
HAL Id: cea-04576829
https://cea.hal.science/cea-04576829

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FUBA: Federated uncovering of backdoor attacks for
heterogeneous data

Fabiola Espinoza Castellon, Deepika Singh, Aurélien Mayoue, Cedric
Gouy-Pailler

To cite this version:
Fabiola Espinoza Castellon, Deepika Singh, Aurélien Mayoue, Cedric Gouy-Pailler. FUBA: Federated
uncovering of backdoor attacks for heterogeneous data. TPS-ISA 2023 - 5th IEEE International
Conference on Trust, Privacy and Security in Intelligent Systems and Applications, Nov 2023, Atlanta,
United States. pp.55-63, �10.1109/TPS-ISA58951.2023.00017�. �cea-04576829�

https://cea.hal.science/cea-04576829
https://hal.archives-ouvertes.fr


FUBA: Federated Uncovering of Backdoor Attacks
for Heterogeneous Data

Fabiola Espinoza Castellon∗, Deepika Singh∗, Aurélien Mayoue∗, Cédric Gouy-Pailler∗
fabiola.espinozacastellon@cea.fr

∗ Institut LIST, CEA, Universite Paris-Saclay
F-91120, Palaiseau, France

Abstract—This paper proposes a post-training defense against
pattern-triggered backdoor attacks in federated learning con-
texts. This approach relies first on the server estimating the attack
pattern. The server then provides the estimated pattern to the
end-users, who use it directly on their local data to mitigate
backdoor attacks during inference time. This scheme offers an
improvement over the existing approaches by demonstrating
robustness to data heterogeneity among users without needing
a shared dataset or additional information from users and
regardless of the number of malicious clients. Based on extensive
comparison with existing state-of-the-art methods on well-known
computer vision datasets, the proposed method is shown to
succeed in mitigating backdoor attacks while preserving high
accuracy on clean inputs.

Index Terms—federated learning, backdoor attacks, defense,
heterogeneous data

I. INTRODUCTION

Nowadays, machine learning is used in countless applica-
tions, owing to the fact that different entities, called clients
or participants, generate large amounts of data. This data can
be generated by clients subscribed to an IoT service, medical
establishments possessing patients’ data, autonomous cars, etc.
Traditionally, data provided by participants is centralized in
a data center to train the machine learning model. However,
the data produced could be confidential in nature or sizable.
Directly gathering data could thus raise privacy and commu-
nication cost issues. To address these issues, [1] proposed
a protocol with privacy-preserving properties and efficiency,
known as Federated learning (FL). In FL, the goal is to
build a global model with various participants who update
model’s parameters locally, without them sharing their data.
A central entity, known as the server, coordinates this process
by averaging clients’ updates, without seeing clients’ data.

However, by preserving privacy and receiving updates
blindly from clients, FL is vulnerable to a variety of training-
time attacks from certain malicious clients who want to de-
grade the global model. For instance, byzantine attacks consist
in sending altered updates to the server to decrease the overall
model performance or to make the training process completely
diverge. On the other hand, backdoor attacks (BAs) instill a
specific unwanted behavior into the model for some specific
data instances while maintaining a satisfying performance on
the rest of the instances. These attacks try to embed a behavior
in the model that can cause misclassifications to a particular
target class t when desired. This is achieved by poisoning part

of the training data with a specific pattern and changing the
true labels to the target label t. Contrary to byzantine attacks,
such targeted attacks are stealthy as the infected model still
has normal behavior on clean inputs. Furthermore, they are
effective because an input with the trigger is predicted as the
target label with high probability. These two properties make
the BAs threatening and hard to detect.

In this study, we propose FUBA, a new Federated defense to
Uncover Backdoor Attacks. We argue that the strength of such
attacks lays them open to disclosure. An attacked model can
be considered as overfitted for a specific class (the target label
t) on data poisoned by a specific pattern. A direct correlation
is created between the attacked class and the hidden pattern,
which makes the uncovering of the attack pattern possible. Our
goal is thus to reveal the hidden pattern and use it as a shield
against poisoned models. More precisely, the main steps of
our method are to: (1) retrieve noised estimations of the attack
trigger without using clean data, (2) define a final patch for
the defense and (3) distribute the final patch as a bandage to
the end-users who will deploy it during inference. Our method
defends against BAs without requiring strong assumptions.

Our main contributions rely on proposing a new defense,
well-designed for FL scenarios:

• Unaffected by data distribution: most defenses require
data distribution to be homogeneous among clients, which
is not the case in our protocol.

• Unaffected by the number of attackers: most defenses
require a majority of honest clients, which is not the case
in our protocol.

• Built at the server side, without accessing significant
information from clients, such as common clean data.

Further, we lead extensive experiments to validate the effi-
ciency of our method on multiple computer vision datasets.

II. RELATED WORK

The FL algorithm FedAvg, formalized by [1], consists of
a succession of rounds coordinated by a central server. At
each round t, the server sends a global model wt to the
K clients. According to their availability and computational
capacity, a subset Ct of C · K ≤ K clients participate at
round t. Participants learn a personal task on their devices.
More specifically, client k uses its dataset to minimize a
proper objective function fk with stochastic gradient descent
(SGD), a number of epochs E and a mini-batch size B.



Fig. 1: Overview of FUBA.

Each client k then sends updates wk
t to the server who

averages the received parameters to obtain a new global model
wt+1 =

∑
k∈Ct

nk

N wk
t , where nk is the number of samples of

client k and N =
∑

q∈Ct
nq . The global objective function

f is formulated as the sum of the local objective functions
fk weighted by the proportion of each client k’s samples,
pk = nk

N :

min
w

f(w) = min
w

K∑
k=1

pkfk(w) (1)

FL is inherently vulnerable to attacks because the remote
server has no control over the updates it receives from partic-
ipants nor over the data participants use to train their models.
In this study, we focus on backdoor attacks (BAs) that were
introduced by Gu et al. [2] in a centralized setting. Further
works [3], [4] have shown that these attacks can also be
successful in FL. If a certain number of malicious clients m
train their model with a certain proportion p of their own local
data poisoned by a given pattern, the BA still persists in the
global model, despite averaging loyal and malicious clients’
weights.

In FL, most defenses [3], [5]–[7] change the aggregation
rule on the server-side to ignore or change potential malicious
contributions. Two well-known defenses in FL are Krum
[5] and the coordinate-wise median (Med) aggregation [6].
However, these defenses assume that the data distribution
among clients is independent and identically distributed (IID)
and are robust only when the number of attackers is less
than 50%. In practice, clients in FL often have different data
distributions [8] due to factors such as personal preferences,
geographical location, and device capabilities. Additionally,
the server has limited control over the number of potentially

Fig. 2: Shapley values quantify the contribution brought by
each pixel to the prediction made by the corrupted model.
The cross pattern positively contributes to the prediction of the
targeted class 7 and weights negatively towards the prediction
of the other classes.

malicious clients. Therefore, it is crucial for a defense to take
into account these challenges. Sun et al. [3] and Ozdayi et
al. [7] propose defenses that prove to work in such cases
since they were applied to non-IID datasets. Sun et al. [3]
apply weak differential privacy (wDP) to the federated model
to decrease BAs: weights are clipped and noised before
averaging. Ozadayi et al. [7] propose Robust Learning Rate
(RLR), which carefully adjusts the aggregation server learning
rate to mitigate updates that could be harmful to the global
model. However, when data is strongly heterogeneous among
clients (label skew, see Section IV) these defenses are less
efficient. This deterioration can be due to updates that diverge
without necessarily being malicious.

In a centralized setting, Neural Cleanse [9] defends from
BAs by reconstructing possible triggers, independently from
the data distribution or the strength of the attack. However,
the method proposed in Neural Cleanse [9] requires access to
a clean training dataset. We consider that in FL, the server
can not have access to training data since one of the assets of
FL is to preserve privacy. In an FL setting, Zhao et al. [10]
propose FedReverse (FedR) to reconstruct possible triggers.
The trigger reconstruction is performed by clients, who then
send their results to the server. However, once again the server
is blind to the reliability of the information it receives from
the clients. Its defense can be put to failure if the majority
of client sends wrong information. Wu et al. [11] propose a
defense that prunes “dormant” neurons (FedPrun), which are
low activation neurons that presumably encode the backdoor
attack. The server prunes neurons through a voting process
based on information sent by clients. The defense is thus still
dependent on clients, who can send erroneous information to
weaken the defense.

Overall, existing defenses have three main weaknesses (see
Table I): (1) some are not effective on non-IID data, which is a
natural situation in FL, (2) some are not effective if more than
50% of the clients are malicious and (3) some rely strongly on
information sent by clients, who can corrupt this information
to counter the defense. We propose a defense that addresses
these three challenges.



Krum Med RLR wDP FedR FedPrun Ours
1 ✗ ✗ ✗ ✗ ✓ ✓ ✓
2 ✗ ✗ ✗ ✓ ✗ ✗ ✓
3 ✓ ✓ ✓ ✓ ✗ ✗ ✓

TABLE I: State-of-the-art defenses on three criteria: (1) ef-
fective on non-IID data, (2) effective on more than 50% of
malicious clients, and (3) low reliability on clients (which can
be malicious).

III. PROPOSED METHOD

A. Overview

We would like to clarify that we tackle attacks in which
all malicious users add the same trigger to their data. We do
not treat semantic attacks [12] nor distributed attacks [13].
Moreover, our attack is targeted: every poisoned sample is
labeled as the same targeted class t, regardless of its true label.
Malicious clients poise their input data x through a pattern T,
a mask M and function g:

g(x,M,T)i,j = (1−Mi,j) · xi,j +Mi,j ·Ti,j (2)

If T is added to an input sample, then its class is set to the
target class t.

Fig 1 illustrates the overall procedure of our method. First,
clients participate in a standard federated training process (Fig
1 (1)). Some clients can be malicious and send models trained
on corrupted data. The global resulting model will thus be
corrupted. After the federated learning process has converged
and end-users want to use the global model for inference, the
server takes on the role of the defender to warn of the potential
dangers of the global model. To uncover the hidden attack
trigger, the server computes a noisy estimate of it by inverting
the global corrupted model (Fig 1 (2)). Then, it decides on a
final defense patch and sends it to the end-users who will use
the patch during inference to blur the area where an attack
could be present (Fig 1 (3)).

B. Poisoned model

Consider a classification task on a shared dataset D =
{z0, z1, ..., zN} = {(x0, y0), (x1, y1), ..., (xN , yN )} where x
and y represent the input samples and the true labels of the
samples respectively. Eq. 1 also depends on the inputs of the
network. The global objective function can be rewritten as the
empirical risk over the clients’ local datasets Dk:

f̃(z;w) =

K∑
k=1

pkE(z)∼Dk
[fk(z;w)] (3)

To successfully attack a model, a malicious client has to
optimize the model’s weights such that when an input has a
backdoor trigger, the loss function is low for the target label.
Particularly, if a client k is malicious, then its dataset Dk is
the union of clean data and poisoned data Dk = Dc

k∪Db
k and

its local objective is more precisely:

f̃k(z;w) = E(z)∼Dc
k
[fk(z;w)] + E(x,y)∼Db

k
[fk(x, y = t;w)]

The global objective function has thus two supports:

Algorithm 1 Model inversion MI

Input: Corrupted weights w
Parameters: Number of samples for optimization n, di-
mension d of the inputs, set of possible classes T , loss
function L, defense learning rate αd, number of iterations
I

1: for y ∈ T do
2: Let xy ∼ U(0, 1), where xy ∈ Rn×d

3: for i in 1, ..., I do
4: xy ←− xy − αd

∂L(xy,y;w)
∂xy

5: end for
6: end for
7: return {xy}y∈T

f̃(z;w) =

K∑
k=1

pkE(z)∼Dc
k
[fk(z;w)]+∑

k∈Cm

pkE(x,y)∼Db
k
[fk(x, y = t;w)] (4)

where Cm is the subset of malicious clients. Note that every
client has part of its objective function over clean data because
every client, even if malicious, has clean data.

If the data is heterogenous between clients, the loss function
is to be summed over more distributions than in Eq. 4, which
is here used simply for explanation purposes.

C. Noisy reconstruction of the attack trigger
As the defender, the server’s goal is to uncover the attack.

It uses the strength of BAs as vulnerabilities. More precisely,
BAs have some characteristics:
• When malicious clients add the trigger to samples, they

consistently change their class to the target label t. Thus,
the trigger pattern is positively correlated to the attacked
class by the corrupted model, but also negatively correlated
to all other classes. This is illustrated by Shapley values [14]
in Fig 2.

• During FL training, the loss function of the poisoned data
and target label t converges to lower values than the loss
function of clean data and labels (Fig 3 top).

• An attacked model is very confident of its predictions as the
target label t on poisoned data (Fig 3 bottom).
To approximate the trigger pattern, NeuralCleanse [9] op-

timizes an objective function, in our case (Eq. 4), for which
the input is g(x,M,T) (defined in Eq. 2). The optimization is
done on (M,T) and requires access to the clean distribution⋃

k∈[1,K] D
c
k. However, in FL the server does not have access

to clean data, and in most cases, it does not have access to a
shared dataset either. To relax this assumption, our goal is to
find an input zτ that has a low minima on the global objective
function Eq. 4 and on label τ , which we want to be the target
label t. Similarly to [15], the server has to inverse the corrupted
model and will optimize.

min
zτ

f̃(zτ , t;w) (5)



Fig. 3: (Top) Loss values during FL training. (Bottom) Pseudo probabilities (output logits) on test data during FL training.
Only correct predictions were reported. The backdoor task considers a prediction as correct if it is for the target label t on
poisoned data. Fig shows mean ± standard deviation of all experiments. Each experiment has a different class as attack target
t so that all classes were at attack targets at least once. Experiments on cross attack for datasets MNIST and Fashion MNIST
and on yellow sticker attack for GTSRB (see Section IV).

T̂, the estimation of the trigger T, is obtained through clean-
ing estimations zτ (see Section III-D): T̂ = clean((zτ )τ∈T ),
where T is the set of possible targets.

To optimize Eq. 5, the server thus needs white-box access
to the federated model, but also to the target label t. However,
as a defender, it does not have access to the target class t. To
circumvent these obstacles and optimize Eq.5, the server will
nevertheless use the method proposed in Algorithm 1:

Inputs for the defense objective: To minimize Eq. 5, we
sample n random data samples from a uniform distribution (l.2
Alg 1) of the same dimension d as the global model’s input.
We use SGD (l.4 Alg 1) as the optimizer. Each random sample
is treated separately (batch size of 1). The server therefore
needs to know the dimension of the input data (d in Alg 1
that is the size of the input layer) and has to define a loss
function (L in Alg 1). In our case, we use the discrete cross-
entropy function.

Target class for the defense objective: The server does
not know the attacked target t. However, it knows the set of
possible targets T (size of the output layer). It can thus run
a few SGD steps of Eq. 5 with random data for each class.
Two main observations can be made from the reconstructions
generated by the server for each class. Firstly, we notice that
the class with the lowest loss function value is generally the
target label t. This is coherent with the fact that BAs cause
the loss function to be remarkably low on the attacked label
(Fig 3). Moreover, after these few steps of SGD for Eq. 5,
the optimized input for label t is a fairly detectable replicate

of the true attack pattern. The shape and edges of the pattern
are inexact, but the position and pixel intensity give an idea
of the attack that was applied (Fig 4 and 5). However, the
specific features of the true attacked class (class 1 in Fig 4
and class 5 in Fig 5) are not distinguishable. This can be
explained by the fact that during federated training, since
class t is attacked, inputs of many classes are labeled as t.
The model thus relates features of various classes with class
t. Furthermore, we notice that the reconstructions of other
classes also provide information about the attack as previously
shown in Fig 2. Since the backdoor pattern is inserted into
many classes, it also affects the reconstruction of other classes.
When malicious clients train models with clean and poisoned
samples of the same label, the models process samples that
differ significantly only on the attack pattern but have different
labels. Thus, to counter the effect of the attack, the inversion
of the model produces opposite values from the attack trigger
for classes other than the target t.

Consequently, noisy estimations of the attack pattern are
detectable in the reconstructed inputs of classes other than the
target class t (Fig 4 and 5). These estimations are opposite to
the estimation of t (label 1 in Fig 4 and label 5 in Fig 5), and
therefore to the original trigger. They are also noisier than the
one of the attacked class t.

D. Final defense bandage: cleaning the reconstructions
The defender can thus compute the card(T ) reconstructions

of all possible classes (output of Alg 1). Each reconstruction
of class τ , that we name zτ ∈ Rn×d, can be more or less



(a) True examples of
classes

(b) Noisy reconstruc-
tion

(c) Centered and ab-
solute values

(d) Common reconstruction (e) γ-clean reconstruction

Fig. 4: Example of the different steps of the estimation of the
hidden trigger. The dataset is MNIST, the attack pattern is a
cross (Fig 7b) and the target label t = 1. Here, γ is set to 0.05.

noisy (Fig 4b, Fig 5b). According to the class (target t or
not), the values of our zone of interest can be opposite to
the true pattern, but they represent outlier values within their
reconstructions. Moreover, since the attack generally concerns
a limited subset of the input, we want to keep minimal
information obtained in zτ . We therefore only keep outlier
values that reflect the effect of the hidden pattern.

We consider the average of the n random optimized samples
to get a reconstruction per class (Fig 4b, Fig 5b). To harmonize
the reconstructions’ distributions and bring out outlier values,
assuming they are normal, we centralize and consider their ab-
solute values (Fig 4c, Fig 5c). To assemble our reconstructions
of all classes, we average them (Fig 4d, Fig 5d) and decide
to put more weight on the reconstruction associated with the
lowest loss function because it is generally associated with the
loss function of target label t and is thus less noisy (Section
III-C). We obtain a common reconstruction z̄:

z̄ =
1

2
p̃tmin +

∑
τ∈T
τ ̸=t′

1

2(card(T )− 1)
p̃τ (6)

(a) True examples of
classes

(b) Noisy reconstruc-
tion

(c) Centered and ab-
solute values

(d) Common reconstruction (e) γ-clean reconstruction

Fig. 5: Example of the different steps of the estimation of
the hidden trigger. The dataset is FashionMNIST, the attack
pattern is a cross (Fig 7b) and the target label t = 5. Here, γ
is set to 0.05.

where p̃τ = (p̃τ )j∈[1,..,d] and

(p̃τ )j =

∣∣∣∣∣∣ 1n
n∑

i=1

(zτ )i,j −
1

d

d∑
j=1

(zτ )i,j

∣∣∣∣∣∣ (7)

Next, we want to clean our reconstruction and only retain
the proportion γ of highest values (Fig 4e, Fig 5e). Let σ be
a permutation that sorts (z̄i)i∈[1,...,d] in the ascending order:
z̄σ(1) ≤ z̄σ(2) ≤ ... ≤ z̄σ(d). We choose z̄σ(k) such that such
that k ≥ d(1− γ). Our cleaned final estimation of the trigger
T̂ is clean(z̄) ∈ Rd:

clean(z̄)i =

{
1 if z̄i ≥ z̄σ(k)
0 else (8)

clean(z̄) should be a fair reconstruction of the attacked
target: in Fig 4e and Fig 5e, our final bandage approximates
the cross pattern attack (in red).

Finally, after training, the server sends to the participants
the trained global model and the final estimation of the attack
trigger T̂. The participants use T̂ during inference to hinder
the effect of the attack. To predict the class of an input x =



Fig. 6: KernelMean: We want to replace the threatening
values (in red) with the mean of the neighbor values. A (3×3)
kernel is applied and the treat value (marked with a cross +)
is changed.

(xi)i∈[1,...,d], instead of directly feeding it to the model, clients
change xi to be:

xi =

{
xi if T̂i = 0
KernelMean(xi) else

(9)

We consider that the values where T̂ is different than
zero are threatening values, that potentially contain the attack
trigger. KernelMean (Fig 6) is used to mitigate the effect
of this threatening zone by replacing the threatening values
shown in the bandage with the mean of the surrounding benign
values. A convolution between each threatening value and a
(3 × 3) kernel is applied. The kernel will be null for the
other threatening values, and sum to 1 for other values. This
convolution is done for all threatening values that have at least
one benign neighbor value. If a threat value does not have any
benign neighbors, the input will be once more scanned, and the
threat values that were previously replaced by KernelMean
will then be benign.

The backdoor pattern is herewith erased from the input. The
clients do not know a priori if an input is poisoned, so they will
blur the bandage from all inputs they want to infer, whether
they are truly harmless or poisoned.

IV. EXPERIMENTS

An implementation of the method in Pytorch is
available as supplementary material. Code can be found
at https://github.com/fabiola-espinoza-castellon/Federated
Uncovering of Backdoor Attacks.

A. Model and datasets

As in [7], we use a 5-layer convolutional neural network. It
is composed of two convolutional layers of 32 and 64 filters
respectively, followed by a max-pooling layer and two fully
connected layers with dropout.

We use various datasets of computer vision classification
tasks: EMNIST [16] which is the extended version of MNIST
[17], FashionMNIST [18], and finally GTSRB (German Traffic
Sign Recognition Benchmark) [19] used for digits, clothes (10
classes) and German traffic signs (43 classes) classification
tasks. FashionMNIST is a classification task dataset for clothes
but remains very similar to MNIST because they have the same
number of classes and the same dimensions. EMNIST also
shares the same image structure and parameters as the original
MNIST, but involves digits and letters as well. EMNIST has

(a) Square
pattern attack

(b) Cross pat-
tern attack

(c) Copyright
pattern attack

(d) Yellow
post-it attack

Fig. 7: Attack patterns on MNIST dataset (a)-(c) and GTSRB
dataset (d)

more samples than its original version, and also contains the
meta-information of the author of each sample. GTSRB is a
classification task dataset for traffic signs used in Germany.
It contains 43 classes. For coherence, we resize all images to
shape (3× 32× 32).

To simulate a federated context, we split all samples into
shards representing clients. According to how we assign
samples to each client, we can simulate two cases:

• IID case: we split all samples into balanced shards:
as far as possible, each client has the same number of
samples and classes. We use EMNIST on this case, and
equally split samples between users, ignoring the meta-
information about the author of each sample. We refer to
this decomposition as MNIST in the results Section IV-E.

• Non-IID case: we simulate a quantifiable and strong form
of heterogeneous distributions among clients that is the
label skew case [8]. Clients have the same number of
samples, however, they only have a certain number s
of classes in their local datasets. For instance, for a toy
example of only 2 clients with the MNIST dataset, if s
is equal to 5, then the first client will have only 5 labels
(0− 4 for instance) and the second client will also have
only 5 labels (5− 9).
Within the non-IID case, we also include experiments
with the raw EMNIST dataset. This dataset contains
the information of the writers of each sample and it is
assumed to be intrinsically non-IID because each client
likely has a different distribution over digits or letters. In
our experiments, we use the digits extension and refer to
it as FEMNIST.

We split MNIST and FashionMNIST into 100 clients.
GTSRB has fewer samples per class and is less balanced than
the other datasets, so we split it into 10 users. FEMNIST
contains data written by over 3000 writers. For briefness, we
only keep the 400 writers with the most samples.

We recap the details of the datasets we used for our
experiments in Table III.

B. Federated learning parameters

We fix some federated parameters so that the BA is suc-
cessful enough. Varying these parameters can have an effect
on the backdoor task but due to space constraints, we only
show concise results. We set the number of federated training
rounds to 200. To minimize the variance in the results, all
the clients participate during training i.e. the proportion of

https://github.com/fabiola-espinoza-castellon/Federated_Uncovering_of_Backdoor_Attacks
https://github.com/fabiola-espinoza-castellon/Federated_Uncovering_of_Backdoor_Attacks


Before defense With defense

Dataset Pattern Clean Backdoor Clean Backdoor poisoned
accuracy success accuracy success accuracy

MNIST
Square 0.98± 0.8 0.99± 0.3 0.98± 1.5 0.10± 1.2 0.98± 1.4
Cross 0.98± 0.9 0.99± 0.8 0.98± 2.4 0.10± 2.7 0.98± 2.7

Copyright 0.98± 1.0 0.99± 1.0 0.98± 1.3 0.15± 67 0.88± 70

FashionMNIST
Square 0.86± 2.5 0.99± 1.1 0.85± 4.9 0.10± 6.0 0.85± 4.0
Cross 0.86± 3.6 0.99± 2.1 0.85± 4.0 0.13± 56 0.83± 41

Copyright 0.86± 2.1 0.93± 11 0.85± 3.5 0.22± 83 0.74± 65
GTSRB Yellow post-it 0.86± 4.4 0.98± 2.4 0.83± 5.7 0.02± 19 0.83± 5.5

TABLE II: IID case: mean results ± standard deviation of experiments (std). The middle column shows the best results
obtained before the defense.The right column shows results after the defense during inference. Std are multiplied by 103.

Dataset # of Input # of Train samples
labels dimension users per user

MNIST 10 1× 28× 28 100 2400
Fashion- 10 1× 28× 28 100 600MNIST

FEMNIST 10 1× 28× 28 400 ≈ 82
GTSRB 43 1× 32× 32 10 2664

TABLE III: Dataset details

clients participating in each round C is equal to 1. Each client
locally trains its model for E = 5 epochs, with a batch size
of B = 50 and a learning rate of 0.01. For dataset GTSRB,
B = 25 because the number of samples per client is lower.

C. Backdoor attack

For MNIST and FashionMNIST datasets, m = 20 clients
out of K = 100 are set as malicious. For FEMNIST, m = 80
clients out of K = 400 are malicious and for GTSRB, only
m = 2 clients are malicious out of K = 10. Malicious clients
all corrupt p = 50% of their local data. We corrupt data
with four backdoor patterns (Fig 7), some already used in [7].
Patterns (a), (b), and (c) are applied to MNIST, FashionMNIST
and FEMNIST, and pattern (d) to GTSRB. To verify the
robustness of our method across all target classes, we perform
each experiment setting each class as the target t, and then
average the results across all experiments.

D. Defense details and used metrics

For most reconstructions of the attack patterns, we define
the number of iterations in Alg 1 to I = 2 and γ to 0.1. The
copyright pattern is larger than others and harder to detect
because of the complexity of its shape. We thus set γ to 0.3
and a (5×5) kernel in KernelMeans for these experiences.
Moreover, we set γ to 0.01 for GTSRB because the dataset
contains more fine-grained details that can be distorted with
KernelMeans. Finally, αd = 0.1 and n = 50. Increasing the
number of samples does not necessarily improve the quality
of the reconstructed pattern, and taking a small number of
samples n speeds up the computing time of FUBA.

It should be noted that 5% of our experiments did not relate
the target class t to the class with the lowest loss function
(mainly for FEMNIST, in which samples are not balanced
between users). If a class is over represented it can have a
greater impact on the minimization of the loss function than
the attacked class t and the trigger. Yet, although a higher

weight is given to a class different from t in these cases (Eq.
6), the quality of the defense is not affected.

We use the following metrics for evaluation:
• Clean accuracy: simply the accuracy of the attacked

network on clean samples.
• Backdoor attack success: the fraction of samples pre-

dicted as the target label t in a poisoned test set. The
closer it is to 1, the more efficient the attacks is.

• Poisoned accuracy: After the defense, the fraction of
poisoned samples predicted correctly as their original
class.

We provide overall performances: the test set used for
evaluation is the union of all clients’ test sets.

E. Results and discussion

Table II and IV sum up the results of over 250 experiments
of our method and indicate that it protects against BAs: during
inference, the BA success is weakened, and the model cor-
rectly predicts clean and even poisoned samples. As expected,
for non-IID label skew cases, general performances even be-
fore the defense are notably lower than for IID cases. However,
we do not focus on attaining state-of-the-art performances for
all mentioned datasets, but rather on reducing the attack. The
important contribution that our method brings is that it can be
applied even in scenarios of heterogeneous data among users,
which can arise in real-world applications [8].

Comparison with existing state-of-the-art defenses:
We compare our method with famous defenses RLR [7],

wDP [3] and Med [6] (Table V). Med, similarly to Krum [5],
is a robust aggregator that ignores outlier updates. RLR is a
famous defense that also ignores potential harmful updates,
and that was tested on FEMNIST dataset (non-IID). Finally,
wDP [3] proved that adding noise and clipping updates could
hinder the attacks. RLR and wDP require setting hyperpa-
rameters: for RLR, the threshold value to discard clients’
updates who are probable outliers and for wDP the norm
bound M and the variance σ of the added Gaussian noise.
We ran various experiments defending from the square attack
by the previously mentioned methods. Table V reports the best
compromise we found through 200 federated rounds between
robustness to BAs and correct clean input performance while
tuning the methods’ hyperparameters. A defense is efficient if
the backdoor success drops and the clean accuracy remains
high.



Before defense With defense

Dataset Pattern s Clean Backdoor Clean Backdoor Poisoned
accuracy success accuracy success accuracy

MNIST

Square 1 0.84± 0.27 0.99± 0.00 0.82± 2.20 0.11± 3.10 0.82± 2.20
5 0.94± 0.51 0.99± 0.03 0.93± 0.51 0.10± 0.25 0.93± 0.54

Cross 1 0.84± 0.35 0.99± 0.01 0.82± 0.95 0.11± 1.60 0.82± 0.95
5 0.93± 0.43 0.99± 0.12 0.93± 0.57 0.10± 0.20 0.93± 0.63

Copyright 1 0.82± 0.60 0.99± 0.00 0.75± 2.85 0.21± 6.10 0.67± 4.90
5 0.94± 0.50 0.99± 0.08 0.93± 0.60 0.13± 7.93 0.85± 6.85

FashionMNIST

Square 1 0.69± 0.64 0.99± 0.01 0.66± 1.48 0.12± 2.22 0.67± 0.82
5 0.81± 0.45 0.99± 0.15 0.79± 0.37 0.10± 0.91 0.80± 0.52

Cross 1 0.69± 0.60 0.99± 0.04 0.64± 1.94 0.17± 3.63 0.64± 1.94
5 0.80± 0.56 0.99± 0.33 0.78± 1.20 0.10± 0.99 0.78± 1.24

Copyright 1 0.65± 0.77 0.98± 0.44 0.63± 1.50 0.18± 11.7 0.57± 5.34
5 0.80± 0.64 0.95± 1.50 0.79± 0.64 0.21± 8.63 0.70± 4.90

FEMNIST Square - 0.94± 0.20 0.94± 0.96 0.92± 0.55 0.11± 0.53 0.91± 0.67
Cross - 0.95± 0.22 0.97± 0.61 0.93± 0.82 0.15± 1.50 0.86± 12.2

Copyright - 0.93± 0.18 0.89± 1.76 0.91± 0.99 0.12± 5.93 0.79± 3.94
GTSRB Yellow post-it 21/22 0.82± 0.53 0.96± 0.50 0.78± 0.66 0.03± 1.97 0.78± 0.71

TABLE IV: Non-IID case: mean results ± standard deviation (std) of experiments. The middle column shows the best results
obtained before the defense. The right column shows results after the defense during inference. Std are multiplied by 102.

For the IID case, benchmark methods perform equally to our
defense. However, the efficiency of RLR and wDP depend on
the tuning of their respective hyperparameters.

For non-IID cases, FUBA performed well in comparison
to the other state-of-the-art methods. In other approaches,
we encounter two situations. On the one hand, the clean
performance can be fairly maintained but the backdoor success
remains high. This particularly happens for wDP. On the other
hand, the backdoor success can be very low but there is an
important drop in the clean accuracy, which happens in RLR
and Med, especially for the labels skew s = 1 case. Poisoned
updates can go undetected by these defenses in the non-IID
case because the non-IID distribution of data among clients
provides enough space for attackers to hide poisoned updates
from being detected throughout the federated process. Our
defense does not face the same issue because it does not
reject potentially poisoned updates during training. Instead,
it leverages the information contained in these updates to
reconstruct triggers that can help identify and mitigate the
effects of the attack.

Further, we also tested FUBA for 40% and 60% of attackers
(Table VI), on one case only for space constraints. Our defense
works despite the number of attackers being more than 50%.
This is not the case for various defenses [5]–[7], [10] that
require a majority of loyal clients.

However, although FUBA is not much affected by the
clients’ distributions, it is more subject to the complexity of
the attack trigger. For both IID and non-IID cases, our defense
is highly robust for the square, cross attack and yellow post-it
because the backdoor success is strongly decreased whereas
the clean and poisoned accuracy remain stable. This is a strong
result because it means that our method not only deters the
effect of the BA but also classifies data correctly, even if
poisoned. However, complex patterns such as the copyright
are more complicated to recover by Alg 1. To ensure that
the attack is hindered, we recover a larger zone from the
reconstructions (Eq. 8). Consequently, some benign values will

be blurred, which can explain a drop in the clean accuracy.
Further, if most of the pattern has not been estimated, when
using KernelMean, the values of the pattern that were not
detected can pollute the entire reconstruction with incorrect
values.

Finally, a concern with our method can be privacy, as we
invert global models. However, we argued that the obtained
patches represent only a small proportion of the rough re-
constructions we perform. Our goal is not to reconstruct the
training data but only the attack pattern. If we compare true
samples of the clean training dataset (Fig 4a, Fig 5a) to the first
results of the reconstruction (Fig 4b, Fig 5b), we notice that
the human eye can not really recognize distinct data features in
the reconstructions. Finally, after γ-cleaning (Fig 4e, Fig 5e),
our final result does not reveal distinctive information about
the training datastes.

Moreover, FUBA is built at the end on the FL process, this
latter can be run with a secure aggregation algorithm [20] to
hide clients’ updates from the server. In this way, information
about a specific client can not be inferred by gradients inver-
sion [21]. Additionally, we use a simple approach with very
few SGD iterations I to be sure that we only retrieve a pattern
highly correlated to the output decision.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a defense for BAs in FL. The de-
fense is performed by the server who has no access to common
data. It reveals information about the attack to the users, who
use this information to diminish the effects of the attack during
inference. FUBA is based on the strength of the attack and is
not altered by the distribution of the participants. It has thus
the important asset that it can be applied to cases where data
is heterogeneous among participants. Extensive experiments
have shown that our defense succeeds in mitigating BAs while
maintaining high accuracy on clean inputs. To the best of our
knowledge, this is the first robust solution to backdoor attacks
in an FL scenario, that does not require any information or



Ours RLR wDP Med
Dataset s CA BS CA BS CA BS CA BS

MNIST
IID 0.98 0.10 0.96 0.00 0.90 0.18 0.97 0.11
5 0.93 0.10 0.49 0.00 0.73 0.34 0.87 0.15
1 0.82 0.11 0.02 0.00 0.80 0.99 0.11 0.10

FashionMNIST
IID 0.85 0.10 0.83 0.07 0.72 0.41 0.82 0.14
5 0.79 0.10 0.50 0.02 0.60 0.35 0.68 0.26
1 0.66 0.12 0.08 0.00 0.62 0.99 0.12 0.25

GTSRB IID 0.83 0.02 0.89 0.00 0.72 0.44 0.84 0.50
21/22 0.78 0.03 0.84 0.52 0.63 0.36 0.71 0.44

TABLE V: Comparison with existing defenses on IID and non-IID cases (label skew) for square attack.

20 attackers 40 attackers 60 attackers
CA 0.85 ± 0.49 0.81 ± 0.16 0.80 ± 0.72
BD 0.10 ± 0.60 0.10 ± 1.20 0.10 ± 1.46

TABLE VI: Our defense for different numbers of attackers
on the square attack for FashionMNIST (mean results ± 102

standard deviation).

data from participants and works regardless of the degree of
heterogeneity between clients’ local data distribution and the
number of malicious clients.

As part of future work, it would be interesting to extend our
defense on more subtle yet strong attacks such as [13], [22].
Moreover, we could also apply more sophisticated methods
from the image reconstruction literature [23], [24] to delete
the threat zones. Moreover, to reinforce privacy, we could also
consider robustness against membership attacks [25] and thus
validate that our defense still functions when the federated
process is done with differential privacy [26].

VI. ACKNOWLEDGMENTS

This publication was made possible by the use of the
FactoryIA supercomputer, financially supported by the Ile-
deFrance Regional Council.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[3] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, “Can you really
backdoor federated learning?” arXiv preprint arXiv:1911.07963, 2019.

[4] H. Wang, K. Sreenivasan, S. Rajput, H. Vishwakarma, S. Agarwal, J.-
y. Sohn, K. Lee, and D. Papailiopoulos, “Attack of the tails: Yes, you
really can backdoor federated learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 16 070–16 084, 2020.

[5] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

[6] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning. PMLR, 2018, pp. 5650–5659.

[7] M. S. Ozdayi, M. Kantarcioglu, and Y. R. Gel, “Defending against back-
doors in federated learning with robust learning rate,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, 2021,
pp. 9268–9276.

[8] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[9] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[10] C. Zhao, Y. Wen, S. Li, F. Liu, and D. Meng, “Federatedreverse: A
detection and defense method against backdoor attacks in federated
learning,” in Proceedings of the 2021 ACM Workshop on Information
Hiding and Multimedia Security, 2021, pp. 51–62.

[11] C. Wu, X. Yang, S. Zhu, and P. Mitra, “Mitigating backdoor attacks in
federated learning,” arXiv preprint arXiv:2011.01767, 2020.

[12] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” CoRR, vol. abs/1807.00459, 2018.
[Online]. Available: http://arxiv.org/abs/1807.00459

[13] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in International Conference on
Learning Representations, 2019.

[14] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[15] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security, 2015, pp. 1322–1333.

[16] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 international joint conference on
neural networks (IJCNN). IEEE, 2017, pp. 2921–2926.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[18] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[19] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic
sign recognition benchmark: a multi-class classification competition,” in
The 2011 international joint conference on neural networks. IEEE,
2011, pp. 1453–1460.

[20] K. A. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for federated learning on user-held data,” CoRR, vol. abs/1611.04482,
2016. [Online]. Available: http://arxiv.org/abs/1611.04482

[21] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients - how easy is it to break privacy in federated learning?”
CoRR, vol. abs/2003.14053, 2020. [Online]. Available: https://arxiv.org/
abs/2003.14053

[22] K.-H. Chow and L. Liu, “Perception poisoning attacks in federated
learning,” in 2021 Third IEEE International Conference on Trust,
Privacy and Security in Intelligent Systems and Applications (TPS-ISA),
2021, pp. 146–155.

[23] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, “Navier-stokes, fluid
dynamics, and image and video inpainting,” in Proceedings of the 2001
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, vol. 1. IEEE, 2001, pp. I–I.

[24] A. Telea, “An image inpainting technique based on the fast marching
method,” Journal of graphics tools, vol. 9, no. 1, pp. 23–34, 2004.

[25] R. Shokri, M. Stronati, and V. Shmatikov, “Membership inference
attacks against machine learning models,” CoRR, vol. abs/1610.05820,
2016. [Online]. Available: http://arxiv.org/abs/1610.05820

[26] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private language models without losing accuracy,” arXiv
preprint arXiv:1710.06963, p. 84, 2017.

http://arxiv.org/abs/1807.00459
http://arxiv.org/abs/1611.04482
https://arxiv.org/abs/2003.14053
https://arxiv.org/abs/2003.14053
http://arxiv.org/abs/1610.05820

	Introduction
	Related work
	Proposed method
	Overview
	Poisoned model
	Noisy reconstruction of the attack trigger
	Final defense bandage: cleaning the reconstructions

	Experiments
	Model and datasets
	Federated learning parameters
	Backdoor attack
	Defense details and used metrics
	Results and discussion

	Conclusion and future work
	Acknowledgments
	References

