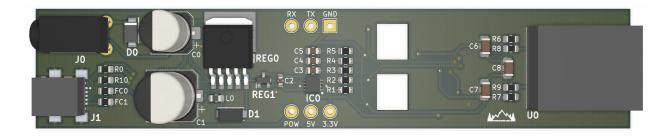
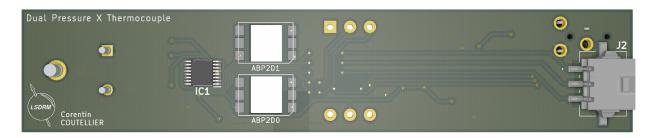
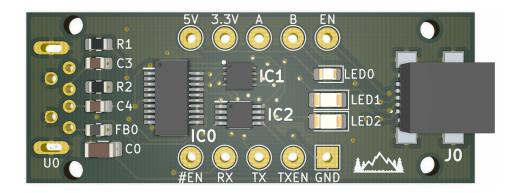
Supporting Information

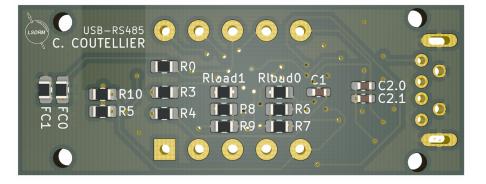
An integrated stopped-flow device for the study of porous materials using hyperpolarized ¹²⁹Xe NMR


Jing Li,‡ Estelle Léonce,‡ Corentin Coutellier,‡ Céline Boutin,‡ Kévin Chighine,‡ Charles Rivron,‡


Anne Davidson,§ and Patrick Berthault‡*

‡ NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France


§ Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Université Paris 06, UMR CNRS 7197, 4 Place Jussieu, 75005 Paris, France


- Figure S1. Front and back of the used data acquisition board for dual pressure measurement.
- Figure \$2. USB to UART RS485 protocol bridge module front and back.
- Figure \$3. N₂ adsorption and desorption isotherms of MCM-41.
- Table \$1. Pore volume, pore size and surface area of MCM-41 as derived from N2 sorption.
- **Figure \$4.** Continuous hyperpolarized ¹²⁹Xe spectra of MCM-41 after elimination of the organic template in pores by calcination under 900°C for 8 hours.
- Figure \$5. Self-diffusion data points for peak F recorded in the first two gradient loops.
- Figure S6. TOPSPIN pulse program for the used HP ¹²⁹Xe self-diffusion experiments.
- Figure S7. TOPSPIN pulse program for the used HP ¹²⁹Xe EXSY experiments.

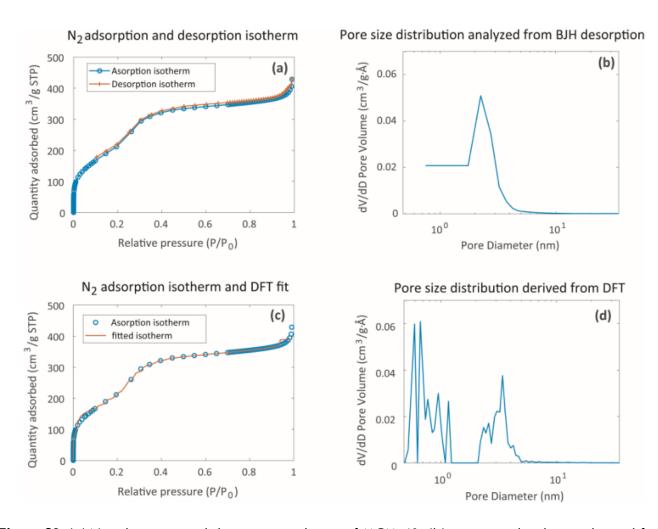
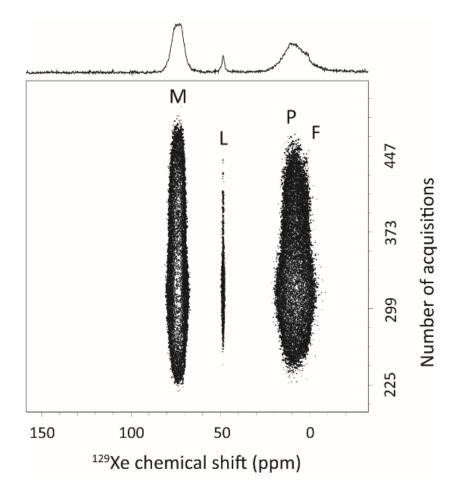
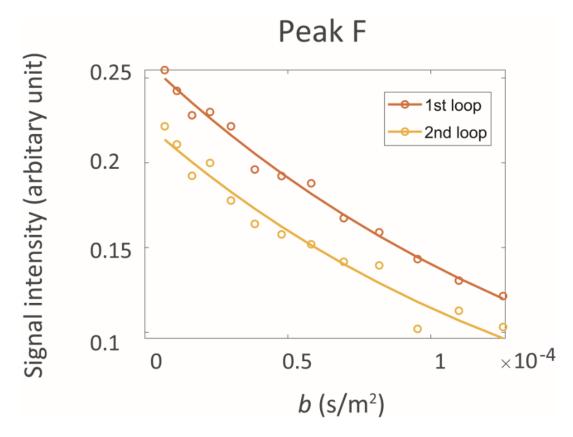


Figure \$1. Front and back of the used data acquisition board for dual pressure measurement. Empty spaces in ABP2Dx areas are for soldering the pressure sensors (ABP2MANT010BAAA5XX).


Figure S2. USB to UART RS485 protocol bridge module front and back. At the left of the front part, a USB connector (MC32603) is soldered to connect the module to a computer.


Figure S3. (a) N_2 adsorption and desorption isotherms of MCM-41; (b) pore size distribution derived from the BJH desorption analysis; (c) NLDFT fit of the adsorption isotherm and (d) pore size distribution derived from NLDFT analysis.

	BET	surface	area	DFT	surface	area	BJH	pore	volume	DFT	pore	volume
(m^2/g)			(m ² /g)			(cm ³ /g)			(cm ³ /g)			
	885.801 <i>7</i>		1307.951			0.74			0.60			

Table S1. Pore volume, pore size and surface area of MCM-41 as derived from N_2 sorption.

Figure S4. Continuous hyperpolarized ¹²⁹Xe spectra of MCM-41 after elimination of the organic template in pores by calcination under 900°C for 8 hours.

Figure S5. Self-diffusion data points for peak F recorded in the first two gradient loops. Extracted self-diffusion D values: $6.2\ 10^{-6}\ m^2/s$ for the first loop; $6.7\ 10^{-6}\ m^2/s$ for the second loop.

```
;SELF-DIFFUSION EXPERIMENT (PB)
;avance-version
;from stegp1s
;2D sequence for diffusion measurement using stimulated echo using 1 spoil gradient
#include <Avance.incl>
#include <Grad.incl>
#include <Delay.incl>
define list<gradient> diff=<Difframp>
"DELTA1=d20-p1*2-p30-d16-p19-d16"
"I2=td1/I1"
1 ze
 30m
2 1 m setnmr 3 | 28
                                                  ; Activate syringe pump and open gas circuit
 d10
                                                  ; Push duration
 20u setnmr3<sup>28</sup>
                                                  ; Stop syringe pump and close circuit
4 d1
                                                  ; Recovery delay
 p0 ph4
                                                  ; Small flip-angle pulse
 go=4 ph30
 d11 wr #1 if #1 zd
 ; Start of DOSY sequence
5 1m setnmr3 | 28
                                                  ; Activate syringe pump and open gas circuit
 d10 UNBLKGRAMP
                                                  ; Push duration
 20u setnmr3<sup>^</sup>28
                                                  ; Stop syringe pump and close circuit
 d1
 pl phl
 p30:gp6*diff
 d16
 p1 ph2
 d12
 p19:gp7
 d16
 DELTA1
 p1 ph3
 p30:gp6*diff
 d16
 4u BLKGRAMP
 go=5 ph31
 d11 wr #0 if #0 zd
 5m igrad diff
 lo to 2 times 11
                                    ; number of points in the indirect dimension of each DOSY
 5m zgrad diff
 lo to 2 times 12
                                    ; number of DOSY experiments
exit
ph1=0000222211113333
ph2 = 0.2
ph3 = 1302
ph4=0.2
ph30=0 2
ph31=0022220033111133
```

```
; d16: delay for gradient recovery
; d20: diffusion time (big DELTA)
; td1: number of experiments
; FnMODE: QF
; use xf2 and DOSY processing
; use gradient ratio: gp 6: gp 7 100:-17.13 or else:-)
```

Figure S6. TOPSPIN pulse program for the used ¹²⁹Xe self-diffusion experiments.

```
;EXSY experiment (PB)
;avance-version
;from noesyph
#include <Avance.incl>
"in0=inf1"
1 ze
 30m
2 d1 setnmr3 | 28
                                                                  ; Activate syringe pump and open gas
circuit
 d10
                                                                  ; push duration
 20u setnmr3<sup>^</sup>28
                                                                  ; Stop syringe pump and close circuit
4 d1
 pl phl
 d0
 p1 ph2
 d8
 p1 ph3
 go=2 ph31
 d11 mc #0 to 2 F1PH(calph(ph1, +90), caldel(d0, +in0))
exit
ph1=(360) 45 225
ph2=0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2
ph3=0 0 2 2 1 1 3 3
ph31=0 2 2 0 1 3 3 1 2 0 0 2 3 1 1 3
```

Figure S7. TOPSPIN pulse program for the used ¹²⁹Xe EXSY experiments.