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Memory caches goal: reduce the average latency when accessing memory

System considered Area (mm²) Frequency (MHz)

CVA6-HPDcache 0.386 950

CVA6-WTDcache 0.364 931

Fig 2. Memory technology evolution, reproduced from [1]
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STDcache (CVA6) X N/A SystemVerilog Low

WTDcache (CVA6) X N/A SystemVerilog Low

Rocket/BOOM ✓ Low (Flip-flops) Chisel Low

Fig 4. HPDcache overview
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Key performance metrics of the

DRAM technology are evolving at

different speeds:

• Recently, 3D-DRAM such as HBM

allowed to continue increasing the

capacity and bandwidth ;

• But latency lags behind.

 Need for latency hiding

mechanism in the computer memory

hierarchy
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Table 1.  Comparison of Open-Source L1 data-cache

Fig 3. Total latency comparison of successive, independent requests between Miss-under-miss blocking and

non-blocking data-cache

Fig 1.  Memory caches in a standard computer architecture, with the data-cache near the CPU
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 Virtual indexing (VIPT) support into the cache

 Requesters can use VIPT to shorten the latency (1 cycle) for non-missed load

Fig 5.  Latency comparison between PIPT and VIPT indexing in CVA6+HPDcache
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• Non-blocking (MSHR multi-entry,

up to 128 outstanding misses) ;

• Memory interface: up to 64 bytes ;

• Out-of-order execution (RTAB) ;

• Support for RISC-V Cache

Management Operation (CMOs) ;

• Highly configurable ;

• Designed to be adaptable to any

requester (RISC-V core,

accelerators…).

L1 Open-Source High Performance Data-cache, RISC-V [3] [4]:

 Comparison between HPDcache, CVA6’s WTDcache and CVA6’s STDcache

 CORE-V CVA6 with a scoreboard of 8 entries.

 L1 Data-cache (HPDcache or WTDcache or

STDcache):

• Common: 32KB size, 64B cache line, 8

ways, 8-bytes memory interface ;

• Write-Through caches only: same write

buffer size (16 * 64-bit entry) and same

maximum number of in-flight store requests

(16) ;

• HPDcache only: MSHR of 8 entries.

 Fixed latency of 100 cycles between the core

and memory.

Evaluation Platform

Benchmarks chosen

 SpMV and RaiderSTREAM are memory intensive programs with irregular memory patterns

(independent successive loads and stores).

(1) RaiderSTREAM [5]

 STREAM benchmark with new “HPC”

kernels ;

 400KB arrays ;

 Speedup up to 234% on the kernel

variants with indirections ;

 Same performance on the legacy

STREAM Add variant ;

 Similar results for Copy, Scale,

Triadd.

(2) SpMV (Sparse Matrix-Vector 

multiply)

 Three sparse matrices of size 

1000x1000, 2000x2000 and 

4000x4000 with 1% density and a 

uniform distribution of the NNZ ;

 Two “real world” matrices (DWT 

2680 and GEMAT12) ;

 HPDcache speedups ranging 

from 9% to 43% compared to 

WTDcache.

 Synthesis in the GF22FDX technology (SSG 0.72V/125C corner)

• Same platform/configuration used as for benchmarking

Fig 6. RTL Platform used

 Increase HPDcache memory interface to 64-bytes implies no area impact (<1%)
 But improves its performance up to 10% (RaiderSTREAM) and 6% (SpMV)

Fig 7. Performance comparison between HPDcache, WTDcache and

STDcache on RaiderSTREAM and SpMV

 Improvements in the selection policy of the re-ordering mechanism, to prioritize 

dependent on-hold requests ;

 Improvements in the coalescing policy of the Write Buffer to virtually increase

its size.

 CVA6+HPDcache is 5.92% larger, 2.06% faster than CVA6+WTDcache

 HPDcache accelerates memory intensive applications with irregular memory 
accesses
 Up to 234% (RaiderSTREAM) and 43% (SpMV), 
with a negligible area impact (5.92%)

Phase 1: Single-core performance 
evaluation

Phase 2: Multi-core performance 
evaluation

This work

 Successful integration of the HPDcache in 
OpenPiton [6]
• Were able to boot Linux on a 64 core 

(CVA6) configuration

 Evaluate HPDcache performance in a 
multi-core environment

Fig 8.  OpenPiton with 

CVA6 and HPDcache 

overview


