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Abstract. In brain signal processing, deep learning (DL) models have
become commonly used. However, the performance gain from using end-
to-end DL models compared to conventional ML approaches is usually
significant but moderate, typically at the cost of increased computational
load and deteriorated explainability. The core idea behind deep learning
approaches is scaling the performance with bigger datasets. However,
brain signals are temporal data with a low signal-to-noise ratio, uncer-
tain labels, and nonstationary data in time. Those factors may influence
the training process and slow down the models’ performance improve-
ment. These factors’ influence may differ for end-to-end DL model and
one using hand-crafted features.

As not studied before, this paper compares the performance of models
that use raw ECoG signals with time-frequency features-based decoders
for BCI motor imagery decoding. We investigate whether the current
dataset size is a stronger limitation for any models. Finally, obtained
filters were compared to identify differences between hand-crafted fea-
tures and optimized with backpropagation. To compare the effectiveness
of both strategies, we used a multilayer perceptron and a mix of con-
volutional and LSTM layers that were already proved effective in this
task. The analysis was performed on the long-term clinical trial database
(almost 600 min of recordings over 200 days) of a tetraplegic patient exe-
cuting motor imagery tasks for 3D hand translation.

For a given dataset, the results showed that end-to-end training might
not be significantly better than the hand-crafted features-based model.
The performance gap is reduced with bigger datasets, but considering the
increased computational load, end-to-end training may not be profitable
for this application.

Keywords: Deep learning - ECoG - Brain-computer interfaces -
Dataset size + Motor imagery - End-to-end

1 Introduction

In the last decade, deep learning (DL) models achieved extraordinary perfor-
mance in a variety of complex real-life tasks, e.g., computer vision [4], natural
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language processing [2], compared to previously developed models. This was
possible mainly thanks to the improvements of data processing units and,
most importantly, increased dataset sizes [4]. Generally, in brain-computer
interfaces (BCI) research, access to large databases of brain signals is limited
due to the experimental and medical constraints as well as the immensity of
paradigms/hardware combinations. Given limited datasets, can we still train
end-to-end (E2E) DL models for the medical BCI application as effectively as
in computer vision?

In 2019, Roy et al. [12] reported that the number of studies classifying EEG
signals with deep learning using hand-crafted features (mainly frequency domain)
and raw EEG signals (end-to-end) was similar. This indicates that decoding raw
EEG signals, without feature extraction, is indeed possible. However, in many
articles, researchers decided to use harder to design hand-crafted features. While
end-to-end models dominated computer vision, in brain signals processing, it is
still common to use features extracted as an input to the DL models. It is unclear
whether specific signal characteristics cause this, e.g., nonstationarity in time
making the creation of a homogeneous dataset impractical, low signal-to-noise
ratio complicating the optimization process and favoring overfitting, labels uncer-
tainty originating from human-in-the-loop experimental setup, or researchers’
bias toward solutions better understood and more explainable.

Most studies do not directly compare DL using end-to-end and hand-crafted
features approaches. Usually, DL architectures are compared with each other and
with an additional ‘traditional’ ML pipeline, e.g., filter-bank common spatial pat-
tern (FBCSP) in [15], xDAWN and FBCSP in [5], SVM and FBCSP in [17]. In
Fig. 1, we aggregated studies analyzed! by Roy et al. [12] to present the accuracy
improvement of the best proposed DL model in every article compared to the ‘tra-
ditional’ baseline depending on the recording time and the number of examples in
the dataset. The gap between performance improvement of DL compared to the
‘traditional’ baseline increases with the dataset size (except for the last points on
the plot, which contain significantly fewer studies). In the right plot, the difference
between models using raw EEG and frequency domain features increases which
may exhibit a boost of end-to-end models with access to bigger datasets com-
pared to hand-crafted features. As the proposed DL models are usually compared
to the baseline, the boost of end-to-end models cannot be clearly stated because
the accuracy difference depends strongly on the ‘traditional’ baseline model per-
formance and the particular task tackled in the study.

While EEG and ECoG signals share many characteristics—both are multi-
channel temporal signals with information encoded in frequency and space, with
low signal-to-noise ratio and noisy labels—there are also differences, e.g., a higher
spatial resolution of ECoG, higher signal-to-noise ratio and higher contribution
of informative high gamma band (>70Hz). In motor imagery ECoG decoding,
end-to-end DL is not commonly used. Instead, ‘traditional’ ML classifiers are

! limited to the articles that contained all the required information, code adapted
from [12].
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Fig. 1. Binned average accuracy difference between best proposed DL model and ‘tra-
ditional’ baseline on EEG datasets. Error bars denote one standard deviation of the
values in the bin. Bins are equal in size on a logarithmic scale. Points x-axis position
denotes the average dataset size in a bin.

usually preceded by a feature extraction step creating brain signals represen-
tation, typically in the form of time-frequency features, containing information
about power time course in several frequency bands [8,14] or focused only on
low-frequency component (LFC)/Local Motor Potential (LMP) [14] (detailed
analysis can be found in [19]).

However, a successful application of an end-to-end DL model to motor
imagery decoding of finger movements trajectory from ECoG was performed
with convolutional layers filtering the raw signal both in temporal and spatial
domains followed by LSTM layers [20]. Nevertheless, an average improvement
from training the weights compared to fixed hand-crafted features can be esti-
mated as 0.022 £ 0.0393 of Pearson r correlation coefficient, which is relatively
small, with 66% of cases noticeable improvement from end-to-end training. As
this was not studied before, we investigated the differences in data requirements
between an end-to-end model and one using hand-crafted features on a long-term
clinical trial BCI dataset of 3D target reach task. Unique long-term recordings
(several months of experiments, more than 600 min duration in total, compared
to few minutes of ECoG recording available in previous studies, e.g., [20]) allowed
us to explore the relationship between dataset size and the type of feature used
for ECoG signal decoding. In this study, we used architectures previously applied
to the ECoG dataset for decoding motor imagery signals with hand-crafted time-
frequency features as input [16]. In addition, we optimized the temporal filtering
layer with backpropagation seeking a more efficient set of filters that were initial-
ized to reproduce continuous wavelet transform. We also investigated whether
both approaches react differently to training dataset perturbations which may
be the case due to distinct model properties and may influence the choice of
optimal data processing pipeline for ECoG BCI.

2 Methods

2.1 Dataset

The dataset used in this study was collected as a part of the clinical trial ‘BCI and
Tetraplegia’ (ClinicalTrials.gov identifier: NCT02550522, details in [1]) approved
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by the ethical Committee for the Protection of Individuals (Comité de Protection
des Personnes-CPP) with the registration number: 15-CHUG-19 and the Agency
for the Safety of Medicines and Health Products (Agence nationale de sécurité
du médicament et des produits de santé—ANSM) with the registration number:
2015-A00650-49 and the ethical Committee for the Protection of Individuals
(Comité de Protection des Personnes—CPP) with the registration number: 15-
CHUG-19.

In the experiment, a 28-years-old tetra-
plegic patient after spinal cord injury was
asked to move the hands of a virtual
avatar displayed on a screen (see Fig.2)
using motor imagery patterns—by repeat-
edly imaging/attempting hand/fingers/arm
movements (without actual movements)
that influence brain activity in the motor
cortex. These changes were then recorded
with two WIMAGINE [10] implants placed Fig. 2. Screenshot from the virtual
over the primary motor and sensory cortex —environment. The patient is asked to
bilaterally. Each implant consisted of 8 x 8 reach the yellow square (tafrget) with

. : . the left hand (effector) using motor
grid of electrodes with recording performed . .
using 32 electrodes selected in a chessboard- imagery. (Color figure online)
like manner due to limited data transfer with a sampling frequency equal to
586 Hz. Signals from implants were transferred to the decoding system that per-
formed online predictions. First, one out of 5 possible states (idle, left and right
hand translation, left and right wrist rotation) was selected with a state decoder.
Then, for every state (except idle), a multilinear REW-NPLS model [3] updated
online was used to predict 3D movements or 1D wrist rotation. The dataset
consisted of 44 experimental sessions recorded over more than 200 days. It con-
stitutes 300 and 284 min for left and right hand translation, respectively.

2.2 Data Representation and Problem

From the recorded signals, we extracted two datasets for left and right hand
translation. The raw signal representation was created from 1-second long win-
dows of ECoG signal with 90% overlap. Every observation X; € R64X%90 con-
tained 590 samples? for each of the 64 channels corresponding to the number of
electrodes recording the signal.

Every signal window X; was paired with the corresponding desired trajectory
y; € R? that the patient was asked to follow, i.e., the straight line connecting the
tip of the hand to the target. The trajectories were computed in the 3D virtual
avatar coordinate system mounted in the pelvis of the effector.

Before feeding the data to the models, datasets were cleaned from data loss
artifacts that were not caught during the online recordings. Additionally, obser-
vations for which the predicted and desired state did not match due to state

2 instead of 586 samples due to 100 ms buffer during recording.
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decoder errors were also removed to reduce the number of mislabelled obser-
vations (e.g., when the patient was asked to control left hand translation but
instead left wrist was rotating).

Then, all the models were trained to find the mapping between X; ECoG sig-
nal and y; desired trajectories that the hand should follow in the case of optimal
prediction. As a performance metric we used cosine similarity (Eq. 1) measuring
cosine of the angle a; between prediction y; and the desired trajectory y;.

- Yi'Yi
CS(y;,yi) = ———— = cosq; 1
o300 = gy ~ e W
Cosine loss defined as CL(y;,y:) = 1 — CS(y;,¥:) was used as optimization
objective.

2.3 Hand-Crafted Features Extraction and DL Optimization

‘Traditional’ hand-crafted features were extracted using complex continuous
wavelet transform (CW'T). CWT was performed with Morlet wavelets with cen-
tral frequencies ranging from 10 to 150 Hz (broad band as ECoG contains higher
frequencies than EEG) with a step of 10 Hz. Each wavelet support consisted of
118 samples (0.28) centered on its maximum value. Features were obtained by
applying CWT on one-second-long signals, computing the module of the com-
plex signals, and performing an average pooling of 0.1s. The resulting feature
tensor was of shape 64 x 15 x 10, with dimensions corresponding to channels,
frequency bands, and time steps.

CWT can be represented as a convolution between a set of filters and a
signal in the temporal domain. In the standard case, the filters are fixed and
constitute a basis for feature extraction where every filter detects brain activity
in a different frequency band. As every spatial channel is convolved separately
in time, we obtained a time-frequency-space representation of the ECoG signal
(see Table 1 for feature extractor architecture specification).

Here, we propose to adjust the filters during backpropagation together with
all other parameters of the models. In the first scenario, the filters were initialized
to Morlet wavelets with 15 central frequencies, resulting in 30 kernels (real and
imaginary parts). Note that at the beginning of training, the first layer repro-
duces ‘traditional’ hand-crafted feature extraction. The filters were fixed for 5
epochs of so-called pre-training, then they were unfreezed and optimized freely
(without any additional constraints imposing specific filter shape) for the follow-
ing 50 epochs. The pre-training was used to not distort the wavelets drastically in
the first epochs when parameters of the rest of the network are randomly initial-
ized. We also evaluated random weights initialization from uniform distribution
as a solution that does not incorporate prior knowledge about the system.



End-to-End Deep Learning for ECoG Brain-Computer Interface 363

In the second scenario, an alternative approach was used to maintain the
wavelet structure by optimizing only the parameters used to generate the
wavelets instead of modifying all filters’ parameters. In our case, the function
generating the wavelets was defined as:

\/_ \/>
where central frequency parameter f defines the center of the frequency band
analyzed by the wavelet and fs is the signal sampling frequency. In the central
frequency optimization (CFO) scenario, we optimized only the central frequency

f parameters (one per wavelet), so the filters after training are still from the
Morlet wavelets family.

t f —(tf)262i7rtf (2)

Table 1. The architecture used to reproduce hand-crafted feature extraction with
CWT. Only one convolutional layer (conv time) was used in computations according
to the performed experiment E2E/E2E CFO.

Layer Kernel shape Output shape Param # | Mult-adds
Input - [200, 1, 590, 8, 8] |- -
Conv time [1, 30, 118, 1, 1] | [200, 30, 590, 8, 8] | 3,570 27,006,336,000
Conv time CFO [1, 30, 118, 1, 1] | [200, 30, 590, 8, 8] | 15 27,006,336,000
Square - [200, 30, 590, 8, 8] | - -
Sum real and imaginary | — [200, 15, 590, 8, 8] | - -
Square root - [200, 15, 590, 8, 8] | - -
Dropout - [200, 15, 590, 8, 8] | - -
AvgPool - [200, 15, 10, 8, 8] | — -
BatchNorm [15] [200, 15, 10, 8, 8] | 30 6,000

2.4 DL Architectures

In this study, we used two architectures proposed in [16], i.e., CNN4+LSMT+MT,
which showed the best performance, and MLP, which was the simplest app-
roach. In the baseline approach, the hand-crafted feature extraction was followed
with fully connected or convolutional layers. When optimizing the first convo-
lutional layer, we kept the rest of the network the same to isolate the influence
of the training feature extraction step. Details of the tested DL architectures
are described below and in [16]. Additionally, we used ShallowFBCSPNet and
Deep4Net [15] as end-to-end DL baseline.

MLP. The most basic DL architecture evaluated in the study was multilayer
perceptron (MLP), consisting of two fully connected layers. Dropout and batch
normalization layers were placed between fully connected layers for stronger
regularization (see Table 2).
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Table 2. MLP architecture from [16].

Layer Kernel shape | Output shape | Param # | Mult-adds
Flatten - [200, 9600] - -

Fully connected | [9600, 50] [200, 50] 480,050 | 96,010,000
BatchNorm [50] 200, 50] 100 20,000
ReLU - 200, 50] - -
Dropout - [200, 50] - -

Fully connected | [50, 50] [200, 50] 2,550 510,000
ReLU - 200, 50] - -
Dropout - [200, 50] - -

Fully connected | [50, 3] [200, 3] 153 30,600

CNN+LSTM+MT. In the CNN+LSTM+MT architecture, CWT features

were further analyzed with 3 x 3 convolutional layers in space (electrodes orga-
nized on an array 4 x 8 reflecting positions of electrodes on implants). After two

convolutional layers, two LSTM layers were applied to analyze temporal infor-
mation from 10 timesteps. Finally, every output of the last LSTM layer was used
for training to compute loss based on all predicted and ground truth trajectories

corresponding to 1s (10 timesteps) of signal analyzed (see Table 3).

Table 3. CNN+LSTM+MT architecture from [16].

Layer Kernel shape | Output shape Param # | Mult-adds
Input [200, 15, 8, 8, 10] | —
Input per implant [200, 15, 8, 4, 10] | -
Conv space (15, 32, 3, 3, 1] | [200, 32, 6, 4, 10] | 4,352 208,896,000
ReLU - 200, 32, 6, 4, 10] | — -
BatchNorm 32] 200, 32, 6, 4, 10] | 64 12,800
Dropout - [200, 32, 6, 4, 10] | - -
Conv space (32, 64, 3, 3, 1] | [200, 64, 4, 2, 10] | 18,496 295,936,000
ReLLU - [200, 64, 4, 2, 10] | - -
Dropout - [200, 64, 4, 2, 10] | - -
LSTM - [200, 10, 50] 215,200 | 430,400,000
LSTM - 200, 10, 3] 660

Models Training and Hyperparameters. For every model evaluation, we
used 90% and 10% of the training dataset for training and validation, respec-
tively. The validation dataset was used for early stopping after 20 epochs without
improvement. All the models used a fixed set of hyperparameters, i.c., learning

rate of 0.001, weight decay of 0.01, batch size of 200, and ADAM optimizer [9].
To train DL models we used PyTorch [11], skorch [18], and braindecode [15].



End-to-End Deep Learning for ECoG Brain-Computer Interface 365

2.5 Offline Experiments

First, we computed results in a classical evaluation scenario, i.e., train/valid/test
split. We used the calibration dataset (first six sessions, approximately 10% of
the dataset) as the training dataset. The rest of the data (online evaluation
dataset) was used as the test set.

Additionally, we gradually increased the training dataset size from one ses-
sion up to 22 with a step of 2. As different models may have different dataset
requirements, we wanted to verify whether collecting more data can be more
profitable for one of the evaluated optimization/architecture combinations.

To investigate the possible influence of end-to-end learning on models’ robust-
ness against data mislabelling, we perturbed the dataset to make training more
challenging. In the BCI, part of observations is often mistakenly labeled due to
lack of subject attention, tiredness, experimental setup, etc. Therefore, we ran-
domly selected a fraction of observations in which targets were shuffled between
samples so they no longer have a meaningful connection with the ECoG signal
while preserving the same distribution. At the same time, we kept the test set
unchanged.

3 Results

Table 4. Test cosine similarity computed in the train-valid-test split scenario. Values
are sorted by average performance and represent the mean and standard deviation of
5 runs.

Left hand Right hand
E2E CNN+LSTM+MT CFO 0.304 + 0.005 | 0.266 £ 0.020
CNN+LSTM+MT 0.297 + 0.008 |0.270 + 0.011
E2E CNN+LSTM+MT 0.289 + 0.007 |0.273 +0.015
E2E MLP CFO 0.254 +0.012 | 0.230+0.013
MLP 0.247 £ 0.023 |0.232 £ 0.005
E2E MLP 0.243 +0.014 |0.234 + 0.020
ShallowFBCSPNet [15] 0.235+0.010 |0.236 +0.011
E2E CNN+LSTM+MT random init | 0.216 4+ 0.008 | 0.230 + 0.020
E2E MLP random init 0.181 +0.029 |0.223 + 0.008
Deep4Net [15] 0.111 £0.021 |0.259 £ 0.013

We started the analysis by comparing different model training scenarios when
trained on the first six sessions (online calibration dataset). The results for the
train/test split can be found in Table 4. Differences between scenarios are rather
small, with only small performance improvement coming from full end-to-end
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optimization. The best performance was achieved by models using CFO. How-
ever, the gap between the hand-crafted features approach and CFO is relatively
small, considering standard deviations of the computed values. The worst perfor-
mance was achieved for DeepdNet (especially low performance for the left hand
dataset) and both MLP and CNN+LSTM+MT models with random weights ini-
tialization, suggesting the high importance of the prior signal processing knowl-
edge used to define the wavelet shape of the filters at the beginning of the
training.

E2E MLP - E2E MLP random init - E2E MLP CFO -
> MLP MLP MLP
E 0.05 - L] -o- Left hand n
g i S ~@- Righthand & S
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Fig. 3. Difference between cosine similarity of end-to-end model and its counterpart
using hand-crafted features. The bold line denotes the moving average with a window
of size 3.

We did not notice significant improvements coming from end-to-end opti-
mization, so we wanted to verify the hypothesis of different dataset size require-
ments for different optimization methods. Therefore, the differences between end-
to-end models and their hand-crafted features counterparts for several training
dataset sizes are presented in Fig. 3. In some cases, end-to-end models increase
the cosine similarity faster than the models using fixed features, so the gap
between models can be reduced for approaches using random weights initializa-
tion. However, only for models initialized to wavelets and optimized directly, an
improvement over hand-crafted features can be observed for some points (up to
0.05 of cosine similarity for the right hand dataset).

When comparing CFO and standard E2E optimization in Fig. 4, higher effec-
tiveness of CFO for small training datasets can be observed. CFO may limit over-
fitting as the functions represented by the convolutional filters are constrained to
the wavelet family. It may be interpreted as an additional optimization constraint
imposed on model parameters. Note that diminished gap between CFO and stan-
dard end-to-end in Fig. 4 show only relative decrease of CFO performance.
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Fig. 4. Difference between cosine similarity of the CFO model and its counterpart using
constraint-free end-to-end optimization. The bold line denotes the moving average with
a window of size 3.

3.1 Filters Visualization

Frequency 10 Hz Frequency 20 Hz Frequency 30 Hz Frequency 40 Hz Frequency 50 Hz

—— Before training

—— After training
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Fig. 5. Visualized filters before (blue) and after (red) training for the models with
parameters optimized freely. Note that only real part of the wavelet was visualized
for clarity. Plot titles denote central wavelet frequency at initialization. (Color figure
online)

We visualized the filters before and after training to analyze the characteristics
of learned feature extraction. In Fig. 5, we presented the filters modified without
additional constraints. The biggest change can be observed in the central fre-
quencies between 30 Hz and 80 Hz. In most cases, the initial central frequency
was maintained, while the wavelets got extended with a signal similar to the
sine wave in the central wavelet frequency. This could indicate the importance
of information about frequencies from which the signal is composed. At the
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same time, extending wavelets reduces the temporal resolution of the signals.
The changes in the high-frequency wavelets (>100Hz) are less significant, and
the pattern of extending wavelets is no longer visible. Instead, components of
significantly lower frequencies and smaller amplitude were added.

In Fig. 6, we visualized filters before and after optimization when the first con-
volutional layer was initialized to random. As filters initialized to random were
much harder to analyze visually, we presented them in the form of power spec-
tra, so the changes in the filtered frequencies could be better visible. All filters
have a maximum power peak lower than 65 Hz with 40% of maxima contained in
the frequency range 25-30 Hz. Compared to hand-crafted features, end-to-end
filters initialized to random covered only approximately half of the frequency
band analyzed by the fixed hand-crafted feature extraction pipeline. However,
in the higher frequencies, there are smaller peaks which can also contribute to
the extracted representation and may cover the missing frequency band.

10.0 Freq max before: 75.0 6 Freq max before: 15.0 Freq max before: 260.0 Freq max before: 20.0 Freq max before: 280.0

8 .
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Fig. 6. Power spectra of filters before (blue) and after (red) training for convolutional
layer initialized to random. The plots denoted frequencies for which maximum power
spectra were observed before and after training. (Color figure online)

In Fig. 7a, we presented the difference between initialized central wavelet fre-
quency and the one obtained after the training. We observed a decrease in almost
all frequencies when training the models. The decrease was higher for higher fre-
quencies. This may suggest that more information can be extracted from lower
frequencies. However, in our preliminary results, we noticed that adapting the
learning rate for the convolutional layer may significantly change the frequency
behavior (see Fig. 7b), which should be taken into account when analyzing the
results. This may lead to different changes in the central frequencies than in the
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base model. The gradient was increased 150 times by squeezing central frequen-
cies from 10-150Hz to 0-1. In the case of initialization to wavelet, a network
may start the training near a local minimum found by the manual design of fea-
ture extraction that can be hard to move out. Setting a higher learning rate may
enable reaching different regions on the loss function surface. The performance
achieved with a higher learning rate was similar to the standard CFO results
with a cosine similarity of 0.283 + 0.014 (left hand) and 0.270 £+ 0.011 (right
hand) for CNN4+LSTM+MT and 0.262 + 0.01 (left hand) and 0.227 + 0.007
(right hand) for MLP.

CNN+LSTM+MT CNN+LSTM+MT CNN+LSTM+MT CNN+LSTM+MT

Change in central frequency [Hz]
Ly
o
Change in central frequency [Hz]
w
&

Change in central frequency [Hz]
L
o

Change in central frequency [Hz]

10 50 100 150 10 50 100 150
Central frequency [Hz] Central frequency [Hz] Central frequency [Hz] Central frequency [Hz]

10 50 100 150 10 50 100 150

(a) standard central frequencies in (b) central frequencies squeezed to
range 10-150 range 0-1

Fig. 7. Difference between central wavelet frequencies before and after CFO. Models
for left hand translation are presented in the left column, for the right hand in the
right column. Note that the scale is different for (a) and (b).

3.2 Target Perturbation

In the case of perturbed ground-truth (Fig.8), CNN+LSTM+MT models were
more robust to noise in the targets with increased stability (especially for the left
hand) of hand-crafted features and CFO models compared to models optimized
freely. On the other hand, in the case of MLP models, almost no differences
between different optimization methods in the influence of noise on the perfor-
mance were noticed.
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Fig. 8. Influence of noise in the targets on models’ performance. Noise level indicates
the fraction of observations with perturbed labels.

4 Discussion

We proposed several approaches for the end-to-end optimization of deep learning
ECoG decoders. However, in this study, we did not observe improvement from
end-to-end optimization, especially when no prior knowledge was used for filter
initialization. This confirms the usefulness of hand-crafted features and years
of neuroscientific signal processing while leaving doors open to more sophisti-
cated end-to-end models. Firstly, deeper models with more advanced DL mech-
anisms [6,13] should be evaluated as they may allow for the extraction of more
complex representations and thus outperform hand-crafted features. Secondly,
machine learning methods for robust learning may be evaluated, e.g., learning
from noisy input data, noisy labels, and out-of-distribution samples [7]. Those
can particularly tackle problems coming from specific recording/experimental
circumstances.

The reasoning behind our study is focused on the specificity of ECoG brain
signals and the adequacy of selected DL methods to the problem. The specificity
originates from experimental constraints caused by the presence of a human in
the loop but also signals characteristics, hardware capabilities, etc. It results
in a distorted dataset with a low signal-to-noise ratio, short signal stationar-
ity interval, and uncertain labels. This is quite different from computer vision
problems, usually with well-defined labels and images understandable with a
naked eye. Improving information extraction from noisy data may be especially
important in the light of increased robustness to noise in targets shown by the
CNN+LSTM+MT model compared to MLP. Using all 10 targets recorded dur-
ing a 1-s window decreases the influence of single perturbed points on the perfor-
mance because the information can be efficiently extracted even for 40% or 60%
of perturbed targets. In this case, the CNN+LSTM+MT model using hand-
crafted features maintains high performance for a higher noise level than the
end-to-end model. However, an important point in the discussion is that our
dataset, even after data cleaning, still contains a significant, unknown amount
of observations with incorrect labels. Thus, in Fig. 8, a noise level equal to zero
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corresponds to an unknown noise level in labels originating from the experimental
setup. Thus, generative models should be used to create datasets with a known
level of noise and analyze the influence of perturbations on the performance in
the case of less distorted datasets.

All the results were computed offline on datasets recorded with only one
patient. These kinds of datasets are hardly accessible due to experimental and
legal constraints. It makes the generalization of the results to other patients
and datasets hard to estimate. Thus, more simulations should be performed to
confirm our conclusions, ideally with more patients and tasks. This should also
include hyperparameters search, like learning rate, batch size, weight decay, as
those could vary between different approaches. However, performing hundreds of
evaluations is time-consuming, and the problem is magnified in the case of end-
to-end models due to increased computational load. Our study focused on feature
extraction based on wavelet transform, which was previously used in this prob-
lem. As we optimized the parameters of the wavelet transform without changing
other parts of the model, we isolated the influence of end-to-end optimization
on models’ performance. While this simplified the problem, our study did not
evaluate other feature extraction pipelines that could behave differently. Thus,
an extended analysis of several feature extraction pipelines compared to their
end-to-end counterparts would allow for broader generalization and therefore is
of great interest.

While this article and [20] analyzed ECoG signals, targets used for training
models in [20] were actual fingers trajectories recorded while subjects performed
real movements. In our case, targets are much noisier due to the lack of labeling
based on the hand movements of a tetraplegic patient. This may favor hand-
crafted features, as could be seen for CNN+LSTM-+MT in Fig. 8. Finally, our
conclusions are in line with [20] who observed relatively small improvement from
optimizing hand-crafted features and worse performance/longer training time
when initializing the model to random. In our case, end-to-end models achieved
the same performance as models using CWT features only with smart weights
initialization, which emphasizes the importance of prior signal processing knowl-
edge in designing DL for ECoG analysis.
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