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The rheological behavior of colloidal dispersions is of paramount importance in a wide range of applications, including
construction materials, energy storage systems and food industry products. These dispersions consistently exhibit
non-Newtonian behaviors, a consequence of intricate interplays involving colloids morphology, volume fraction, and
inter-particle forces. Understanding how colloids structure under flow remains a challenge, particularly in the presence
of attractive forces leading to clusters formation. In this study, we adopt a synergistic approach, combining rheology
with ultra small-angle X-ray scattering (USAXS), to probe the flow-induced structural transformations of attractive
carbon black (CB) dispersions and their effects on the viscosity. Our key findings can be summarized as follow. First,
testing different CB volume fractions, in the high shear rate hydrodynamic regime, CB particles aggregate to form
fractal clusters. Their size conforms to a power law of the shear rate, ξc ∝ γ̇−m, with m ≃ 0.5. Second, drawing
insights from the fractal cluster structure, we compute an effective volume fraction φeff and find that the microstructural
Krieger-Dougherty model adeptly accounts for the hydrodynamic stress contributions. We identify a critical shear rate
γ̇∗ and a critical volume fraction φ ∗

eff, at which the clusters percolate to form a dynamical networks. Third, we show
that the apparent yield stress measured at low shear rates inherits its properties from the percolation point. Finally,
through data scaling and the integration of the Einstein’s viscosity equation, we revisit and discuss the Caggioni-
Trappe-Spicer model, revealing a significant connection between its empirical parameters and the structural properties
of CB dispersions under flow.

I. INTRODUCTION

Colloidal dispersions are encountered in numerous applica-
tion fields, for instance as cement paste in construction indus-
try1, as drilling mud during extraction operations2, as flowable
electrodes used for energy storage3, or as oil in water emul-
sions in food industry 4,5. In the aforementioned examples,
predicting and controlling the viscosity of the dispersions is of
key importance to optimize their use. The rheological behav-
ior of colloidal dispersions is usually non-Newtonian, and will
depend on the shape, volume fraction and interaction potential
between the particles6. In scenario with low volume fractions
φr0 and strong attractive forces, colloidal dispersions become
unstable, and particles of radius r0 aggregate into "flocs" or
"clusters" of radius ξc. These clusters exhibit a fractal struc-
ture, where the number of particles Nc in a cluster of size ξc
scales as7:

Nc =

(
ξc

r0

)d f

(1)

with d f the fractal dimension of clusters. The shear-dependent
structure of clusters is a crucial factor for understanding the
dispersion properties, whether the dispersion is at rest or sub-
jected to shear.

Under quiescent conditions, aggregation is driven by the
thermal energy. The aggregation rate is either limited by par-
ticles diffusion8 or by the reaction probability upon collision9,

a)Corresponding author, thomas.gibaud@ens-lyon.fr

leading to loosely structured clusters7 with 1.7 < d f < 2.1.
When the volume fraction is sufficiently high, further aggre-
gation of clusters leads to the formation of a space-spanning
network called a "gel" that displays an elastic modulus and a
yield stress10.

When attractive dispersions experience flow, clusters tend
to condense, resulting in d f > 2.411–13. The equilibrium clus-
ter size ξc is determined by the balance between the viscous
drag force acting on a particle Fvisc and the attractive forces
holding particles together Fattr. This balance is quantified by
the Mason number, expressed as14:

Mn =
Fvisc

Fattr
=

6πηr2
0 γ̇

U/δ
(2)

with r0 (m) the particle radius, γ̇ the shear rate and η a vis-
cosity that we will define later. U (N.m) and δ (m) are the
depth and width of the attractive interaction potential, respec-
tively. An important question revolves around the nature of
the viscous force involved in Eq. 2 and the stress experienced
by clusters. From the dependence of the cluster size with the
shear rate, it was argued that clusters are sufficiently distant,
and that the fluid stress σ f = η f γ̇ was the primary factor11,15

with η f the viscosity of the background fluid. An alternative
proposition suggests that interactions between clusters would
lead to a substantial increase in hydrodynamic stress16 and
that the dispersion viscosity η that must be taken into account
in Eq. 2 to explain the equilibrium cluster size. This debate
underscores the complex interplay of factors involved in clus-
ter formation and behavior in attractive colloidal dispersions
submitted to flow. The choice between the fluid stress or the
dispersion stress as the key determinant might depends on the
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characteristics of the dispersion system and the experimental
conditions. In all cases, the Mason number was effectively
reported to control the cluster size at high shear15–17.

Under this framework, the structuring degree of the dis-
persion is set by the flow, and in return the flow is affected
by the structure of the dispersion. These reversible and
time-dependent flow-induced structural changes are called
"thixotropy"14. Macroscopically, attractive dispersions usu-
ally show two regimes, depending on the Mn value. At high
Mn, the shear rate dependence of the cluster size leads to a
shear thinning behavior and the clusters size was reported to
scale as

ξc ∝ Mn−m, (3)

where m is the breaking exponent. There are yet no consensus
on the value of the breaking exponent m. Wessel and Ball18

first proposed that the maximum cluster size should scale with
the hydrodynamic stress with m = 1/3. More complex mod-
els distinguish highly deformable clusters from rigid clusters,
yielding m = 1/2 and m = 1/3, respectively19,20. Recently,
Bouthier et al.17 proposed that m should vary with the frac-
tal dimension of clusters, with m = 1/(1+ d f ). Besides ana-
lytical calculations, experiments11,16,21,22 and simulation15,23

results have reported values for m ranging from 0.2 to 1. At
low values of Mn, the cluster size becomes independent of
the shear rate15 as clusters fill the space, forming a transient
network and leading to an apparent yield stress σy. Varga
and Swan15 proposed that percolation would occur at a crit-
ical value of the Mason number, Mnc ∝ φ

2/(3−d f )
r0 with φr0 the

volume fraction of particles.
In practice, the rheological properties of attractive disper-

sions are assessed by applying a given shear rate γ̇ and mea-
suring the resulting stress with σ = ηγ̇ . To assess the depen-
dence of the dispersions viscosity with the shear rate, a flow
curve test is commonly conducted. This test consists in ap-
plying a stepwise increment in shear rate with a given step
duration ∆t. Due to the thixotropic nature of attractive disper-
sions, a finite amount of time is necessary to reach the equi-
librium viscosity. Consequently, a rapid increase in shear rate
will only characterize the transient viscosity. Flow curves,
whether represented as σ vs γ̇ or η vs γ̇ , are usually described
using the Herschel-Bulkley model24:

σ = σy

[
1+
(

γ̇

γ̇∗HB

)nHB
]
, (4)

where σy is the yield stress (Pa), γ̇∗HB a critical shear rate and
nHB an empirical exponent. This empirical model effectively
captures both the yield stress and the shear-thinning behavior
of attractive dispersions with nHB < 1. However, it does not
provides any microscopic interpretation of its parameters as
it dismiss the cluster properties. In more developed models,
the rheological parameters of the constitutive equation are set
as a function of a structural parameter λ 14, comprised be-
tween 0 and 1 for a totally broken or fully developed cluster
structure, respectively. By introducing kinetics equation for
λ , the structural kinetics models efficiently capture the time-
dependent properties of dispersions, but the parameter λ can-
not be related with any physical aspects of the microstructure.

In contrast, microstructural models rely on actual structural
changes that can experimentally be measured.

In microstructural models, the shear stress is decomposed
as a sum of an elastic σe and the hydrodynamic σh contribu-
tion, so that σ = σe +σh. The elastic stress originates from
the network of percolated clusters and is typically treated as a
constant, derived from the particle interactions and the cluster
properties25,26. The hydrodynamic stress σh is calculated by
introducing an effective volume fraction of clusters φeff. The
effective volume fraction φeff is the equivalent volume fraction
of spheres, considering the fractal structure of clusters25–27:

φeff =
φr0

k

(
ξc

r0

)3−d f

(5)

where φr0 is the volume fraction of primary particles and k is
a scaling constant usually approximated as unity. Then, vari-
ous models have been used to relate φeff with the viscosity of
the dispersion η14,28–30. Assuming that the viscosity depen-
dence on the volume fraction follows the one of dispersion
of hard spheres, a generalized viscosity equation for concen-
trated regimes can be used31,32 such as the one proposed by
Krieger and Dougherty33:

η = η f

(
1− φeff

φ M
eff

)−2.5φM
eff

(6)

with φ M
eff the maximum packing fraction of hard spheres, typ-

ically φ M
eff ≃ 0.64.

In summary, a significant body of work aimed to estab-
lish connections between the cluster properties and the vis-
cosity of colloidal dispersions. However, few studies have
probed both aspects simultaneously and structural characteri-
zations are lacking. Consequently, the validity of microstruc-
tural models has not been thoroughly tested14 and some ques-
tions have still to be answered: How the cluster properties
change with shear rate? Are cluster properties driven by stress
or shear rate? Is the decomposition of the stress into an elastic
and hydrodynamic contribution sufficient to model the flow
curve?

To address these questions, we follow an experimental ap-
proach with carbon black (CB) dispersions in oil, chosen as
study model. Such dispersions present peculiar and funda-
mental rheological properties34–36 including rheopexy37–39,
delayed yielding40,41, fatigue42,43, rheo-conductive proper-
ties44, sensitivity to flow cessations45,46 and rheo-acoustic
properties47,48. Furthermore, CB dispersions directly find util-
ity in numerous applications such as ink49, cement50 or semi-
solid flow batteries51.

The paper is structured as follows. We initially characterize
the flow properties of CB dispersions using rheology across a
range of volume fractions spanning from 0.6% to 4.1%. Then,
we examine the structural features of these dispersions under
flow conditions using ultra small-angle X-ray scattering52. Fi-
nally, we establish a relationship between the shear-dependent
viscosity of the dispersions and their structural parameters by
employing microstructural models
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II. MATERIAL AND METHODS

A. Carbon black dispersions

CB particles (Vulcan®PF, Cabot, density dcb = 2.26 ±
0.03) were dispersed in mineral oil (RTM17 Mineral Oil Ro-
tational Viscometer Standard, Paragon Scientific, viscosity
η f = 252.1 mPa.s at T = 25◦C, density doil = 0.871) at mass
fractions cw ranging from 1.5 to 10 % (w\w)45. The corre-
sponding volume fractions of primary aggregates φr0 were cal-

culated as φr0 = cw/

(
cw + dcb

doil
(1− cw)

)
. After mixing, dis-

persions were sonicated during 2h in an ultrasonic bath (Ul-
trasonic cleaner, DK Sonic®, United-Kingdom) to ensure that
all particles are fully dispersed.

B. Rheology

Experiments were carried out with two stress controlled
rheometers: (i) a Haake RS6000 (Thermo Scientific) and (ii) a
MCR 301 (Anton Paar), both equipped with a Couette geom-
etry composed of concentric polycarbonate cylinders (inner
diameter 20 mm, outer diameter 22 mm and height 40 mm).

All rheological measurements were performed at 25◦C. Af-
ter loading the CB dispersion, a preshear, γ̇ = 1000s−1, was
first applied during 60 s to erase any shear history. Then, a
flow curve test was performed by ramping downward from
γ̇ =1000 to 0.01 s−1 (10 pts per decade) with a duration
∆t = 1 s/pts and measuring the resulting stress σ . A down-
ward ramping of the shear rate was chosen to prevent hetero-
geneous flows (e.g. shear banding) usually observed for yield
stress fluids in the vicinity of the yield stress53. We varied ∆t
and probed 50 and 100 s/pts and found that the flow curves
were identical down to γ̇ ∼ 1 s−1 (see Appendix, Fig. 8). At
shear rate γ̇ > 1 s−1 a stationary regime is thus found rapidly
as also observed in45. Below γ̇ ∼ 1 s−1, the rheology is not
stationary, wall slip may occur.

It is noteworthy that Hipp et al.16 also performed flow curve
tests on CB suspensions. They constructed "self-similar flow
curve" through a series of rheological measurements, involv-
ing a pre-shear at 2500 s−1, followed by a resting period to
facilitate gel formation, and subsequent application of given
shear rates. The stress extrapolated at t = 0 s from the last step
is then used to construct the flow curve. Due to the thixotropic
nature of CB dispersions, comparing our study with Hipp et
al.’s may pose challenges, as their "self-similar flow curve" is
anchored to a gel state, while ours is related to the fluid state
resulting from the previous shear rate.

C. Ultra Small angle X-ray scattering (USAXS)

The microstructural characteristics of the CB dispersion
were probed using rheo-USAXS measurements conducted at
the ID02 beamline within the European Synchrotron Radi-
ation Facility (ESRF) in Grenoble, France55. The incident

FIG. 1. Form factor of carbon black particles measured by USAXS
for φr0 = 10−4. Carbon black particles are composed of nodules of
radius a that are fused to form primary aggregates of radius r0. Inset
displays a representative electron microscopy image of a primary ag-
gregate. See Fig. 10 in appendix for a detailed analysis of the form
factor.

X-ray beam, with a wavelength of 0.1 nm, was collimated
to dimensions of 50 µm vertically and 100 µm horizontally.
Utilizing an Eiger2 4M pixel array detector, two-dimensional
scattering patterns were acquired. The subsequent data reduc-
tion process is detailed in52. The scattering intensity I(q) was
derived by subtracting the two-dimensional scattering profiles
of the carbon black gel and the mineral oil. Importantly, the
resulting scattering intensity remained isotropic throughout
this study (see Appendix, Fig. 11) and an azimuthal average
was performed to obtain a one-dimensional I(q). Measure-
ments were conducted in both radial and tangential configura-
tions, yielding equivalent results due to the isotropic nature of
the dispersions microstructure over the tested q-range.

D. Transmission electron microscopy

A diluted dispersion of CB in absolute ethanol (cw ≈
2.10−5) was prepared and 5 µL were deposited on a carbon
grid (Carbon Film CF300-Cu, Electron Microscopy Science,
England) and left to dry in a dust free environment. Individ-
ual CB particles were then imaged by transmission electron
microscopy (TEM) using a JEOL JEM 1400 microscope. A
representative set of CB particle images is displayed in Fig. 10
in Appendix.

E. Characterization of carbon black particles

The CB particles were analyzed using TEM and USAXS.
As shown in the TEM images in inset of Fig.1, CB particles
are composed of nodules of radius a that are fused to form
primary aggregates of radius r0

56. These two length scales,
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FIG. 2. Flow curve of the CB dispersions and the Caggioni-Trappe-Spicer (CTS) model54. (a) Shear stress σ vs shear rate γ̇ during fast flow
curves of carbon black dispersions at various volume fractions of CB φr0 . The red curves correspond to the best fits with the CTS model (eq. 7).
Inset: viscosity η vs γ̇ . Evolution of the parameters of the CTS model with φr0 : (b) Apparent yield stress σy; (c) Critical shear rates γ̇∗CT S (blue
diamonds) and γ̇

p
CT S (cyan stars). γ̇

p
CT S is a "plastic" shear rate and γ̇∗CT S is another critical shear rate obtained as γ̇∗CT S = σy/η0, with η0 the

high shear viscosity. Red dash lines are the best power law fit of the data. (d) Normalized flow curves: σ/σy vs γ̇/γ̇∗CT S.

qr0 ≈ 5.10−2 and qa ≈ 4.10−1 nm−1 are also identified on the
form factor of the CB particles, measured on a diluted sample
(φr0 = 10−4) at rest (Fig.1). The power law scaling I(q) ∝

qd f at intermediate q is related to the fractal dimension of the
primary aggregates d f r0 . Having tested different models to
fit the USAXS data (see Fig. 10 in Appendix), we estimate
a ≃ 20 nm, r0 ≃ 85 nm and d f r0 ≃ 2.8. Vulcan PF particles
are therefore small and compact in comparison with other CB
particles previously reported (e.g. r0 ≃ 180 nm for Vulcan
XC-7244,48).

III. RESULTS AND DISCUSSION

A. Rheological properties of carbon black dispersions

We first examine the influence of the particles volume frac-
tion φr0 on the flow behavior of the CB dispersions. Fig. 2a
displays the flow curves for dispersions with φr0 ranging from
0.6 to 4.1%. In Fig. 2a, the flow curve exhibits a similar trend
for all the tested volume fractions: a shear-thinning behavior
at high shear rates and the presence of a dynamic yield stress
σy at low shear rates. The dynamic yield stress σy decreases
with increasing φr0 (Fig. 2b) and its existence can even be de-
bated at the lowest volume fraction (φr0 = 0.006). Dynamic
oscillatory shear experiments indicate that the minimum par-

ticle volume fraction required to form a gel is φ
gel
r0 ≈ 0.01, a

value consistent across different pre-shear histories (data not
presented).

To quantitatively assess the impact of φr0 on the flow
curves, two empirical models were employed: the Herschel-
Bulkley24 model and the Caggioni-Trappe-Spicer model54.
The Herschel-Bulkley model fit is not entirely satisfactory, es-
pecially for γ̇ < 1 s−1 (see Appendix, Fig. 9). Improved fits
are obtained with the Caggioni-Trappe-Spicer model (CTS)54:

σ = σy +σy

(
γ̇

γ̇
p
CT S

) 1
2
+η0γ̇ (7)

where σy is the yield stress (Pa), γ̇
p
CT S a critical shear rate

(s−1) and η0 a viscosity (Pa.s). In addition to taking into ac-
count the elastic component represented by the yield stress σy,
this model incorporates a Newtonian viscous stress at high
shear rates, η0γ̇ . Furthermore, it introduces a "plastic" dis-
sipation mechanism, where the stress scales with the square
root of the shear rate, serving as an intermediate regime be-
tween the purely viscous and purely elastic behaviors. The
elastic and plastic regimes are separated by a critical shear
rate γ̇

p
CT S. A second critical shear rates γ̇∗CT S can be obtained

as γ̇∗CT S = σy/η0. It corresponds to the point at which the
stress contribution of the high shear viscosity equals the yield
stress.54 In Eq. 7, the high shear viscosity η0 can be calculated
with the Einstein’s viscosity57 η0 = η f (1+2.5φr0), given that
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both the fluid viscosity η f and φr0 are known. This approxi-
mation is reasonable since all the values of φr0 under consid-
eration remain low.

The CTS model yields a satisfactory fit with only two ad-
justable parameters, namely σy and γ̇

p
CT S, displayed as func-

tion of φr0 in Fig 2b-c. In the case of gelling dispersions (i.e.
φr0 > φ

gel
r0 ), the yield stress follows a scaling law σy ∝ φ 3.3

r0
,

consistent with findings in other colloidal gel systems58. γ̇∗CT S
roughly follows the same power law, γ̇∗CT S ∝ φ 3.2

r0
. Using σy

and γ̇∗CT S as scaling factors for the y− and x−axes, the flow
curves can be rescaled onto a single master curve (Fig. 2e),
provided that φr0 > φ gel . This master curve implies a consis-
tent microstructural scenario along the entire flow curve for
all volume fractions. Furthermore, the observed relationships
σy ∼ γ̇∗CT S ∼ φ 3

r0
indicates that the initial volume fraction of

primary particles completely accounts for both the horizontal
and vertical shifts of the flow curves as the volume fraction
varies. This is noteworthy given the structural complexity ex-
pected for attractive dispersions. In the next section, our ob-
jective is to characterize the structure of CB dispersions and
to provide insights into how φr0 influences the flow character-
istics of these dispersions.

B. Microstructure of the carbon black dispersions under
shear

The structural analysis of CB dispersions was conducted
using ultra small-angle X-ray scattering (USAXS) at three
volume fractions, namely φr0 = 0.6, 1.2 and 3.2%. We
recorded the scattering intensity I(q) as function of the scatter-
ing wave number q within the range of 1.10−3 to 2.10−1 nm−1

during flow curve measurements. It is noteworthy that I(q) ex-
hibited isotropic behavior for all measurements (see appendix,
Fig.11), ruling out any anisotropic structuring over the probed
length scales. This isotropic behavior aligns with previous ob-
servations in CB dispersions16,45. Consequently, our analysis
focuses on the azimuthally averaged intensity I(q).

Fig. 3a presents I(q) at various shear rate values for φr0 =
0.032. Similar scattering patterns were observed for disper-
sions at lower volume fractions, and they displayed the same
shear rate dependence (see appendix, Fig. 12). Upon tran-
sitioning from high to low shear rates, the scattering curves
exhibit two and then three distinct bumps. These features be-
come more pronounced in the Kratky representation (I(q))q2

vs q), where the bumps are transformed into peaks (Fig. 3b).
At higher q values (i.e. q ≈ 5.10−2 nm−1), the first bump cor-
responds to the form factor of the CB particles of size r0, as
evidenced on Fig.1. Notably, the position of this bump is in-
dependent of the shear rate as shear does not alter the size of
the primary aggregates.

As previously stated, the scattering curves exhibit two char-
acteristic lengths at high shear rates, denoted as r0 and ξc
(Fig. 3c-d), and an intermediate length scale, ξs, becomes ap-
parent at lower shear rates (approximately γ̇ < 75 s−1). For a
precise and empirical determination ξc and ξs and their rela-
tionship with γ̇ , we conducted fitting procedures on the peaks

observed in the Kratky representation (Fig. 3c-d). These fit-
tings were carried out using a log-normal function59:

Gi(q) =
Ai√

2πσiq
exp

(
−

ln( q
qi
)2

2σ2
i

)
(8)

where Gi(q) describes a log-normal function of average po-
sition qi, width σi and amplitude Ai. The estimated radius
(ξi = π/qi) are displayed for φr0 = 0.006, 0.012 and 0.032 in
Fig. 15b in appendix.

The size ξc is attributed to the form factor of clusters,
formed through the aggregation of primary particles. Let us
first focus on φr0 = 0.032. At high shear rates, ξc is inversely
proportional to the shear rate according to ξc = Bγ̇−m, where
B ≃ 104 nm/sm and m ≃ 0.44 (inset of Fig. 3e). Below a crit-
ical shear rate of about 50 s−1, ξc becomes constant with a
critical value close to 2 µm. This behavior coincides well with
the simulation of Varga et al.15 where a similar scaling with
γ̇ and m = 1/2 was found. The evolution of ξc at lower vol-
ume fractions (φr0 = 0.006 and 0.012) is similar to the one
observed at φr0 = 0.032. At high shear rates, the data even
superimpose. However, at lower shear rates, data are lacking
because the peak in I(q) corresponding to ξc shifts to values
lower than the minimum q accessible in the USAXS experi-
ments. Based on simulations studies15, for φr0 = 0.006 and
0.012, one can expect that the scaling ξc = Aγ̇−m holds down
to a critical shear rate lower than 50 s−1 and that the cluster
size converges to values much larger than 2 µm. For φr0 =
0.006 and 0.012, extrapolations of ξc vs γ̇ (Fig. 3e) will be
justified during the microstructural analysis developed in the
next section.

So far, the present results show that the cluster size is gov-
erned by the background fluid stress, σ f = η f γ̇ in agreement
with11,15. This is in contrast to the proposition in16,46, where
the dispersion stress was proposed as the determining factor
(see appendix, Fig. 13 for an evolution of ξc vs σ ). Hipp et
al.16 reported a scaling of ξc with the dispersion stress and
m ≈ 116. In this study, "self-similar" flow curves were gener-
ated through a series of rheological measurements, involving
a resting period before application of a given shear rate. The
resulting pre-shear history differs with our protocol, and the
values of m are hardly comparable.

ξs is found to be independent of the shear rate and slightly
diminishes as φr0 increases (see appendix, Fig.15). The ex-
act interpretation of ξs remains uncertain. In the context
of CB gels at rest, ξs had previously been considered either
as the separation distance between two neighboring clusters,
with the idea that clusters interpenetrate due to the fact that
ξc > ξs

45, or as an intermediate cluster size contributing to the
construction of clusters with a size of ξc

60. Alternatively, as
proposed in the context of colloidal gelation under quiescent
conditions, ξs could represent the distance over which parti-
cles are transported to the growing cluster. In this case, ξs is
attributed to a correlation hole corresponding to the size of the
depleted region surrounding the clusters61,62.

To extract the fractal dimension of clusters, the scatter-
ing data were fitted with a modified two-level Beaucage
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FIG. 3. Structure of the carbon black dispersion at φr0 = 0.032 during a flow curve test. (a) Scattered intensity I(q) vs the wave vector q. (b)
Kratky representation, Iq2 vs q, of the data in (a). The curves are shifted along the y−axis for better visualization. (c)-(d) Typical scattering
curves in Kratky representation obtained at high (γ̇ = 800 s−1) and low shear (γ̇ = 0.02 s−1), respectively. The cyan lines show the fit of the
peak positions using Eq. 8. The red lines are the modified Beaucage fits using Eq. 10. (e) Evolution of the cluster size ξc with the shear rate γ̇

for three different φr0 , determined with the Beaucage model (Eq. 10). Note that for φr0 = 0.006 and 0.012, the cluster size increases beyond
the resolution of the USAXS experiments at low γ̇ . Dash lines are extrapolated cluster sizes and green stars correspond to the cluster size at
percolation ξ ∗, determined using the microstructural model (See Fig. 4). Red line is the best power law fit for 5.102 < γ̇ < 103 s−1. Inset: ξc
vs γ̇ determined with the model-free analysis (Eq. 8). (f) Fractal dimension of the cluster d f obtained from the modified Beaucage fit. The red
line indicates d f = 2.35, the mean value of d f for 10−2 < γ̇ < 101 s−1.

model45,63, accounting for the scattering of the particles r0 and
of the clusters ξc (see appendix, section V E). To account for
the intermediate level ξs, the cluster-level term was multiplied
by an empirical structure factor to account for some correlated
region63. The modified Beaucage model provides a good fit of
the experimental data for all volume fractions (Fig. 3c-d and
Fig. 12 in appendix). Fig. 3e-f display the cluster sizes and
fractal dimensions as function of the shear rate. The clus-
ter sizes ξc obtained from the modified Beaucage model cor-
respond well with the values obtained from the model free
analysis, also displayed in Fig. 3e. The power law fit of ξc
vs γ̇ yields m ≃ 0.53, confirming that the value of the break-
ing exponent is about 0.5. In Fig. 3f, the fractal dimension
shows a non-monotonic evolution with the shear rate. Over-
all, d f is close to 3 at high shear rates and tends toward a
constant value d f = 2.35 when γ̇ decreases. Determining d f at
high shear rates presents notable challenges for two primary
reasons. First, in I(q), d f is determined by the power-law
relationship I(q) ∼ q−d f observed between the bumps asso-
ciated with r0 and ξc. At high shear rates, where r0 and ξc
are in close proximity, this power-law behavior extends over
a relatively limited range, resulting in insufficient statistical
data for accurate determination of d f . Secondly, when ex-
amining the structure factor (see appendix, Fig. 14), an anti-
correlation peak is observed at q ≈ 0.03 nm−1 resulting from

attractive interactions among the CB particles. This anticorre-
lation peak is not accounted by the modified Beaucage model,
which leads to an overestimation of d f . At low shear rate,
the extended distance between the bumps associated to r0 and
to ξc allows for a more reliable determination of d f . Mov-
ing forward, we disregards the values of d f obtained at high
shear. The fractal dimensions is assumed to remain constant
and equal to d f = 2.35 across the entire range of shear rates
(10−2 < γ̇ < 103 s−1), a value which aligns with values pre-
dicted by theoretical models12,64 and those obtained through
other experimental determinations11,16.

C. Modeling the hydrodynamic regime of the flow curve
based on the cluster structure.

In the previous section, rheo-USAXS measurements have
shown that the CB dispersions undergo an hydrodynamic
regime at high shear rates. In this regime, for all φr0 , the
cluster size scales as ξc ∝ γ̇−m with m ≈ 0.5 and their frac-
tal dimension remains constant at d f ≈ 2.35. For the lowest
volume fractions, due to experimental limitations, the cluster
size cannot be measured beyond 2 µm and the extent of the
hydrodynamic regime is not directly accessible. To address
this limitation, the cluster size is extrapolated based on the re-
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FIG. 4. Microstructural modeling of the hydrodynamic stress of the flow curve. (a) Comparison between the experimental flow curves (circles)
and σh (green line) determined using Eq. 5 and 6 and the structural parameters of CB dispersions measured by USAXS. Stars are points of
coordinate (γ̇∗, σ∗) such that σh ≈ σ , interpreted as the dynamic percolation of clusters. (b) Comparison between γ̇∗ (green hexagrams) and
γ̇∗CT S (cyan pentagrams) as a function of the volume fraction of primary aggregates φr0 . (c) Effective volume fraction of clusters at percolation
φ∗

eff displayed as function of φr0 . Dash line indicates the mean value of φ∗
eff ≈ 0.39. (d) Cluster length ξ ∗

c at percolation displayed as a function
of φr0 . Red line indicates the best power fit. (e) Comparison between the stress at percolation σ∗ (empty circles) and the apparent yields stress
σy (solid circles) as a function of φr0 . Red line indicates the best power law fit.

lationship ξc ∝ γ̇−m observed in Fig. 3e. Using the measured
and extrapolated microstructural parameters of the CB disper-
sions, an hydrodynamic stress σh = η(φeff)/γ̇ is calculated
using Eq. 5 for φeff and Eq. 6 for η . The scaling factor k in
Eq. 5 was calculated65 as k ≈ 4.46d−2.08

f leading to k ≈ 0.75.

As reported in Fig. 4a, σh captures well the flow curves
down to a critical shear rate γ̇∗, identified when σh becomes
lager than the dispersion stress σ . Indeed, extrapolation of
the cluster size ξc leads to an increase of σh up to σh ≥ σ .
This point is interpreted as a percolation point where clus-
ters growth becomes restricted by percolation into a dynamic
network, with an effective volume fraction φ ∗

eff and and effec-
tive yield stress σ∗. Consequently, for γ̇ ≤ γ̇∗, the cluster size
is assumed to become constant and equals at ξ ∗

c , as depicted
in Fig. 3e where γ̇∗ is pointed out by stars. This analysis is
consistent with the scattering data at φr0 = 0.032, where the
cluster sizes at low shear rates are available. Fig. 5b displays
the dispersion viscosity η vs φeff, the effective volume frac-
tion of clusters. The collapse of viscosity onto a master curve
confirms that the rheology of the CB dispersions depends on
the shear dependent volume fraction of clusters. The Krieger-
Dougherty fit (red line) accurately describes the dispersions
behavior up to approximately φ ∗

eff ≃ 0.4, which sets the upper
limit in effective volume fraction of the hydrodynamic regime.

D. Properties of the percolation point (γ̇∗, σ∗).

The values of γ̇∗, ξ ∗
c , σ∗ and φ ∗

eff are plotted as function of
φr0 in Fig. 4b-e. As mentioned in the previous section, these
parameters relate of the structure of dispersions when clusters
are assumed to percolate into a dynamic network.

In Fig. 4b, γ̇∗, obtained from the microstructural approach
and γ̇∗CT S, obtained from the CTS model, are overlaid for
φr0 > φ

gel
r0 . Thus, γ̇∗CT S, used to rescale the flow curves in

Fig. 2, is now identified as the shear rate at witch clusters per-
colate. In Fig. 4c, φ ∗

eff ≈ 0.39 is constant for all φr0 . This
value is lower than the random close packing fraction of hard
spheres, as illustrated on Fig. 5. Percolation below random
close packing has been previously reported for non-Brownian
dispersions with adhesive constrains at an "adhesive close
packing" fraction φacp = 0.5566. Varga et al.15 have proposed
that a critical Mn value for a percolated network could be ob-
tained as Mnc ∝ φ

2/(3−d f )
ro . Assuming that Mn ∝ γ̇ , the critical

shear rate γ̇∗ should scales with φr0 with a power exponent 2/
(3− d f ) ≃ 3.1 given that d f = 2.35. This is consistent with
the observed scaling γ̇∗ ∝ φ 3.2

r0
observed in Fig. 4b.

As shown in Fig. 4d, the cluster size at percolation ξ ∗
c de-

creases with φr0 as φ ∗
eff is reached at higher shear for the high-
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FIG. 5. Transition between the hydrodynamic regime and dynamic
percolation. (a) Normalized cluster size ξc/ξ ∗

c as a function of the
normalized shear rate γ̇/γ̇∗. ξ ∗

c and γ̇∗ are the cluster size and shear
rate at percolation, respectively. (b) Viscosity η of the CB disper-
sions as a funtion of the effective volume fraction of clusters φeff
using Eq. 5. The red line is the viscosity issued from the Krieger-
Dougherty model with η f = 0.234 Pa.s and φ M

eff = 0.64. Blue and
black dotted lines indicate the volume fraction of clusters at percola-
tion φ∗

eff and at φ M
eff, respectively.

est volume fractions. In fractal aggregation theories67,68, it
is assumed that the gel network is built of closely packed
clusters at φ ∗

eff = 1 which directly yields ξc ∝ φ
1/(d f −3)
r0 . For

CB dispersions, φ ∗
eff ̸= 1 but φ ∗

eff is constant and the observed
scaling ξ ∗

c ∝ φ−1.4
r0

aligns well with 1/(d f −3) ≈ −1.5 given
that d f = 2.35 (Fig. 4d). Fig. 4e compares the dependency
of σy, measured in the zero shear rate limit, and σ∗ on φr0 .
Interestingly, both quantities exhibit a similar scaling pattern
with respect to φr0 . This observation supports the idea that
the value of σy is a direct outcome of the percolation point.
Indeed, when σy is plotted against ξ ∗

c (Fig. 6), it is found
that σy ∝ ξ ∗

c
−2.2 a close match to what one would expect17:

σy ∝ ξc
−2 for a network of characteristic size ξc. It is worth

mentioning that, when the measuring time ∆t of the flow curve

FIG. 6. Yield stress σy as a function of the cluster size at percolation
ξ ∗ for dispersions with different volume fractions of carbon black
particles. The red line represents the best-fitting power law.

increases (see Fig. 8 in appendix), this direct dependence be-
tween σy and ξ ∗

c is probably lost as structural rearrangements
may occur at low shear rates.

To sum up, in Fig. 2 the flow curve σ vs γ̇ of CB dispersions
at various φr0 have been rescaled using a critical shear rate
γ̇∗CT S and σy as scaling factors for the x− and y−axis, respec-
tively. Now, the origin of this scaling can be understood on a
microstructural basis. The critical shear rate γ̇∗CT S corresponds
to the dynamic percolation of clusters at φ ∗

eff ≃ 0.39. The de-
crease of the cluster size ξ ∗

c at percolation is then responsible
for the increase of σy with φr0 , as the network structure in
the zero shear limit is inherited from the percolation point.
When φr0 approaches φ

gel
r0 , dispersions no longer displays a

yield stress and the structuring at low shear is somewhat dif-
ferent. The percolation point, defined by γ̇∗, ξ ∗

c , σ∗, and φ ∗
eff,

holds significant importance in understanding the flow behav-
ior of CB particles, being the transition point between the hy-
drodynamic regime and the dynamic percolation of clusters.
In Fig. 5a, ξc vs γ̇ at various φr0 can be normalized onto a
master curve linking using the percolation point, γ̇∗ and ξ ∗

c
as scaling factors for the x and y axis, respectively. The ex-
perimental results display on Fig. 5a are fully consistent with
simulations performed in15.

IV. CONCLUSION AND PERSPECTIVES

A series of rheo-USAXS experiments was conducted on
CB dispersions with φr0 ∈ [0.006,0.041] to investigate the re-
sponse of attractive colloidal dispersions to mechanical shear.
These experiments involved rapidly changing the shear rate
from high to low values, revealing a microstructural scenario
depicted in Fig. 7.

In the hydrodynamic regime, attractive CB particles assem-
ble into clusters with a fractal dimension of d f = 2.35, and
their size inversely scales with the shear rate as ξc ∝ γ̇−m,
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ሶγ 

Hydrodynamic regime 

➢ The equilibrium size of clusters is set by the 
fluid stress 𝜂𝑓. ሶ𝛾

➢ For all 𝜑𝑟0

o 𝜉𝑐 ∝ ሶ𝛾−𝑚 with 𝑚 ≈ 0.5
o 𝑑𝑓𝑐

≈ 2.35 

➢ The dispersion viscosity can be inferred from 
𝜑𝑒𝑓𝑓 and the Krieger-Dougherty equation  

Percolation

➢ Clusters percolate into a dynamic 
network when 𝜑𝑒𝑓𝑓

∗ ≈ 0.39

➢ Cluster size at percolation 
decreases with 𝜑𝑟0

 as 𝜉𝑐
∗ ∝ 𝜑𝑟0

−1.4

➢ The increase of 𝜎𝑦 with 𝜑𝑟0
 can be 

inferred to the cluster size at 

percolation 𝜎𝑦 ∝ 𝜉𝑐
∗−2.2

FIG. 7. Schematic of the evolution of the CB dispersions microstruc-
ture with the shear rate γ̇ .

where m is approximately equal to 0.5. The size of these clus-
ters is primarily determined by the fluid stress, represented by
σ = η f γ̇ , where η f is the fluid background viscosity. The
viscous contribution of the clusters can be approximated to
the one of a hard sphere suspension and the viscosity of CB
dispersions could be calculated using the Krieger-Dougherty
equation, provided we replace the CB particle volume frac-
tion φr0 by an effective volume fraction of clusters φeff. This
hydrodynamic regime persists down to a critical point charac-
terized by coordinates (γ̇∗, σ∗).

At this juncture, the clusters growth stops and their effec-
tive volume fraction stabilizes at φeff ≈ 0.39, irrespective of
φr0. We propose that at φ ∗

eff, clusters percolate into a dynamic
network. This hypothesis gains support from the observation
that σ∗ closely tracks variations in the dynamical yield stress
σy. When φr0 increases, the clusters size at percolation de-
creases, leading to a higher σy. In essence, the properties of
dispersions in the limit where γ̇ = 0 are inherited from the per-
colation point. To sum up, the dynamic percolation point is a
key parameter to explain the mechanical response of CB dis-
persions under shear. While the cluster growth in the hydrody-
namic regime proceeds independently of the volume fraction,
the percolation of clusters at a constant φ ∗

eff determines both
the critical shear rate and the yield stress of the flow curve.

Microstructural models have traditionally partitioned the
stress response of attractive dispersions into hydrodynamic
and elastic contributions25,26. A robust and self-consistent
comprehension of these two regimes has been established for
CB dispersions. However, in Fig. 4a, it is clear that the hy-
drodynamic regime does not extent to low shear rates, in the
vicinity of σy, and that an additional contribution is required
to model the flow curve at intermediate shear rates (γ̇ < γ̇∗).
Previously, we have stressed that the cluster size at percola-
tion was maintained when γ̇ is further decreased. It pictures
the idea that, during the intermediate regime, the structure of
the suspension is shear-independent and composed of large

and crowded clusters, comparable with the flow of adhesive
non-Brownian suspensions. Based on the phenomenological
model of Wyart and Cates69, constraint-based rheology was
shown to successfully model all flow curve types70. In this
approach, particle sliding and rolling are constrained by adhe-
sive and/or frictional contacts that are accounted by a shear-
dependent jamming point φm. For adhesive non-Brownian
suspensions, experimental results 71 highlight the coupling be-
tween adhesion and friction to account for the shear-thinning
and yield stress of the suspensions. In the case of attractive
Brownian suspensions, for γ̇ < γ̇∗, the flow of sticky clusters
may be successfully modeled using constraint-based rheology.
The challenge probably lies in rationalizing the contribution
of adhesion and friction in these systems.

Additional research is needed to characterize the interme-
diate regime. Colloidal systems that are optically transparent
would be particularly advantageous, as they would allow for
the characterization of mesoscopic structures (with ξ > 2µm)
using optical microscopy or dynamic light scattering. An al-
ternative method for modeling this plastic regime would in-
volve describing the elastic stress contribution of the dynamic
network with a network percolation loss rate that decreases
with respect to a characteristic time of 1/γ̇ . Finally, it would
be beneficial to validate the approach used in this paper and
compare our findings with those from other attractive colloidal
systems subjected to flow.
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V. APPENDIX

A. Effect of the duration on the flow curve

As shown in Fig. 8, the shape of the flow curve depends
on the shear duration ∆t applied to measure each point. Two
regimes can be distinguished depending on the shear rate: at
high shear rate (γ̇ > 1 s−1), the stress response is independent
on ∆t while at low shear rate (γ̇ < 1 s−1) and for high volume
fractions of primary particles φr0 , a drop of the stress can be
observed. The drop is all the more important that ∆t is large.

B. Herschel-Bulkley model

In Fig. 9, the Herschel-Bulkley model provides an accept-
able fit of the data. However the Herschel-Bulkley model is
less efficient that the CTS model to capture the data at in-
termediate shear rate, around γ̇ ≈ 1 s−1. Notably, the criti-
cal shear rate γ̇∗HB shows a different scaling with φr0 in com-
parison with γ̇∗ obtained from the CTS model (Fig. 9c). As
pointed in54, the CTS model gets rid of the nonphysical power
exponent n (Fig. 9d) by introducing a high shear viscosity η0
(Eq. 7).

C. Form factor

The form factor of the CB particles was measured with
SAXS on a diluted sample (φr0 = 10−4) at rest and fitted using
different models.

In Fig. 10a, the form factor described as a combination of
a particle form factor P(q), accounting for the nodules, and

FIG. 8. Flow curve of carbon black dispersions at various volume
fraction φr0 . The ramp was conducted with ∆t = 1 (circle), 50 (dia-
mond) and 100 (star) s/pts.

a fractal structure factor S(q), accounting for the primary ag-
gregates, with I(q) ∝ P(q)S(q). P(q) is modeled as the form
factor of polydisperse spheres with a log-normal distribution72

and S(q) is modeled as a mass fractal structure factor73. The
fit yields a = 3 nm, r0 = 33 nm, d fr0

= 2.85. The radius of

gyration of a fractal aggregate is given by73: r2
0 =

d f (d f +1)ξ 2
r0

2
which yields r0 = 76 nm.

In Fig. 10b, the form factor is modeled using a two-level
Beaucage model. The first level models the particles of size
a = 20 nm. The second level models the primary cluster of
size ξr0 = 85 nm and fractal dimension d fr0

= 2.78.
In both cases, the fit results compares well with the primary

aggregates TEM images in Fig. 10c. The characterization of
the Vulcan PF particles presented here confirms that these par-
ticles are small and compact in comparison with other CB
particles previously reported (e.g. Rg ≈ 180 nm for Vulcan
XC-7244,48).

D. Anisotropy

Fig. 11 displays the scattering curves of CB dispersions,
azimuthally averaged either in the flow direction or in the vor-
ticity direction. For the blue-green curves, corresponding to
the vorticity direction, the low q region is reduced because of
the rectangular shape of the beamstop used. At all shear rates,
the superimposition of the curves in both directions indicates
the absence of anisotropic structure, also reported by16 for CB
dispersions in oil.

E. Modified Beaucage model

The intensity spectrum I(q) may be fitted by a modified
two-level Beaucage model45,46,63,74,75 through:

I (q) = Ic (q)SS (q)+ Ir0 (q) (9)

with

Ic(q) = Gce

(
− q2ξ 2

c
3

)
+Bce

(
−

q2r2
0

3

)
erf
(

qξc√
6

)−3d f
q−d f

Ss(q) = 1+Cs

((
qξs
2π

)2
+
(

2π

qξs

)2
)−1

Ir0(q) = Gr0e

(
−

q2r2
0

3

)
+Br0erf

(
qr0√

6

)−3dr0 q−dr0

.

(10)
This model accounts for the presence of three distinct

bumps observed in I(q) corresponding to the length scales
r0, ξs, and ξc arranged in ascending order. The two-level
Beaucage model combines the scattering contribution Ic(q)
from the clusters with a size ξc and a fractal dimension d f with
the contribution Ir0(q) from the primary aggregates with a size
r0. To account for the intermediate length scale ξs, revealed
at low shear rate, the cluster intensity Ic(q) is multiplied by
an ad-hoc structure factor Ss(q), resulting in an increase in
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FIG. 9. Herschel-Bulkley model of the CB flow curves. (a) Shear stress σ vs shear rate γ̇ during fast flow curves of carbon clack dispersions
at various volume fraction of primary aggregates φr0 . Inset displays the dynamic viscosity η vs γ̇ . The red curves correspond to the best fits
with the Herschel-Bulkley component model (eq. 4). (b)-(d) Evolution of the parameters of the Herschel-Bulkley model with φr0 . σy is the
apparent yield stress, γ̇∗HB is a critical shear rate and n is the power exponent. Red lines are the best power law fit of the data. (e) Normalized
flow curves: σ/σy vs γ̇/γ̇∗HB.

FIG. 10. Characterization of the Vulcan®PF carbon black particles. (a) Fit of the CB form factor using a mass fractal model. Inset: log-normal
distribution of a. (b) Fit of the CB form factor using a Beaucage model. Form factor of the carbon black particles measured by SAXS for φr0

= 10−4. Carbon black particles are composed of nodules of radius a that are fused to form primary aggregates of radius r0. (c) Representative
set of TEM images of individual carbon black particles.
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FIG. 11. Comparison of the scattering intensity between the flow di-
rection (red-yellow) and the vorticity direction (blue-green) at φr0 =
0.006 (a) and 0.032 (b). The color gradients code for the shear rate.

scattering at intermediate q. This structure factor Ss(q) is a
function that exhibits a peak at qs = 2π/ξs and reaches a max-
imum value of 1+Cs/2. Away from qs = 2π/ξs, it gradually
converges to 1. While this choice of Ss(q) is straightforward,
it is not entirely satisfactory as it fails to meet thermodynamic
limits. Specifically, Ss(q → 0) equals 1, whereas it should be
proportional to the isothermal compressibility. In Fig. 12, we
show the fit of the scattering intensity of the CB dispersions
using the modified two-level Beaucage model.

F. Evolution of ξc with σ

In Fig. 13, we observe that ξc does not scale with σ ).

G. Structure factor

The structure factor of the CB dispersion S(q,φr0) =
I(q,φr0 )

P(q)
φP

r0
φr0

is obtained by dividing the the scattering intensity

of the CB dispersion at φr0 by the primary aggregates form
factor measured at φ P

r0
= 10−4 as shown in Fig 10. S(q) dis-

plays an anticorrelation peak at q ∼ 0.03 nm−1, associated
with attractive interactions among the CB particles the back-
ground oil.

H. Evolution of ξs and ξc with φr0 and γ̇

The dependence of the length scales ξs and ξc with φr0 and
γ̇ was investigated using (i) a model free analysis (Eq. 8) and
(ii) a two-level modified Beaucage model (Eq. 10). ξs and ξc
are displayed as function of γ̇ on Fig. 15b-c. Both approaches
show that for γ̇ > 50 s−1, ξc increases with γ̇ as ξc ∝ γ̇−m

with m≈ 0.5, highlighting the robustness of this result. Below
γ̇ = 50 s−1, ξc is found to be constant (1 < ξc < 2 µm) at
φr0 = 0.032. For lower volume fraction we believe the cluster
size increases beyond the range of length scales that can be
probed by the SAXS set-up. In the microstructural analysis
developed in section III for the Fig. 4, we have extrapolated
the values of ξc using ξc ∝ γ̇−m up to the limit when σh > σ .

In Fig. 15b-c, ξs is found to be independent of the shear rate
and slightly diminishes as φr0 increases. The dependence of
ξs with φr0 is also illustrated in Fig. 15a.
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FIG. 12. (a)-(c) 3D visualization of the shear dependence of the scattering intensity in Kratky representation Iq2 vs q for the volume fractions
φr0 = 0.006 (a), 0.012 (b) and 0.032 (c). The color gradient codes for the intensity of Iq2. (d)-(f) I(q) and their fit (red lines) using the modified
Beaucage model (Eq. 10) for the volume fractions φr0 = 0.006 (d), 0.012 (e) and 0.032 (f). The color gradient from light orange to black codes
for the shear rate. I(q) are shifted along the y−axis for better visualization.
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FIG. 13. Evolution of ξc with σ for φr0 = 0.006, 0.012 and 0.032.
Red line is a power law ξ ∝ σ−0.5 displayed for comparison.

FIG. 14. Comparison of the structure factor S(q) of the CB disper-
sion at φr0 = 0.006 at γ̇ = 800 (black) and 0.02 s−1 (light orange).
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FIG. 15. (a) Rescaled scattering curve I(q)/φr0 vs q measured under low shear rate at γ̇ = 0.02 s−1 for φr0 = 0.006, 0.012 and 0.032. (b)-(c)
Cluster size ξc (solid circles) and intermediary length ξs (empty circles) as function of the shear γ̇ determined from the model-free analysis (b)
and the modified two-level Beaucage model (c). Red lines are the best power law fit of ξc vs γ̇ for γ̇ > 50 s−1.
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