

Combining experimental and theoretical tools to probe radio-oxidation products in polyethylene

Muriel Ferry, Yunho Ahn, Florian Le Dantec, Yvette Ngono-Ravache, Guido

Roma

► To cite this version:

Muriel Ferry, Yunho Ahn, Florian Le Dantec, Yvette Ngono-Ravache, Guido Roma. Combining experimental and theoretical tools to probe radio-oxidation products in polyethylene. Polymers, 2023, 15, pp.1537. 10.3390/polym15061537. cea-04598123

HAL Id: cea-04598123 https://cea.hal.science/cea-04598123

Submitted on 3 Jun2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Article Combining experimental and theoretical tools to probe radio-oxidation products in polyethylene

Muriel Ferry¹, Yunho Ahn², Florian Le Dantec¹, Yvette Ngono³ and Guido Roma ^{2,*}

- ¹ Université Paris-Saclay, CEA, Service de Physico-Chimie (SPC), 91191 Gif sur Yvette, France; muriel.ferry@cea.fr (M.F); ledantec.florian@gmail.com (F.L.D.)
- ² Université Paris-Saclay, CEA, Service de Recherches en Corrosion et Comportement des Matériaux, SRMP , 91191 Gif sur Yvette, France; yunho.ahn@cea.fr (Y.A.); guido.roma@cea.fr (G.R.)
- ³ Normandie Univ, ENSICAEN, UNICAEN, CEA, CNRS, CIMAP,UMR 6252, BP 5133 Caen Cedex 05 F-14070 France; yvette.ngono-ravache@cea.fr (Y.N.)
- * Correspondence: guido.roma@cea.fr (G.R.)
- Abstract: Polyethylene is one of the most used polymers in a variety of sectors. A typical technique
- used to assess ageing is infrared spectroscopy. Under oxidation, the region of the spectrum which
- is mostly studied is the one containing the carbonyl signature. However, various carbonyl groups
 contribute to the carbonyl peak: ketones, aldehydes, esters, lactones, carboxylic acids, and more.
- 4 Contribute to the carbonyr peak. Retories, and mydes, esters, factories, carboxync actus, and more.
- A usual procedure to quantify each of them is the deconvolution of experimental peaks based
 on experimental assignments of infrared bands. In this paper we complement such procedure,
- ⁷ applied on two polyethylene types, with extended density functional theory (DFT) calculations of
- infrared spectra, using a polyethylene model mimicking the main features of a semicrystalline
- polymer. We compare theoretical frequencies and infrared intensities with parameters extracted
- from the literature and used to, eventually, estimate concentrations. We provide an alternative
- estimation entirely based on theoretical data, showing that DFT can be a valuable tool to analyse,
- ¹² or at least complement, experimental data to assess polymer ageing. The comparison of different
- deconvolution procedures raises the question of the contribution of conjugated ketones in the
- 14 global carbonyl buildup, as well as that of ketones/alcohols pairs, or the relative concentration of
- 15 esters and aldehydes.

Keywords: polyethylene; radio-oxidation; infrared spectroscopy ; carbonyl ; density functional
 theory ; ab initio

18 1. Introduction

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

One of the most produced polymers is polyethylene, in its various forms (HDPE, LDPE, LLDPE) constituting roughly one fourth of total annual plastics world production [1]. The domains of applications span from everyday life food packaging, to electric cable insulation, to more niche, though important, sectors like the medical one (e.g., hips prothesis). Polyethylene is vulnerable to oxidation, whose concern depends on the application, its expected lifetime and the environmental conditions in which it is used. For example, the oxidation of PE in contact with biological tissues is a concern for medical applications [2]. Harsh environments (temperature, irradiation) constitute a threat for the lifetime of electric cables used in, e.g., nuclear power plants [3] (NPP).

We focus here on model materials similar to those used for the insulation of electric cables in NPP, in order to investigate the accumulation of oxidation defects under γ -irradiation, at doses typical of NPP ageing. Even model materials, in general, also contain additives like phenolic antioxidants, whose role is to delay the oxidation of the material. Understanding the role of the pristine microstructure on the ageing mechanism is important. For this reason we choose to compare LLDPE (linear low density polyethylene) with a crosslinked polyethylene (XLPE). The investigation conditions are,

Citation: Combining experimental and theoretical tools to probe radio-oxidation products in polyethylene . *Polymers* **2021**, *1*, 0. https://doi.org/

Received: Accepted: Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2023 by the authors. Submitted to *Polymers* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).

- ³⁵ for relatively high doses, representative of the environment of NPP [3,4] and, for dose
- rates, corresponding to accelerated ageing experiments currently available [5–8].
 Several experimental techniques have been used in order to characterise the accurate accurate
 - Several experimental techniques have been used in order to characterise the accumulation of oxidation species, in particular carbonyl species, in oxidized polyethylene.
- Electronic paramagnetic resonance (EPR), for example, has been used since the early
- ³⁰ Electronic paramagnetic resonance (EPK), for example, has been used since the early ⁴⁰ days of irradiation studies of hydrocarbons to detect transient radical species [9], and has
- ⁴¹ been a very useful tool to characterise some radicals [10–13]. It is however a technique
- insensitive to most stable final products, which do not carry an unpaired spin. Other op-
- ³ tical techniques can be used to probe carbonyl species, for example photoluminescence
- (PL) [14,15] or Raman spectroscopy, but they are hardly able to distinguish, from each
 other, the various carbonyl species that might be present in oxidized polyethylene.
- ⁴⁶Other techniques have been used, like NMR [16,17], however their sensitivity is ⁴⁷much lower than what can be considered the technique of choice for a fine characterisa-⁴⁸tion of carbonyl species: Fourier transform infrared spectroscopy (FTIR) [18–23]. This ⁴⁹technique allows the detection of newly formed species in particular in the regions ⁵⁰of 3000-3600 cm⁻¹ (hydroxyl, hydroperoxides), 1600-1800 cm⁻¹ (carbonyl and insatu-⁵¹rations, C=O/C=C bonds). In spite of a lot of remarkable works, the deconvolution ⁵²of all contributions to, e.g., the experimental signature of carbonyls is far from being ⁵³straightforward.

Even this powerful tool suffers from limitations related, on the one hand, to the 54 choice of the carbonyl species to be inserted in the deconvolution procedures and, 55 on the other hand, to reliable assignment of characteristic frequencies and absorption 56 coefficients of each of the included chemical groups [23]. One of the difficulties is to 57 obtain reference data which are representative of the local atomic environment; the latter 58 is not even clearly defined, given the fact that samples of polymers to analyze contain 59 amorphous and crystalline phases. Moreover, even excluding the possibility of finding 60 carbonyl species in the crystalline regions —on the basis of the usual assumption that 61 oxygen cannot diffuse through the crystal— frequency and absorptivity can change 62 according to their localisation in the amorphous and/or at the interface between the 63 crystalline and the amorphous regions.

Our goal, in this work, is to complement experimental characterization by FTIR 65 with theoretical calculations of infrared spectra based on Density Functional Theory (DFT). Calculation of harmonic vibrational frequencies in solids and molecules is based 67 on the calculation of the second derivative of the total energy versus displacements either by finite differences or by linear response approaches [24]. For molecules, extensive tests 69 with various levels of theory suggest scaling factors to correct errors on the frequencies 70 which, nevertheless, only rarely exceed a few percent [25]. Calculations on phonon 71 frequencies of inorganic solids are in general within the same error range with respect to experiments. 73 Intensities associated with a given eigenmode depend on the derivative of the 74

dipole moment with respect to the normal mode coordinate [26]. They can be calcu-75 lated using DFT both for molecules and solids, through Born effective charges and the phonons eigenvectors. Benchmarks on a set of small molecules show that DFT gives 77 results comparable to higher level quantum chemistry approaches at a much lower 78 cost [27]. While, as far as we know, no attempt was made to use IR frequencies and 79 intensities calculated with DFT in order to unravel experimental spectra of carbonyl 80 species in aliphatic polymers, such an approach has been applied to uracil, with a dy-81 namic approach [28], and to hydroxyl containing minerals in order to rationalize their 82 behavior under pressure [29].

In this paper we combine DFT calculations of frequencies and IR intensities of various carbonyl species in a model mimicking the interface between crystalline and amorphous phases in PE, with experimental characterisation of γ -irradiated PE (LLDPE and XLPE) using FTIR. In the following section (2) we give experimental (2.1, 2.1.1, 2.1.2) and theoretical (2.2) details of our approach. Then, we present the results in

- ⁹ section 3 where, after giving the main direct outcome of the experiments (3.1) and of
- ⁹⁰ the calculations (3.2), we compare and combine them to obtain the evolution of the
- concentration of various carbonyl species in the two sets of materials (section 3.3). In the
- ⁹² discussion accompanying the presentation of the results, we highlight the advantage of
- combining theory and experiment in this kind of characterisation and underline some
 open questions that arise from our comparison.
- open questions that arise from our compar

95 2. Materials and Methods

- 96 2.1. Experimental setup
- 97 2.1.1. Sample preparation

Linear Low Density Polyethylene LLDPE (with a density ρ =0.918 g·cm⁻³) was 98 either only shaped as films or it was crosslinked using 1 phr of Dicumyl Peroxide (DCP). The first step consists in producing a homogeneous mixture of the polymer and of the 100 crosslinking agent. Mixtures are made in a Haake thermoScientific twin-screw extruder, 101 the cells having a total volume of 69 cm^3 . They are prepared under air by heating the 102 cells up to 110°C and using a 50 rpm blade rotation speed, filling the Haake with LLDPE. 103 After LLDPE melting, the crosslinking agent is introduced and the mixture is left 5 104 minutes before removal of the twin-screw extruder. Crosslinking and shaping as films 105 are performed in one single stage in a hydraulic press Polystat 200 T heater from Servitec. 106 The following protocol is applied, for pure LLDPE as for LLDPE + DCP: the material is 107 heated up to 170° C then introduced in a 250 μ m spacer, which is itself introduced in the 108 hydraulic press until temperature homogenization is achieved. A pressure of 50 bar is 109 applied for 30 seconds, then it is increased up to 200 bars by 50 bars steps. After keeping 110 the polymer for 15 minutes at 200 bars, the film is finally removed from the hydraulic 111 press and let to cool down before collecting the sample. Hereafter, pure polymer is 112 referred to as LLDPE whereas LLDPE + DCP is referred to as XLPE. Characterization of 113 both materials was carried out and the outcomes are described in the Supplementary 114 Information. The following sum up can be given: LLDPE base material contains a small 115 proportion of Irganox 1076 and its gel fraction is null even after shaping. XLPE contains 116 the same primary antioxidant but also DCP decomposition products; its gel fraction is 117 equal to 67 ± 1 % before irradiation. 118

119 2.1.2. Irradiation

To perform irradiations in controlled atmospheric conditions, each sample was introduced in a glass container of known volume. Ampoules were evacuated using a vacuum line and then filled with reconstituted air (20.0% O₂, 77.99% N₂, 2.01% Kr), krypton being used as a tracer to determine the final pressure. Pictures of similar samples in their glass containers can be found in a previous paper [30]. Sample masses were estimated to obtain, at the end of the irradiation, a final H₂ content of about 1 vol%. This protocol is performed to allow the quantification of the radiolysis gases: the results, out of the scope of this article, will be presented elsewhere. γ -irradiations were performed using ⁶⁰Co sources at the Poseidon facility of LABRA (Saclay, France). Dosimetry was performed using a UNIDOS PTW dosimeter equipped with a calibration chamber adjusted every two years by the CEA's LNHB laboratory. No electronic correction was made to take into account the electronic density difference between water and the polymers. Uncertainties on given doses are less than 6%. Dose rates and doses at which FTIR spectra were collected, are gathered in Table 1. As irradiations have been performed under oxidative atmosphere, the critical thickness not to be exceeded to ensure homogeneous oxidation conditions through the polymer thickness, e_c has to be estimated. We used the Gillen & Clough [31] relation, given by

$$e_c = \sqrt{\frac{8 \cdot p \cdot P(O_2)}{G(-O_2) \cdot I}},\tag{1}$$

Nominal dose (kGy)	Dose rate (Gy/h)	Real dose (kGy)
12	1.07	11.96 ± 0.72
24	1.07	24.02 ± 1.44
50	1.06	49.98 ± 3.00
100	1.06	99.98 ± 6.00

Table 1: Irradiation conditions.

Table 2: FTIR band assignments in the carbonyl area. We note by v_{exp}^* the assigned experimental wavenumber (from the reference in the last column) and with v^{min} and v^{max} the minimum and maximum values allowed in the deconvolution procedure.

FTIR band	v^* [cm ⁻¹]	Degree of	Reference	
assignment		v^{min} [cm ⁻¹]	$v^{max} [\mathrm{cm}^{-1}]$	101010100
Lactone	1785	1783	1787	Ref. [33]
Ketone+alcoho	1706	1704	1708	Theory, this work
Free car-				
boxylic acid	1756	1754	1758	Refs. [33],[34]
or Peracid				
Ester	1740	1738	1742	Ref. [35]
Aldehyde	1730	1728	1732	Ref. [35]
Ketone	1718	1716	1720	Ref. [35]
H-bonded				
carboxylic	1710	1708	1712	Ref. [36]
acid Conjugated ketone	1685	1683	1687	Ref. [32]

where $P(O_2)$ is the oxygen pressure (in atm) in the irradiation cell, p is the oxygen permeation in the polymer (in mol·cm²·kg⁻¹·atm⁻¹·s⁻¹), I is the dose rate (in Gy·s⁻¹), and G(-O₂) is the oxygen consumption radiation chemical yield (in mol·J⁻¹). e_c was estimated to be about 150 μ m. Nominal film thicknesses being about 250 μ m, it has thus to be supposed that irradiations are not performed homogeneously as far as the oxidation is concerned.

2.1.3. Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared (FTIR) spectra of the polymers were acquired using a Bruker Tensor 27 spectrometer equipped with a Bruker Platinum single reflection diamond attenuated total reflectance (ATR) accessory and a DTGS (Deuterated TriGlycine Sulfate) detector. Spectra were recorded between 4000 and 600 cm⁻¹ at a resolution of 2 cm⁻¹ with 64 accumulated scans.

Deconvolution is one of the two techniques usually employed to discriminate the absorption bands, linked to different functional groups, forming a single broad infrared peak [32]. In this study, the fitting is performed on the carbonyl broad peak which grows in PE during radio-oxidation. The fitting was performed assuming the FTIR band assignments given in Table 2, allowing a certain degree of freedom on the positions of the peak maxima and widths.

Deconvolutions were carried out for both materials but only at the two higher doses listed in Table 1, as the carbonyl signal at 12 and 24 kGy was too weak to obtain reliable results. The baseline to be removed was determined in the area 1650-1800 cm⁻¹. The fitting function used is a combination of Gaussian functions, which corresponds to the assumption that linewidths stem essentially from disorder, i.e., that new bonds areformed mainly in the amorphous phase.

For each set of data we carried out four alternative deconvolutions, with different constraints on the FWHM of the gaussian components. The reason for that is, first, to 145 check how the quality of the fit depends on this parameter and, second, to relate this 146 parameter to the spread of the frequencies obtained theoretically while varying the local 147 environment of each of the considered chemical species. The constraints on the FWHM, assumed to be the same for all chemical groups, were: 5-18 cm^{-1} , 10-20 cm^{-1} , 15-25 149 cm⁻¹ and 20-30 cm⁻¹. Experimental analysis generally assumes infrared band widths 150 do not exceed 15 cm^{-1} . However, our theoretical results suggest that bands can be larger. 151 Further details are provided in the Supplementary Information. 152

In addition to the deconvolutions carried out with experimental reference frequencies, a deconvolution of the experimental results was performed with the frequencies obtained by DFT calculations discussed later. In this case the peaks central position were given the same degree of freedom as for experimental reference frequencies, while the widths of the gaussians were allowed to span the range 10 to 20 cm⁻¹.

In the following we will show only the result of one deconvolution (the one with constrained FWHM between 10 and 20 cm⁻¹), but further details are given in the Supplementary Information.

161 2.2. Theoretical approach

Our theoretical approach of the infrared spectrum of polyethylene containing 162 carbonyl defects is based on density functional theory (DFT). Before describing the 163 technical details of the theoretical framework we discuss the model used for polyethylene, in order to represent both the crystalline and the amorphous regions, and their interface. 165 We relied on a slab supercell including a thin crystalline lamella separated by its periodic 166 images, in the direction perpendicular to the lamella surface, by a region which is 167 empty space except for a single chain connecting the two lamella surfaces. This model, containing 150 atoms, is a variant of the model described in detail in [37]; the modification 169 consists in the connecting chain, which was branched on each surface by removing a 170 hydrogen atom. A view of this model can be seen in figure 1. The model was fully 171 relaxed by keeping fixed the in-plane lattice parameter of the orthorhombic crystal and, 172 for the out-of-plane lattice parameter, we kept the value used in [37]. We note that this 173 gives an overall density (0.88 g/cm^{-1}) which is close to typical experimental values for 174 LLDPE. 175

Total energy calculations were performed with norm conserving pseudopotentials and a plane wave basis set with a kinetic-energy cutoff of 80 Rydberg. A Γ -centered 2×3×2 Monkhorst-Pack k-grid was used for representing screening. The atomic structures were relaxed down to a force threshold of 10⁻⁴ Rydberg/Bohr. The chosen exchange correlation (xc) functional is the optB86b van der Waals functional [38] providing a satisfactory description of dispersion forces in polyethylene [39].

The model's eigenfrequencies and infrared activities were calculated in the framework of density functional perturbation theory (DFPT) [24] using the ph.x module of the QUANTUM-ESPRESSO software package [40]. The infrared activity for mode ν , I_{ν} , is obtained from the DFPT Born effective charges $Z^i_{\alpha,\beta}$ and phonon displacements $u^i_{\nu,\beta}$ as

$$I_{\nu} = \sum_{\alpha} \left| \sum_{i,\beta} Z^{i}_{\alpha\beta} u^{i}_{\nu,\beta} \right|^{2}$$
⁽²⁾

where α and β are cartesian directions and i is the label of the atom in the cell. We note that this quantity, proportional to the contribution of a single mode to the IR absorption cross sections ($\sigma_{IR}(\nu)$), is closely related to the molar extinction coefficient, indicated by $\epsilon_{IR}(\nu)$, through $\sigma_{IR}(\nu) = log(10) \times 10^3 / N_A \times \epsilon_{IR}(\nu)$, where N_A is the Avogadro

186 number.

Figure 1. The PE model used for DFT calculations; the periodically repeated unit cell, including a thin crystalline lamella with two surfaces connected by an alkyl chain, is shown. The parameters of the orthorhombic cell, containing 151 atoms, are 9.72, 6.96 and 19.96 Å.

Carbonyl defects of various types were introduced in the lamellar model just 187 described at various possible positions (one at a time); for example, for carboxylic acids 188 the insertion procedure (somewhat more complex then for other groups) consisted 189 in taking three consecutive carbons, saturating the first with an additional hydrogen, 190 removing the second with the two attached hydrogens, and, for the third, substituting 191 the two attached hydrogens with an oxygen atom and an OH group. After the insertion 192 of the carbonyl group the structure was then fully relaxed before performing phonon 193 calculations. In order to classify the different insertion sites, the crystal bulk, the surface, 10/ and the amorphous region separating the two surfaces, were determined on the basis of the in-plane averaged atomic density, as shown in figure 2. 196

197 2.3. Calculation of carbonyl concentrations

The concentration *c* of the various carbonyl species in the four PE samples have been extracted from the gaussian height, outcome of the deconvolution, through the Beer-Lambert law ($A = \epsilon l c$), where ϵ is the molar extinction coefficient at the relevant frequency, assuming that the heights are proportional to the absorbance *A*. The path length *l* corresponds to the effective penetration depth.

FTIR-ATR spectra were recorded in Attenuated Total Reflectance. Using this kind 203 of module, the depth of penetration d_v and the effective penetration d_e can be calculated 204 according to the equations in Ref. [23], using the refractive index of the ATR crystal 205 (diamond, n=2.4) and the refractive index of polyethylene (assuming the value of the pristine material, n=1.5) and an incidence angle of 45°. In our case, the calculated 207 effective penetrations are of the order of 2.5 μ for the frequencies of interest, but we 208 calculated them explicitely as a function of the frequency, thus taking into account the 209 slight difference in penetration depth of the beam at different frequencies. We note that 210 the effective penetratioin depth is then markedly smaller than the critical thickness for 211

Figure 2. Planar average atomic density along the *z* direction (perpendicular to lamella surfaces) for the model shown in Fig. 1. The various curves have been obtained with different choices of the width σ for the gaussian function representing each atom. The region considered as "surface" in the following is delimited by blue vertical lines. Dotted lines are the boundaries of the periodic cell.

oxygen diffusion mentioned above, assuring thus the homogeneity of the oxidation inthe analysed region.

For the ϵ values, those that were not available from experiments, were supplied by theoretical values extracted from our calculated IR activities (see section 2.2), assuming, for a given species i, $\epsilon_i = \epsilon_{ketone}^{exp} \times \frac{\epsilon_i^{theo}}{\epsilon_{ketone}^{theo}}$. The used values will be presented in section 3.2.

218 3. Results and discussion

219 3.1. Analysis of experimental FTIR spectra

Figure 3 presents the deconvolution results obtained for LLDPE irradiated at 50 and 100 kGy; the numerical details are given in Table 3. Analogous results for XLPE irradiated at 50 kGy and 100 kGy are presented in Figure 4 and Table 4.

The main goal of the deconvolutions is to estimate the relative concentrations of 223 the various chemical species produced under irradiation, which can help understanding 224 the kinetic mechanisms driving the degradation of polyethylene under irradiation. To 225 extract concentrations from the parameters of the gaussian functions outcome of the 226 fitting procedure, one has to consider that the molar extinction coefficient ϵ of the various 227 species are potentially different. Moreover, as we will see, some questions remain about 228 the identification/assignment of the frequencies and IR intensity associated with the various experimental peaks. For this reason we first present the theoretical results that 230 we obtained, which can, in some cases, provide missing (or alternative) data for the 231 analysis of the experimental results. 232

233 3.2. Calculated IR spectra

To support the interpretation of the measured FTIR spectra we calculated, using DFPT, the infrared spectra of several carbonyl species, inserted in our lamellar model at various possible insertion sites. These include crystalline bulk sites, carbonyls at carbon atoms sitting on the lamellar surface, or on the chain in the low density region mimicking the amorphous fraction of the polymer. We focus here on the carbonyl region of the spectrum. The absolute value of the calculated frequencies is generally a few tens of cm⁻¹ lower than expected frequencies. This probably comes from the approximations

Figure 3. Deconvolution results for LLDPE irradiated at 50 kGy (left) and 100 kGy (right). FWHM of the fitting gaussians are constrained between 10 and 20 cm⁻¹. The corresponding numerical results given in Table 3.

FTIR band	v_{exp}^*	LLDPE 50 kGy			LLDPE 100 kGy		
attribution	$[cm^{-1}]$	ν	height	FWHM	ν	height	FWHM
Lactone	1785	1787	1.20×10^{-4}	20	1787	3.1^{-4}	20
Ketone+alcohol	1706	1704	6.70×10^{-4}	20	1705	0.00189	19.5
Carboxyle	1756	1758	1.12×10^{-4}	20	1758	$\simeq 2.95{ imes}10^{-5}$	20
Ester	1740	1741	2.47×10^{-4}	15.4	1742	2.45×10^{-4}	15.4
Aldehyde	1730	1730	3.39×10^{-4}	19.7	1730	0.00104	19.6
Ketone	1718	1718	0.00148	18	1719	0.00312	13.5
H-bonded	1710	1710	3.52×10^{-4}	20	1711	0.00139	10
Carboxile Conj. ke-	1685	1685	2.70×10^{-4}	20	1683	6.08×10^{-5}	10.6
tone	1005	1005	2.70×10	20	1005	0.00 \ 10	17.0

Table 3: Numerical results of the deconvolution for LLDPE irradiated at 50 kGy (left) and 100 kGy (right). Constraints on peak positions ν are in Table 2. FWHM of the fitting gaussians are constrained between 10 and 20 cm⁻¹.

Figure 4. Deconvolution results for XLPE irradiated at 50 kGy (left) and 100 kGy (right). FWHM of the fitting gaussians are constrained between 10 and 20 cm⁻¹. Associated numerical results given in Table 4.

FTIR band	ν_{exp}^*	XLPE 50 kGy			XLPE 100 kGy		
attribution	$[cm^{-1}]$	ν	height	FWHM	ν	height	FWHM
Lactone	1785	1785	7.27×10^{-4}	20	1784	0.00175	20
Ketone+alcohol	1706	1705	0.0032	19.4	1704	0.00467	20
Carboxyle	1756	1758	1.21×10^{-4}	20	1758	0.00108	20
Ester	1740	1740	0.0019	17.8	1741	0.00322	17.3
Aldehyde	1730	1728	0.00252	13.5	1730	0.00466	19.7
Ketone	1718	1719	0.00779	10.6	1718	0.00879	14.5
H-bonded carboxyle	1710	1711	0.0033	10.1	1712	0.00218	20
Conjugated ketone	1685	1685	4.95×10^{-4}	20	1684	0.00121	20

Table 4: Numerical results of the deconvolution for XLPE irradiated at 50 kGy (left) and 100 kGy (right). Constraints on peak positions ν are in Table 2. FWHM of the fitting gaussians are constrained between 10 and 20 cm⁻¹.

Table 5: Comparison of theoretical (average) frequencies and IR activities with the corresponding experimental values (frequencies and ϵ are extracted, for each species, from the references mentioned in table 2). The calculated quantities are averaged over a number of insertion sites of the carbonyl in the lamellar model. The standard deviation of the frequencies and of the IR activities are given in parenthesis.

	$v_{th}^{*} [{ m cm}^{-1}]$	v_{exp}^* [cm ⁻¹]	IR activity $[(D/Å)^2 amu^{-1}]$	ϵ [L mol ⁻¹ cm ⁻
Lactone	_	1785	_	720[41]
Ester	1684 (9.4)	1740	10.99 (1.422)	450[42]
Ketone	1672 (9.9)	1718	7.02 (0.827)	300[42]
Aldehyde	1702 (5.1)	1734	7.25 (1.313)	235[23]
Carboxylic Acid (free)	1711 (3.7)	1756	11.50 (2.571)	516[23]
H-bonded Car- boxylic acid	-	1710	_	680[42]
Conjugated	1658 (16.3)	1685	5.10 (1.659)	388[23]
Ketone+Alcohol	1664 (12.1)	_	6.99 (1.291)	_

used, but might also partly depend on the role of the local atomic environment. As a
support to the comparison of experimental and theoretical frequencies, we provide in
the Supplementary Information further results of calculations for isolated molecules,
compared to experimental results obtained for gas, liquid phases or solutions.

However, more than on the absolute value, we focus here on the spread of the frequency for a single species as a function of the position of the carbonyl in the lamellar 246 model. The absolute value of the calculated frequencies are generally on the order of 247 30 cm^{-1} lower than the experimental values presented in Table 2. We summarise in 248 table 5 the average values of calculated frequencies and IR activities and their standard 249 deviation. From the latter one can extract the corresponding FWHM of a corresponding 250 gaussian distribution, that can be compared with the constraints given in the deconvo-251 lution procedure. As an example, the calculated FWHM is \sim 22 cm⁻¹ for ketones, \sim 252 23 cm^{-1} for esters, ~ 9 cm⁻¹ for carboxylic acids, and 38 cm⁻¹ for conjugated ketones, 253 although for the latter two species we have only few data. 254

The discrepancies between theoretical and experimental frequencies is on the order 255 of generally proposed correction factors for quantum chemical calculations of vibrational 256 frequencies [25] for molecules; a scale factor of 1.025 applied to theoretical frequencies 257 would bring them in fair agreement with the experimental reference values. We note 25 that we compared our theoretical carboxylic acid to the free carboxylic acid of table 2, 259 and not to the H-bonded variant, whose experimentally determined frequency would perfectly match our theoretical value. In this respect we performed some tests for small 261 molecules and our theoretical prediction of the vibrational frequency of propionic acid 262 (1772 cm^{-1}) is in fairly good agreement with NIST gas-phase results [43], without the 263 application of the scale factor. This suggests that the role of the local atomic environment 264 and the intermolecular interactions on the characteristic frequencies are still to be fully 265 understood 26

We now analyse the theoretical results, both the frequencies and intensities, according to the position of the carbonyl species in the unit cell. To this goal we now present in a graphical form (figure 5) the results already summarised in table 5, through average values and standard deviations.

The results, within the limit of our model, do not show a strong difference in dispersions, both of frequencies and IR activities, versus the position. However, in particular for esters, the dispersion in the bulk seems a bit less pronounced than on the surface and the low density (amorphous like) region. Figure 6 shows also that the dispersion of the intensities seems much larger for esters and carboxylic acids than for

Figure 5. Calculated frequencies of the carbonyl group for a) ketones, b) esters, c) carboxylic acids, d) enones, presented as a function of the position in the simulation cell in the direction perpendicular to the lamellæ. Vertical blue lines delimit regions identified as amorphous, crystalline, and surface, as shown on top of the graph.

Figure 6. Calculated infrared activities of the carbonyl group for a) ketones, b) esters, c) carboxylic acids, d) enones, presented as a function of the position in the simulation cell in the direction perpendicular to the lamellæ. Vertical blue lines delimit regions identified as amorphous, crystalline, and surface, as shown on top of the graph.

ketones and enones. We note that we do not find any clear sign of correlation betweenthe frequency and the IR activity of the calculated configurations.

We choose to present the theoretical results for frequencies and IR activities obtained with our lamellar model as a function of the position of the carbonyl in the model 279 structure, in particular as a function of the distance with respect to the lamella surface. 280 The idea is to understand if it could be possible, in principle, to distinguish through the 281 IR signal the position of the carbonyls, even if we know that it is generally admitted that oxygen molecules cannot penetrate and thus induce carbonyl formation inside the 283 crystalline regions. If, however, for some reason some oxygen happens to be trapped in 284 a crystalline environment, or able to penetrate it, our results do not support the idea that 285 inside the crystal the frequency values are less dispersed than in the amorphous region, 286 and thus distiguishable in any way. It is true that the lamella in our model is much 287 thinner than real crystalline lamellæ in polyethylene, but we stress also the importance 288 of being able to simulate phenomena at the interface between amorphous and crystal 289 phases, which constitute a relevant fraction of the material [44,45]; moreover, at lamellæ 290 surfaces, at least some of the relevant reactions involved in PE ageing and carbonyl 291 production may take place easier than elsewhere [37]. 292

Let us come now to the dispersion of frequencies as calculated for every single carbonyl type. We note that the gaussian width allowed in experimental deconvolution procedures (10-20 cm⁻¹) are coherent with what we find from our multiple calculations; at least for ketones and esters, for which we have a sufficiently large set of calculated data. This confirms that the origin of the width of infrared peaks associated to each carbonyl type has to be attributed to the variety of local atomic environments available, although not necessarily due to the amorphous nature of the region were carbonyls are formed: for surface and subsurface regions we predict similar dispersions.

If we analyse the comparison of theoretical and experimental frequencies of IR active 301 modes, first we note that the theoretical spectrum of our PE model is globally in good 302 agreement with experiments (see Supplementary information), although with a slight 303 overestimation (1.7%) of the C-H stretching doublet at 2850-2925 cm⁻¹ and a similar 304 underestimation (1.2%) of the bending modes around 1450-1500 cm⁻¹. Concerning the 305 IR active C=O stretching mode used to probe carbonyl species, the underestimation 306 seems to be a bit larger according to table 5, yet quite satisfactory for DFT calculations of 307 this kind. We performed similar calculations for small molecules containing similar C=O 308 bonds and we obtained results which are, in some cases, in even better agreement with 309 the experiment (see Supplementary Information). However, we stress that the choice 310 of the experimental reference value is not always straightforward, even for such small 311 molecules, whose frequency can change significantly according to the investigated phase (gas, liquid, solution). Variations might possibly be expected also between PE samples 313 with different density, additives, and carbonyl concentrations. In order to estimate 314 concentrations, however, we need an even better match with experimental frequencies, 315 thus we chose to scale the theoretical frequencies with a factor (1.025) which brings them close to experimental results (almost minimizing the standard deviation of the error 317 distribution), keeping however the theoretical ratio between frequencies of different 318 carbonyls. 319

A last note on the inclusion, between the various carbonyl species, of ketone+alcohol pairs, for which we do not have an experimental reference. In a recent paper assessing the viability of various reaction paths through energy barrier calculations [37], we suggest that a relevant ketone production mechanism leads to such pairs. Our calculations of vibrational modes shows a slight decrease in the average frequency and, thus, we think it is interesting to include them in the deconvolution procedure.

326 3.3. Concentrations of carbonyl species

The obtained concentrations are shown in figure 7. Here we compare three sets of concentrations, of which the first was obtained uniquely from experimental estimations

Figure 7. Concentrations of various species as determined from FTIR spectra deconvolution for LLDPE and XLPE for two irradiation doses. We show concentrations obtained with three different sets of fitting parameters, coming only from experiments ("Exp"), only from theory ("Theory"), or from a combination of them ("Exp+ ε_{theo} ").

of peak heights and extinction coefficients, the second is issued from a combination of 329 experimental peak heights and theoretical IR activities $/\epsilon$, and the third was obtained 330 using peak heights from a deconvolution based on theoretical frequencies, combined 331 with theoretical IR activities (except for lactones and H-bonded carboxylic acids, which 332 were not in our calculated set). We note that the main outcomes are qualitatively 333 similar for the three sets of concentrations: ketones are the dominant carbonyl type 334 for both material types and doses, as expected from several previous results on similar 335 materials [22,46–48]. Second, the build up of carbonyl species is significantly larger for 336 XLPE than for LLDPE. Third, other species whose concentration is non-negligible are 33 esters, aldehydes, lactones, and conjugated ketones. 338

For the latter, we note the first clear peculiarity of the concentrations obtained uniquely from theoretical frequencies and IR activities: a much higher concentration of enones (α , β -conjugated ketones), which is probably due to two factors: the relative frequency with respect to other species (closer to ketones in the theoretical frequency set) and the lower relative value of the absorption coefficient in the theoretical set with respect to the experimental one. For the latter, the reference experimental value was obtained for propiophenone, an aromatic compound which is, in fact, different from our enone.

The other main difference is the prevalence of esters over aldehydes in the theo-347 retical analysis, in contrast with the experimental one. This comes not only from the 348 different extinction coefficients, but also from the inversion of the frequency ordering 349 between the two species. The fact that, theoretically, we find a slightly higher frequency 350 for aldehydes than for esters is not excluded by the experimental results presented 351 in Ref. [23]. This is not without consequences in assessing the ageing mechanisms in 352 polyethylene, because the presence of aldehydes is directly related to the occurring of 353 β -scission reactions [49], possibly triggered by alkoxy radicals [37]. Esters, on their side, 354

require beforehand the presence of ketone groups which are attacked by alkoxy radicals
 [50]. As products of secondary reactions, their concentration could be expected to be

³⁵⁷ lower than the one of aldehyde groups.

The concentration of ketone+alcohol pairs, which, even in the experimental set of 358 reference data is the only one which is, in fact, coming from our calculations, seems to be 359 in competition with conjugated ketones in the lower frequency section of the carbonyl 360 signal. A larger separation (in frequency) between ketones and ketone+alcohol pairs 361 clearly enhances the calculated concentration of the latter, at the expense of conjugated 362 ketones, which represent the lowest frequency of the fitting set. Nevertheless, even in the 363 fully theoretical set, where ketone and ketone-alcohol pairs are very close in frequency 364 (and then in competition in the deconvolution procedure) their concentration is non 265 negligible, which suggests they cannot be overlooked. 366

The results, in spite of some discrepancies, show that using the outcome of DFT cal-367 culations can be a valuable tool to complement experimental reference data in analysing 368 experimental spectra of aged polymers, and can contribute to a necessary critical assess-360 ment [23] of those reference data, especially concerning the absorption coefficients of 370 various species. The theoretical model of PE used in this paper is a rather simplified one, 371 and yet it contains the main ingredients of the complex microstructure of a semicrys-372 talline polymer. Such feature is important in order to be able to estimate the influence of 373 the local atomic environment on properties, like bond stretching frequencies and dipole 374 moment derivatives, which are fairly local in nature, but not as much so as to guarantee 375 that they can be simulated by isolated molecules in the gas phase. 376

377 4. Summary and Conclusions

In summary, we have analysed the carbonyl degradation products in two polyethylene variants (LLDPE and XLPE) using FTIR spectroscopy. Our analysis of experimental infrared spectra, collected on γ -irradiated samples at two doses, combines usual deconvolution procedures and experimental reference data with an extended first principles study of the infrared spectra of various carbonyl species in a model atomic structure.

Our model contains structural features of the crystalline, the amorphous phases and 383 the interface between them. The theoretical results, in spite of a slight underestimation 384 of the frequency of the carbonyl signals, well inside the expected accuracy of the method, 385 provide reliable infrared activities that can complement experimental estimation in the 386 exploitation of experimental spectra. The spread in frequencies according to the atomic 387 site where the carbonyl is inserted gives an insight into the influence of the local atomic 388 structure (amorphous, lamella surface, crystal) on the frequencies and IR activities and 380 can be compared to those extracted from deconvolution of experimental spectra. 390

The estimation of the concentration of carbonyls of various types based on, uniquely, theoretical data are compared to the outcome of a fully experimental procedure, showing global agreement. Some differences in the ratio of aldehyde to esters, and the contribution of conjugated ketones, raises the question of the contribution of these species in PE ageing under radio-oxidation. Another carbonyl variant which should be further investigated, and which is not systematically included in FTIR analysis of irradiated polyolefins, is a combination of a ketone with an alcohol, as a result of a reaction involving alkoxy radicals.

In conclusion, we think that the approach presented here, combining experimental and theoretical infrared spectra, potentially enhances the capability of FTIR spectroscopy to distinguish and quantify degradation products present in polymers undergoing ageing processes. This method can be easily applied to other polymers, provided a representative atomic model is conceived.

Author Contributions: Conceptualization, M.F., G.R., and Y.N.; methodology, M.F. and G.R.; software, G.R. and Y.A.; validation, M.F, G.R., and Y.N.; formal analysis, M.F. and G.R.; investigation, M.F., G.R., F.L.D., Y.A.; resources, M.F., G.R.; data curation, M.F. and G.R.; writing—original draft

407 preparation, M.F. and G.R.; writing—review and editing, G.R., M.F., Y.N., and Y.A.; visualization,

- G.R. and M.F.; supervision, M.F. and G.R.; project administration, M.F.; funding acquisition, M.F.
 and G.R. All authors have read and agreed to the published version of the manuscript.
- 410 Funding: This publication was prepared in the context of the TeaM Cables project. This project
- has received funding from the Euratom research and training programme 2014-2018 under grant
- agreement No 755183. This work was granted access to the HPC resources of TGCC and IDRIS
- under the allocation 2022A0090906018 made by GENCI and under the allocation by CEA-DEN.
- 414 Institutional Review Board Statement: Not applicable
- **Informed Consent Statement:** Not applicable
- Data Availability Statement: The data presented in this study are available on request from the
 corresponding author.
- **Acknowledgments:** This work was granted access to the HPC resources of TGCC and IDRIS under the allocations 2022-A0130906018 and 2021-A0110906018 made by GENCI.
- The project leading to the work presented here has received funding from the Euratom research and training programme 2014-2018 under grant agreement No.755183.
- The views expressed here are the responsibility of the author(s) only. The EU Commission
- takes no responsibility for any use made of the information set out.
- 424 Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782.
- 2. Ghatge, S.; Yang, Y.; Ahn, J.H.; Hur, H.G. Biodegradation of polyethylene: a brief review. *Applied Biological Chemistry* **2020**, *63*, 27. doi:10.1186/s13765-020-00511-3.
- Ferry, M.; Roma, G.; Cochin, F.; Esnouf, S.; Dauvois, V.; Nizeyimana, F.; Gervais, B.; Ngono-Ravache, Y. 3.16 Polymers in the Nuclear Power Industry. In *Comprehensive Nuclear Materials (Second Edition)*, Second Edition ed.; Konings, R.J.; Stoller, R.E., Eds.; Elsevier: Oxford, 2020; pp. 545 – 580. doi:https://doi.org/10.1016/B978-0-12-803581-8.11616-9.
- 4. Ferry, M.; Pellizzi, E.; Boughattas, I.; Fromentin, E.; Dauvois, V.; de Combarieu, G.; Coignet, P.; Cochin, F.; Ngono-Ravache, Y.; Balanzat, E.; Esnouf, S. Effect of cumulated dose on hydrogen emission from polyethylene irradiated under oxidative atmosphere using gamma rays and ion beams. *Radiation Physics and Chemistry* 2016, *118*, 124–127. Ionizing Radiation and Polymers symposium, IRaP 2014, doi:https://doi.org/10.1016/j.radphyschem.2015.06.006.
- Seguchi, T.; Arakawa, K.; Hayakawa, N.; Machi, S. Radiation induced oxidative degradation of polymers—IV. Dose rate effects on chemical and mechanical properties. *Radiation Physics and Chemistry* (1977) 1981, 18, 671–678. doi:https://doi.org/10.1016/0146-5724(81)90190-4.
- Reynolds, A.; Bell, R.; Bryson, N.; Doyle, T.; Hall, M.; Mason, L.; Quintric, L.; Terwilliger, P. Dose-rate effects on the radiation-induced oxidation of electric cable used in nuclear power plants. *Radiation Physics and Chemistry* 1995, 45, 103–110. doi:https://doi.org/10.1016/0969-806X(94)E0003-2.
- Sidi, A.; Colombani, J.; Larché, J.F.; Rivaton, A. Multiscale analysis of the radiooxidative degradation of EVA/EPDM composites. ATH filler and dose rate effect. *Radiation Physics and Chemistry* 2018, 142, 14–22. Ionizing Radiations and Polymers, IRaP-2016, doi:https://doi.org/10.1016/j.radphyschem.2017.04.007.
- Suraci, S.V.; Amat, S.; Hippolyte, L.; Malechaux, A.; Fabiani, D.; Le Gall, C.; Juan, O.; Dupuy, N. Ageing evaluation of cable insulations subjected to radiation ageing: Application of principal component analyses to Fourier Transform Infra-Red and dielectric spectroscopy. *High Voltage* 2022, *7*, 652–665, [https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/hve2.12239]. doi:https://doi.org/10.1049/hve2.12239.
- Fessenden, R.W.; Schuler, R.H. Electron Spin Resonance Studies of Transient Alkyl Radicals. *The Journal of Chemical Physics* 1963, 39, 2147–2195, [https://doi.org/10.1063/1.1701415]. doi:10.1063/1.1701415.
- Keyser, R.M.; Tsuji, K.; Williams, F. Trapped Electrons in γ-Irradiated Polyethylene Indentified by Electron Spin Resonance Spectroscopy. *Macromolecules* 1968, 1, 289–290, [https://doi.org/10.1021/ma60003a018]. doi:10.1021/ma60003a018.
- Hikmet, R.; Keller, A. Crystallinity dependent free radical formation and decay in irradiated polyethylene in the presence of oxygen. *International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry* 1987, 29, 15–19. doi:https://doi.org/10.1016/1359-0197(87)90055-5.
- Salih, M.; Buttafava, A.; Ravasio, U.; Mariani, M.; Faucitano, A. EPR investigation on radiation-induced graft copolymerization of styrene onto polyethylene: Energy transfer effects. *Radiation Physics and Chemistry* 2007, 76, 1360–1366. Proceedings of the 11th Tihany Symposium on Radiation Chemistry, doi:https://doi.org/10.1016/j.radphyschem.2007.02.032.
- Przybytniak, G.; Sadło, J.; Walo, M.; Wróbel, N.; Žák, P. Comparison of radical processes in non-aged and radiation-aged polyethylene unprotected or protected by antioxidants. *Materials Today Communications* 2020, 25, 101521. doi:https://doi.org/10.1016/j.mtcomm.2020

- 14. Osawa, Z.; Kuroda, H. Differences in polyene formation between polyethylene and polypropylene during photo-irradiation. *Polymer Photochemistry* **1986**, *7*, 231–236. doi:https://doi.org/10.1016/0144-2880(86)90029-1.
- 15. Teyssedre, G.; Cissé, L.; Laurent, C.; Massines, F.; Tiemblo, P. Spectral Analysis of Optical Emission Due to Isothermal Charge Recombination in Polyolefins. *IEEE Transactions on Dielectrics and Electrical Insulation* **1998**.
- 16. Randall, J.; Zoepfl, F.; Silverman, J. High-resolution solution carbon 13 NMR measurements of irradiated polyethylene. *Radiation Physics and Chemistry* (1977) **1983**, 22, 183–192. doi:https://doi.org/10.1016/0146-5724(83)90202-9.
- 17. Palmas, P.; Le Campion, L.; Bourgeoisat, C.; Martel, L. Curing and thermal ageing of elastomers as studied by 1H broadband and 13C high-resolution solid-state NMR. *Polymer* **2001**, *42*, 7675–7683. doi:https://doi.org/10.1016/S0032-3861(01)00249-X.
- Fallgatter, M.B.; Dole, M. The Radiation Chemistry of Polyethylene. VII. Polyene Formation1. *The Journal of Physical Chemistry* 1964, 68, 1988–1997, [https://doi.org/10.1021/j100789a053]. doi:10.1021/j100789a053.
- Mailhot, B.; Gardette, J.L. Polystyrene photooxidation. 2. A pseudo wavelength effect. *Macromolecules* 1992, 25, 4127–4133, [https://doi.org/10.1021/ma00042a013]. doi:10.1021/ma00042a013.
- 20. Möller, K.; Gevert, T. A solid-state investigation of the desorption/evaporation of hindered phenols from low density polyethylene using FTIR and UV spectroscopy with integrating sphere: The effect of molecular size on the desorption. *Journal of Applied Polymer Science* **1996**, *61*, 1149–1162.
- Rivaton, A.; Cambon, S.; Gardette, J.L. Radiochemical ageing of EPDM elastomers.: 2. Identification and quantification of chemical changes in EPDM and EPR films γ-irradiated under oxygen atmosphere. *Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms* 2005, 227, 343–356. doi:https://doi.org/10.1016/j.nimb.2004.09.008.
- 22. Gardette, M.; Perthue, A.; Gardette, J.L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo- and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content. *Polymer Degradation and Stability* **2013**, *98*, 2383–2390. doi:https://doi.org/10.1016/j.polymdegradstab.2013.07.017.
- 23. Celina, M.C.; Linde, E.; Martinez, E. Carbonyl Identification and Quantification Uncertainties for Oxidative Polymer Degradation. *Polymer Degradation and Stability* **2021**, *188*, 109550. doi:https://doi.org/10.1016/j.polymdegradstab.2021.109550.
- 24. Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. *Rev. Mod. Phys.* 2001, *73*, 515.
- 25. Schott, A.P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical ScaleFactors. J. Phys. Chem. **1996**, 100, 16502.
- Porezag, D.; Pederson, M.R. Infrared intensities and Raman-scattering activities within density-functional theory. *Phys. Rev. B* 1996, 54, 7830. Publisher: American Physical Society, doi:10.1103/PhysRevB.54.7830.
- Halls, M.D.; Schlegel, H.B. Comparison of the performance of local, gradient-corrected, and hybrid density functional models in predicting infrared intensities. *The Journal of Chemical Physics* 1998, 109, 10587–10593, [https://doi.org/10.1063/1.476518]. doi:10.1063/1.476518.
- 28. Gaigeot, M.P.; Sprik, M. Ab Initio Molecular Dynamics Computation of the Infrared Spectrum of Aqueous Uracil. *J. Phys. Chem. B* **2003**, *107*, 10344.
- 29. Welch, M.D.; Montgomery, W.; Balan, E.; Lerch, P. Insights into the high-pressure behavior of kaolinite from infrared spectroscopy and quantum-mechanical calculations. *Physics and Chemistry of Minerals* **2012**, *39*, 143–151. doi:10.1007/s00269-011-0469-5.
- Ferry, M.; Carpentier, F.; Cornaton, M. Radio-Oxidation Ageing of XLPE Containing Different Additives and Filler: Effect on the Gases Emission and Consumption. *Polymers* 2021, 13. doi:10.3390/polym13172845.
- Gillen, K.T.; Clough, R.L., Quantitative Confirmation of Simple Theoretical Models for Diffusion-Limited Oxidation. In *Radiation Effects on Polymers*; American Chemical Society, 1991; chapter 28, pp. 457–472, [https://pubs.acs.org/doi/pdf/10.1021/bk-1991-0475.ch028]. doi:10.1021/bk-1991-0475.ch028.
- Ngono-Ravache, Y.; Damaj, Z.; Dannoux-Papin, A.; Ferry, M.; Esnouf, S.; Cochin, F.; De Combarieu, G.; Balanzat, E. Effect of swift heavy ions on an EPDM elastomer in the presence of oxygen: LET effect on the radiation-induced chemical ageing. *Polymer Degradation and Stability* 2015, 111, 89–101. doi:https://doi.org/10.1016/j.polymdegradstab.2014.10.013.
- 33. Boullier, I. Etude du comportement de polyolefines et de polymeres fluores dans des conditions de vieillissement naturel et accelere. PhD thesis, Université des Antilles et de la Guyane, 2000. Thèse de doctorat dirigée par Dupont, Michel Sciences et techniques Antilles-Guyane 2000.
- 34. Lacoste, J.; Carlsson, D.J. Gamma-, photo-, and thermally-initiated oxidation of linear low density polyethylene: A quantitative comparison of oxidation products. *Journal of Polymer Science Part A: Polymer Chemistry* **1992**, *30*, 493–500, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/pola.1992.080300316]. doi:https://doi.org/10.1002/pola.1992.080300316.
- Luongo, J.P. Infrared study of oxygenated groups formed in polyethylene during oxidation. *Journal of Polymer Science* 1960, 42, 139– 150, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1960.1204213916]. doi:https://doi.org/10.1002/pol.1960.1204213916.
- 36. Teissèdre, G.; Pilichowski, J.; Lacoste, J. Photoageing of polyolefins. I. Photolysis of low molecular weight hydroperoxide at λ ≥ 300 nm. *Polymer Degradation and Stability* **1994**, 45, 145–153. doi:https://doi.org/10.1016/0141-3910(94)90190-2.
- Ahn, Y.; Roma, G.; Colin, X. Elucidating the Role of Alkoxy Radicals in Polyethylene Radio-Oxidation Kinetics. *Macromolecules* 2022, 55, 8676–8684, [https://doi.org/10.1021/acs.macromol.2c01135]. doi:10.1021/acs.macromol.2c01135.
- 38. Klimeš.; Bowler, D.R.; Michaelides, A. Van der Waals density functionals applied to solids. *Phys. Rev. B* 2011, *83*, 195131. Publisher: American Physical Society, doi:10.1103/PhysRevB.83.195131.

- 39. Roma, G.; Bruneval, F.; Martin-Samos, L. Optical Properties of Saturated and Unsaturated Carbonyl Defects in Polyethylene. *J. Phys. Chem. B* 2018, 122, 2023–2030, [https://doi.org/10.1021/acs.jpcb.7b12172]. doi:https://dx.doi.org/10.1021/acs.jpcb.7b12172.
- 40. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; Corso, A.D.; Gironcoli, S.d.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A.P.; Smogunov, A.; Umari, P.; Wentzcovitch, R.M. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. *J. Phys.: Condens. Matter* 2009, *21*, 395502.
- Lacoste, J.; Carlsson, D.; Falicki, S.; Wiles, D. Polyethylene hydroperoxide decomposition products. *Polymer Degradation and Stability* 1991, 34, 309–323. Polymer Stabilisation Mechanisms and Applications, doi:https://doi.org/10.1016/0141-3910(91)90125-B.
- 42. Carlsson, D.J.; Wiles, D.M. The Photodegradation of Polypropylene Films. II. Photolysis of Ketonic Oxidation Products. *Macromolecules* **1969**, *2*, 587–597, [https://doi.org/10.1021/ma60012a006]. doi:10.1021/ma60012a006.
- 43. Sadtler Research Labs Under US-EPA Contract. NIST Standard Reference Database 35, NIST/EPA Gas-Phase Infrared Database JCAMP Format. Technical report, NIST Mass Spectrometry Data Center, William E. Wallace, director, 2018. doi:10.18434/T4D303.
- 44. Zhou, H.; Wilkes, G. Comparison of lamellar thickness and its distribution determined from d.s.c., SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology. *Polymer* **1997**, *38*, 5735–5747. doi:https://doi.org/10.1016/S0032-3861(97)00145-6.
- Savage, R.C.; Mullin, N.; Hobbs, J.K. Molecular Conformation at the Crystal–Amorphous Interface in Polyethylene. *Macromol.* 2015, 48, 6160–6165, [https://doi.org/10.1021/ma5025736]. doi:10.1021/ma5025736].
- 46. Fodor, Z.; Iring, M.; Tüdős, F.; Kelen, T. Determination of carbonyl-containing functional groups in oxidized polyethylene. *Journal of Polymer Science: Polymer Chemistry Edition* **1984**, 22, 2539–2550.
- 47. Costa, L.; Luda, M.; Trossarelli, L. Ultra high molecular weight polyethylene—II. Thermal-and photo-oxidation. *Polymer Degradation and Stability* **1997**, *58*, 41–54.
- Salvalaggio, M.; Bagatin, R.; Fornaroli, M.; Fanutti, S.; Palmery, S.; Battistel, E. Multi-component analysis of low-density polyethylene oxidative degradation. *Polymer degradation and stability* 2006, *91*, 2775–2785.
- Khelidj, N.; Colin, X.; Audouin, L.; Verdu, J.; Monchy-Leroy, C.; Prunier, V. Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part I. The case of "pure" radiochemical initiation. *Polymer Degradation and Stability* 2006, 91, 1593 1597. doi:https://doi.org/10.1016/j.polymdegradstab.2005.09.011.
- 50. Cambon, S. Étude du mécanisme de dégradation radiochimique d'un élastomère de type EPDM. PhD thesis, Université de Clermont Ferrand, 2001.