

(30) Véril, M.; Romaniello, P.; Berger, J. A.; Loos, P.-F. Unphysical Discontinuities in GW

Methods. J. Chem. Theory Comput. 2018, 14, 5220–5228, PMID: 30212627.

(31) Förster, A.; Visscher, L. Low-Order Scaling G0W0 by Pair Atomic Density Fitting. J.

Chem. Theory Comput. 2020, 16, 7381–7399, PMID: 33174743.

(32) Bintrim, S. J.; Berkelbach, T. C. Full-frequency GW without frequency. J. Chem. Phys.

2021, 154, 041101.

(33) Golze, D.; Wilhelm, J.; van Setten, M. J.; Rinke, P. Core-Level Binding Energies from

GW: An Efficient Full-Frequency Approach within a Localized Basis. Journal of Chem-

ical Theory and Computation 2018, 14, 4856–4869, PMID: 30092140.
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