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Abstract.
In this paper, we tackle the challenging task of reconstructing Received Signal Strength (RSS) maps by harnessing location-

dependent radio measurements and augmenting them with supplementary data related to the local environment. This side in-
formation includes city plans, terrain elevations, and the locations of gateways. The quantity of available supplementary data
varies, necessitating the utilization of Neural Architecture Search (NAS) to tailor the neural network architecture to the specific
characteristics of each setting.

Our approach takes advantage of NAS’s adaptability, allowing it to automatically explore and pinpoint the optimal neural
network architecture for each unique scenario. This adaptability ensures that the model is finely tuned to extract the most relevant
features from the input data, thereby maximizing its ability to accurately reconstruct RSS maps. We demonstrate the effectiveness
of our approach using three distinct datasets, each corresponding to a major city. Notably, we observe significant enhancements in
areas near the gateways, where fluctuations in the mean received signal power are typically more pronounced. This underscores
the importance of NAS-driven architectures in capturing subtle spatial variations. We also illustrate how NAS efficiently identifies
the architecture of a Neural Network using both labeled and unlabeled data for Radio Map reconstruction. Our findings emphasize
the potential of NAS as a potent tool for improving the precision and applicability of RSS map reconstruction techniques in
urban environments.

Keywords: Neural Networks with optimized architecture, Radio Map Reconstruction, Learning with partially labeled data

1. Introduction

Retrieving the exact position of the connected ob-
jects has become an important feature of the Internet
of Things (IoT). Such connected objects have indeed
been widespread over the last few years thanks to the
low cost of the radio integrated chips and sensors and
their possibility of being embedded in plurality of the
devices.

By this they can help in fast development of large-
scale physical monitoring and crowdsensing systems
(like smart cities, factories, transportation, etc.). For
the location-dependent application and services these
abilities to associate accurate location with physical
data gives huge opportunities [28]. For example, the
fine-grain and dynamic update of air pollution and/or

weather maps could benefit from geo-referenced mo-
bile sensing1 (e.g., aboard taxis, buses, bicycles...),
thus continuously complementing the data from static
stations. One of the localization techniques is Global
Positioning System (GPS) which has been widely used
over the past decades. More recently, low-cost ad-
vanced GPS solutions were proposed (like RTK, Bi-
band,..), but still they suffer from high energy con-
sumption which is not suitable for IoT applications.

As an alternative, one can opportunistically measure
location-dependent radio metrics, like Received Sig-
nal Strength (Indicator) (RSSI), Time (Difference) of
Arrival, Angle of Arrival, etc., because these sensor

1https://sarws.eu/
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nodes communicate with one/several gateways at the
same time (e.g. while sending a packet to the infras-
tructure to store this data in the cloud/server). Based
on these metrics, there exist several methods to de-
termine the node position: trilateration, triangulation,
proximity detection, or fingerprinting [11, 14, 67]. We
will focus on the last approach – fingerprinting [12]–
which requires (ideally) full map of mentioned above
radio metrics, covering the zone of interest. However,
collecting metrics in each point of the zone of inter-
est is impractical and time costly in real-world scenar-
ios, therefore most approaches rely on sparse and non-
uniformly distributed measurements.

In this sense, classical map interpolation techniques
such as RBF [18, 47, 54] or kriging [36, 45] are used.
Although these methods are relatively fast, they are
quite weak in retrieving and predicting the complex
and heterogeneous spatial patterns that are usually ob-
served in real life signals (e.g., sudden and/or highly
localized transient variations in the received radio met-
ric due to specific environmental, local or topologi-
cal effects). Another approach consists on determin-
istic simulation such as Ray-Tracing tools [9, 32, 51,
61]. Given some real field measurements and then
calibrated over them, these models predict the radio
propagation while simulating electromagnetic interac-
tions with the environment. These technologies, how-
ever, need a complete description of the environment
(properties of the materials of the obstacles, buildings,
shape,etc.). Moreover, they are computationally com-
plex, and in case of minor changes in the local area,
these simulations should be re-run again. Recently,
studies have employed machine learning for this task
by considering radio maps as images and adapting neu-
ral network models that have been proposed for image
completion. These models are based on the fully gen-
erated dataset by Ray-Tracing tools for predicting the
signal propagation given the buildings mask and posi-
tion of the transmitter [33]; or predicting the received
power value for the Long Term Evolution (LTE) of the
signal with use of additional information and neural
networks [24, 43] with handcrafted structures.

In this work we will focus on the received signal
strength map reconstruction, where only small amount
of ground truth GPS-tagged measurements are avail-
able preventing to use existing NN models with hand-
crafted architectures and for which Ray-Tracing mod-
els could not be applied due to the lack of information
about physical properties of the environment or due to
high computational complexity. Our approach is based
on Neural Architecture Search (NAS) [17] which aims

to find an optimized NN model for this task. We show
that by employing the latter technique, it is feasible to
learn model parameters while simultaneously explor-
ing the architecture. In addition, we employ unlabeled
data in conjunction with ground-truth measurements in
the training phase, as well as side information that ac-
counts for the existence of buildings, to obtain knowl-
edge and improve the model’s performance. We assess
our technique using three RSSI Map reconstruction
collections, including one we produced for the city of
Grenoble in France. In the case of the latter, we thor-
oughly examine its properties. In particular, we show
that unlabeled data can effectively be used to find an
efficient optimized NN model and that the side infor-
mation provides valuable knowledge for learning. The
obtained model is shown to have generalization abil-
ity on base stations that were not used in the training
phase. The contribution of this paper is twofold:

– We propose a unified framework with the use of
side information, for which we study the gener-
alization ability of a neural network model which
architecture is optimized over labeled and unla-
beled data using side-information. This is an ex-
tension of the work of [40, 41].

– Furthermore, we provide empirical evaluation
over three large-scale RSSI collections showing
that the proposed approach is highly competitive
compared to the state-of-the-art models in terms
of quality metrics.

2. Related State of the Art

Classical techniques such as radial basis functions
(RBF) or kriging [12] are simple and fast, but they
are poor at predicting the complex and heterogeneous
spatial patterns commonly observed in real-world ra-
dio signals (e.g., sudden and/or highly localized tran-
sient variations in the received signal due to specific
environmental or topological effects, such as specific
building shapes, presence of public furniture, ultra-
navigation, etc.). Furthermore, data augmentation ap-
proaches for artificially increasing the number of mea-
surements in radio map reconstruction issues have
been developed.

The goal is to use the synthetic data created as extra
data to train complex map interpolation models. How-
ever, these techniques need a highly thorough descrip-
tion of the physical environment and are unable to pre-
dict dynamic changes in the environment over time. A
key bottleneck is their high computational complexity.
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In the following, we go through some more rele-
vant work on RSSI map reconstruction, including in-
terpolation and data-augmentation techniques, as well
as machine learning approaches.

2.1. Interpolation and data-augmentation techniques

Kriging or Gaussian process regression [34] is a
prominent technique for radio map reconstruction in
the wireless setting that takes into consideration the
distance information between supplied measured loca-
tions while attempting to uncover their underlying 2D
dependency.

Radial basis functions (RBF) [12, 18, 54] are an-
other approach that simply considers the dependent on
the distance between observed locations. As a result,
this method is more adaptive and has been found to be
more tolerant to some uncertainty [57]. Furthermore,
in order to compare the performance of the RBF with
different kernel functions for the map reconstruction
of signal strength of Long Range (LoRa) radio waves,
[12] divided all of the points in a database of outdoor
RSSI measurements into training and testing subsets,
with the linear kernel showing the best accuracy in
both standard deviation and considered metric. The
two approaches stated above (which depend on kernel
techniques and underlying spatial relationships of the
input measurements) need a lot of input data to provide
reliable interpolation results, making them sensitive to
sparse training sets. These methods have consequently
been considered in pair with crowdsensing, where, for
example in [36], to improve the performance of ba-
sic kriging, one calls for measuring the radio metric
in new points/cells where the predicted value is still
presumably imprecise. A quite similar crowdsensing
method has also been applied in [20] after consider-
ing the problem as a matrix completion problem us-
ing singular value thresholding, where it is possible to
ask for additional measurements in some specific cells
where the algorithm has a low confidence in the pre-
dicted result. In our case though, we assume that we
can just rely on a RSSI map with few ground-truth
initial RSSI measurements.

Another approach considered in the context of in-
door wireless localization (with map reconstruction
firstly) relies on both measured field data and an a
priori path loss model that accounts for the effect of
walls presence and attenuation between the transmit-
ter and the receiver [30] by using the wall matrix,
which counts the number of walls along the path from

the access point to the mobile location and penalize
value according to that number. In some outdoor set-
tings, training points are divided into a number of clus-
ters of measured neighbors having specific RSSI dis-
tributions, and local route loss models are applied in
an effort to capture localized wireless topology effects
in each cluster [44]. However as parametric path loss
models are usually quite imprecise, these techniques
have a limited generalization capabilities and require
additional impractical in-site (self-)calibration. A quite
similar approach, except the use of additional side in-
formation, is followed in [37], where they propose an
algorithm called SateLoc. Based on satellite images, it
is then suggested to perform a segmentation of the ar-
eas “crossed” by a given radio link, depending on their
type (e.g., terrain, water, forest, etc.). Then, propor-
tionally to the size of the crossed region(s), power path
loss contributions are computed according to a prior
model parameters (i.e., associated with each environ-
ment type) and summed up to determine the end-to-
end path loss value.

One more way to build or complete radio databases
stipulated in the context of fingerprinting based posi-
tioning consists in relying on deterministic simulation
approach, namely Ray-Tracing tools (e.g., [32, 51, 52,
60, 61]). This technique aim at predicting in-site ra-
dio propagation (i.e., simulating electromagnetic inter-
actions of transmitted radio waves within an environ-
ment). Once calibrated with a few real field measure-
ments, such simulation data can relax initial metrology
and deployment efforts (i.e., the number of required
field measurements) to build an exploitable radio map,
or even mitigate practical effects that may be harmful
to positioning, such as the cross-device dispersion of
radio characteristics (typically, between devices used
for offline radio map calibration and that used for on-
line positioning). Nevertheless, these tools require a
very detailed description of the physical environment
(e.g., shape, constituting materials and dielectric prop-
erties of obstacles, walls...). Moreover, they are noto-
rious for requiring high and likely prohibitive compu-
tational complexity in real applications. Finally, simu-
lations must be re-run again, likely from scratch, each
time minor changes are introduced in the environment,
e.g. the impact of human activity (like changing crowd
density, temporary radio link obstructions).
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2.2. NN based models trained after data
augmentation

There is an increasing interest in applying machine
and deep learning methods to the problem of RSSI
map reconstruction. These approaches have shown
an ability to capture unseen spatial patterns of lo-
cal effects and unseen correlations. Until now, to the
best of our knowledge, these algorithms were pri-
marily trained over simulated datasets generated by
data-augmentation approaches (that were mentioned
above).

In [33], given a urban environment, city geography,
transmitter (Tx) location, and optionally pathloss mea-
surements and car positions the authors introduce a
UNet-based neural network called RadioUNet in the
supervised learning setting, which outputs radio path
loss estimates trained on a large set of generated using
the Dominant Path Model data [56].

The authors of [23] propose a two-phase transfer
learning with Generative Adversarial Networks (GAN)
, which comprises two stages, to estimate the power
spectrum maps in the underlay cognitive radio net-
works. The domain projecting (DP) framework is used
to first project the source domain onto a neighboring
domain. The target domain’s entire map is then rebuilt
or reconstructed using the domain completing frame-
work and the recovered features from the surrounding
domain.

For training of the DP, fully known signal distribu-
tion maps have been used. In another contribution, to
improve the kriging predictions the authors have used
the feedforward neural network for path loss modelling
[58], as conventional parametric path loss models has
a small number of parameters and do not necessarily
consider shadowing besides mean power attenuation.

Apart from wireless applications, similar problems
of map reconstruction also exist in other domains.
In [70] for instance, the goal is to create the full to-
pographic maps of mountains area given sparse mea-
surements of the altitudes values. For this purpose,
they use a GAN architecture, where in the discrimina-
tor they compare pairs of the input data and the so-
called “received” map, either generated by the genera-
tor or based on the given full true map. In other work
[66] the authors estimate the sea surface temperature
with use of GAN architecture in the unsupervised set-
tings but having a sequence of corrupted observations
(with different cloud coverage) and known mask dis-
tribution. Another close more general problem mak-

ing extensive use of neural networks is the image in-
painting problem, where one needs to recover miss-
ing pixels in a single partial image. By analogy, this
kind of framework could be applied in our context too,
by considering the radio map as an image, where each
pixel corresponds to the RSSI level for a given node
location. It has been shown in [41] the interpretation
of collected measurements on a map as an image with
some pixels gives overall better result. But the prob-
lem is in consumed time as it does not give the gener-
alized model and do not use the additional information
about the local environment. Usually, such image in-
painting problems can be solved by minimizing a loss
between true and estimated pixels, where the former
are artificially and uniformly removed from the initial
full image. This is, however, not possible and not real-
istic in our case, as only a few ground-truth field mea-
surements collected on the map can be used to recon-
struct the entire image.

In contrast to the previous approaches, in our
study we consider practical situations where data-
augmentation techniques cannot be used, mainly be-
cause of unknown environment characteristics and
computational limitations, and where only a small
amount of collected ground-truth measurements is
available.

Finally, a few contributions aim at predicting the re-
ceived power value based on neural networks and ad-
ditional information. For instance, in [24, 26, 43], RSS
values are predicted in exact points, given meta infor-
mation such as the radio characteristics (e.g., transmis-
sion specifications or relationship between the receiver
(Rx) and the transmitter (Tx), like horizontal/vertical
angle, mechanical/electrical tilt angle, 2D/3D distance,
base station antenna orientation, etc.) and/or prior in-
formation about the buildings (e.g., height and pres-
ence). In case the latter information is missing, predic-
tions can be made also by means of satellite images
(e.g., paper [26]). In these papers though, the map re-
construction cannot be performed directly. As the pre-
diction is realized for each point separately, it is thus
time consuming. Moreover, the authors do not take
into account the local signal values, but only the physi-
cal parameters and physical surroundings (similarly to
standard path loss models).

2.3. Semi-Supervised Learning

The constitution of coherent and consistent labeled
collections are often done manually. This necessitates
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tremendous effort, which is generally time consum-
ing and, in some situations, unrealistic. The learning
community has been looking at the concept of semi-
supervised learning for discrimination and modeling
tasks since the end of the 1990s, based on the observa-
tion that labeled data is expensive while unlabeled data
is plentiful and contains information on the problem
we are trying to solve.

The three main families of Semi-supervised Learn-
ing (SSL) approaches are Generative, Graph-based and
Discriminant methods [10].

Generative Methods Semi-supervised learning with
generative models involves estimating the conditional
density using a maximum likelihood technique to esti-
mate the parameters of the model. In this case, the hid-
den variables associated with the labeled examples are
known in advance and correspond to the class of these
examples. The basic hypothesis of these models is that
if two examples are in the same group, then they are
likely to belong to the same class [59]. We can thus in-
terpret semi-supervised learning with generative mod-
els (a) as a supervised classification where we have ad-
ditional information on the probability density of the
data, or (b) as a partition with additional information
on the class labels of a subset of examples [5, 42]. If
the hypothesis generating the data is known, generative
models can become very powerful [69].

Graph-based Methods Graph-based methods em-
ploy an empirical graph built on the labeled and unla-
beled examples to express their geometry [6]. They are
based on the hypothesis that if two examples are in the
same group, then they are likely to belong to the same
class. The nodes of this graph represent the training ex-
amples and the edges translate the similarities between
the examples. These similarities are usually given by a
positive symmetric matrix, where the weight between
two nodes is non-zero if and only if the corresponding
examples are connected.

Methods for Semi-Supervised Learning leverage
generative and graph-based approaches to harness the
underlying data geometry through density estimation
techniques or distance-based similarity matrix con-
struction. However, these methods have their limita-
tions when the underlying distributional assumptions
become invalid or the distance used to estimate the
similarity matrix fails to accurately represent the true
data topology. In such cases, their performance tends
to degrade in comparison to scenarios where only la-
beled examples are used for model training. [13].

Discriminant Methods To address these shortcom-
ings, researchers have been motivated to devise strate-
gies for mitigating these issues. One such approach in-
volves using predictions from a discriminant model on
unlabeled data to assign pseudo-labels. These pseudo-
labeled examples are then integrated into the training
process in a technique known as self-training [4, 21].
This iterative self-training process involves the re-
peated steps of pseudo-labeling and training a new
model until there are no more unlabeled examples left.
Some approaches have tackled the problem of mod-
elling noise in the pseudo-labeling phase [29]. further-
more, in the case where class pseudo-labels are as-
signed to unlabeled examples, by thresholding the out-
puts of the classifier corresponding to these examples,
it can be shown that the self-learning algorithm works
according to the clustering assumption [3].

2.4. Neural Architecture Search

The creation and selection of features in many tasks
are done manually in general; this critical phase for
some conventional machine learning algorithms might
be time-consuming and costly. Neural Networks ad-
dress this challenge by learning feature extractors in
an end-to-end manner. These feature extractors, on the
other hand, rely on architectures that are still manually
constructed, and with the rapid development of deep
learning, designing an appropriate NN model has be-
come onerous in many cases.

This problem has recently been addressed by a new
field of research called (NAS) [16, 17, 63, 65]. In a
variety of applications, such as image segmentation
and classification, Neural Networks with automatically
found architectures have already outperformed “con-
ventional” NN models with hand-crafted structures.

Different types of existing methods of search are de-
scribed below. In the last few years the research on
the topic of NAS has been shown a huge interest in
the different fields. Among various studies, there are
different techniques that are based on divers methods
like Reinforcement Learning [71], Evolutionary Algo-
rithm [53] or Bayesian Optimization [27]. Recently
gradient-based methods became more popular. For ex-
ample, one of the first methods based on this tech-
nique was presented in [39] and is called Differen-
tiable Architecture Search (DARTS), which is using
relaxation to, at the same time, optimize the struc-
ture of a cell, and the weight of the operations rela-
tive to each cell. After finding the best combinations,
blocks are stacked manually to produce a neural net-
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work. Based on DARTS, more complex methods have
appeared such as AutoDeepLab [38] in which a net-
work is optimized at 3 levels : (i) the parameters of the
operations, (ii) the cell structure and (iii) the macro-
structure of the network that is stacked manually. De-
spite the fact that a complex representation leads to
powerful architectures, this technique has some draw-
backs, such as the fact that the generated architec-
ture is single-path, which means it does not fully ex-
ploit the representation’s capabilities. Moreover, as the
search phase is done over a fixed network architecture,
it might not be the same between different runs, thus it
is complicated to use transfer learning and the impact
of training from scratch can be significant. To over-
come these limitations, one possible technique is to use
Dynamic Routing as proposed in [35]. This approach is
different from the traditional gradient based methods
proposed for NAS in the sense that it does not look for
a specific fixed architecture but generates a dynamic
path in a mesh of cells on the fly without searching by
weighting the paths during training procedure.

In the context of signal strength map reconstruc-
tion with neural networks, the choice between using
a Generic Algorithm and Dynamic Routing to auto-
matically find the architecture of the neural network
depends on the specific problem, dataset, and con-
straints. Genetic Algorithms are well-suited for explor-
ing a large and complex search space of neural network
architectures [68]. They work by evolving a population
of potential solutions over multiple generation, allow-
ing them to efficiently search for a wide range of archi-
tectures [64]. This is important in signal strength map
reconstruction where the optimal architecture may not
be known in advance and can vary based on the na-
ture of the signals, the environment, and other factors.
Genetic Algorithms maintain diversity within the pop-
ulation of neural network architectures, ensuring that
a wide range of designs is considered. This can be
beneficial in finding novel and effective solutions that
might be missed by more deterministic methods like
Dynamic Routing as it has been shown in [41].

In our study, we look at how well neural networks
can extract complex features and their relationships to
signal strength in the local area or under similar con-
ditions, as well as their ability to take into account
additional environmental information without having
access to more complex physical details. This is per-
formed through a search for a model with an opti-
mized architecture adapted to the task with partially la-
beled data. From this perspective and following [41],
we consider the genetic algorithm for NAS.

3. Application to the Stated RSS Map
Reconstruction Problem

Additional information could be represented in dif-
ferent manners, and they could be included into the
algorithm in a variety of ways, such as independent
channels, parallel channels inputs, directly in the learn-
ing goal, or in the ranking metric during model selec-
tion. We adapted the proposed algorithm presented in
[40] for multi-channel input by combining additional
context information with the data in the model’s input;
and we assessed the model’s performance on unseen
base stations that were not utilized in the learning pro-
cess.

Here, we suppose to have a small set of n available
base stations (X j)1⩽ j⩽n. For each given matrix of base
station X j; j ∈ {1, . . . , n}, let Y j ∈ RH×W be its corre-
sponding 2D matrix of signal strength values measure-
ments, where H×W is the size (in number of elements
in a grid) of the zone of interest.

In practice, we have access only to some ground
truth measurements Y j

m, meaning that

Y j
m = Y j ⊙ M j, (1)

with M j ∈ {0, 1}H×W a binary mask of available
measurements, and ⊙ is the element-wise product of
two matrices of the same dimensions, also called the
Hadamard’s product. Here we suppose sparsity mean-
ing that the number of non-null elements in Y j

m is much
lower than the overall size H×W. For each base station
X j we estimate unknown measurements Ỹ j

u in Y j with
a RBF interpolation given (X j

m,Y
j

m), so that we have a
new subset (X j

u, Ỹ
j

u), where X j
m = X j ⊙ M j is the as-

sociated 2D node locations of Y j
m in X j, and the val-

ues in Ỹ j
u are initially given by RBF predictions on X j

u

corresponding to the associated 2D node locations (or
equivalently, the cell/pixel coordinates) with respect to
the base station X j which does not have measurements.
In our semi-supervised setting, the values for unknown
measurements in Ỹ j

u will evolve by using the predic-
tions of the current NN model during the learning pro-
cess.

We further decompose the measurements set Y j
m into

two parts: Y j
ℓ (for training), Y j

v (for validation), such
that

Y j
ℓ ⊕ Y j

v = Y j
m, (2)

where ⊕ is the matrix addition operation. Let X j
ℓ , X

j
v be

the associated 2D node locations pf Y j
ℓ and Y j

v in X j.
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Fig. 1. An example of constituting the training sets for one base
station. X1 corresponds to 2D node locations, buildings are shown
in white. Y1

m is RSSI map (true measurements); the base station is
shown by a black circle,and Ỹ1 corresponds to interpolated points
found by RBF. Colors depict the strength of the signal from dark red
(highest) to deep blue (lowest) RSSI values. S 1,i = S j,i

ℓ ∪S j,i
v ∪S j,i

u\
is one sub-matrix of partially labeled training data found from
Y1

m ∪ Ỹ1.

In our experiments the number of base stations n
is small, so in order to increase the size of labeled
and pseudo-labeled training samples, we cut the ini-
tial measurements maps (Y j

m ⊕ Ỹ j
u)1⩽ j⩽n into smaller

matrices which resulted into the sets (S j,i) 1⩽ j⩽n
1⩽i⩽m j

,i.e.

∀ j ∈ {1, . . . , n},Y j
m ⊕ Ỹ j

u =

m j⋃
i=1

S j,i, (3)

where the sets S j,i ⊆ Y j
m ⊕ Ỹ j

u;∀i ∈ {1, . . . ,m j} are
shifted with overlapping of the points. Each subma-
trix S j,i is hence divided into labeled, S j,i

ℓ ∪ S j,i
v , and

pseudo-labeled (first interpolated points using RBF
and then using the predictions of the current NNmodel)
S j,i

u\ . To each submatrix S j,i corresponds a 2D location
X j,i ⊂ X. Fig. 1 gives a pictorial representation of the
notations.

4. NAS with Genetic Algorithm for RSSI map
reconstruction using side information

UNet [55] is one of the mostly used primary Neural
Network models that can handle multiple channels and
hence consider side-information as well as the RSSI
map on their input. As additional context (or side) in-
formation, we have considered in our experiments:

– information about the presence of buildings,
which was taken from the open-source Open-
StreetMap dataset [8] – matrix of binary 0-1 val-

ues, denoted as “buildings map” further (Fig. 1
left);

– amount of crossed buildings by signal from base
station to each point of the map. By analogy to the
data representation in the indoor localization and
map reconstruction, with the amount of crossed
walls by signal – matrix of non-negative integer
values, denoted as “buildings count map” further;

– information about distance from the base station.
By the log-normal path loss model and corre-
sponding RSSI ([50]: the signal strength is pro-
portional to −10n log10(d) up to additive term,
where n is a path loss exponent, d is a distance to
base station) we can take the − log10(distance)
transformation to emphasize the zones closest
from the base station – matrix of continuous val-
ues, denoted as “distance map” further;

– information about the relief represented by DSM
(digital surface model): terrain elevation summed
with artificial features of the environment (build-
ings, vegetation..), see Fig. 2. This information
was taken from the open-source dataset2 provided
by Japan Aerospace Exploration Agency with
30m accuracy – matrix of integer values, denoted
as “elevation map” further.

(a) Elevations map, Greno-
ble

(b) Elevations map,
Antwerp

Fig. 2. Elevation maps for two different cities

Our objective is to find the optimal architecture for
UNet using these side-information and study the gen-
eralization ability of obtained models for RSSI map
reconstruction.

As stated in Section 2.4, from the sets (S j,i) 1⩽ j⩽n
1⩽i⩽m j

we use an evolutionary algorithm similar to [53] for
searching the most efficient architecture represented
as a Direct Acyclic Graph3. Here, the validation sets

2https://doi.org/10.5069/G94M92HB
3https://colab.research.google.com/github/google-research/

google-research/blob/master/evolution/regularized_evolution_
algorithm/regularized_evolution.ipynb

https://doi.org/10.5069/G94M92HB
https://colab.research.google.com/github/google-research/google-research/blob/master/evolution/regularized_evolution_algorithm/regularized_evolution.ipynb
https://colab.research.google.com/github/google-research/google-research/blob/master/evolution/regularized_evolution_algorithm/regularized_evolution.ipynb
https://colab.research.google.com/github/google-research/google-research/blob/master/evolution/regularized_evolution_algorithm/regularized_evolution.ipynb
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(S j,i
v ) 1⩽ j⩽n

1⩽i⩽m j

are put aside for hyperparameter tuning.

The details for the Genetic algorithm are provided in
Section 6.1. The edges of this acyclic graph represent
data flow with only one input for each node, which is a
single operation chosen among a set of candidate oper-
ations. We consider usual operations in the image pro-
cessing field, that are a mixture of convolutional and
pooling layers. We also consider three variants of 2D
convolutional layers with kernels of size 3, 5 and 7,
and two types of pooling layers that compute either the
mean or the maximum on the filter of size 4.

Candidate architectures are built from randomly se-
lected operations and the corresponding NN models
are trained over the set (S j,i

ℓ ) 1⩽ j⩽n
1⩽i⩽m j

and its (possible)

combinations with side information. The resulted ar-
chitectures are then ranked according to pixel-wise er-
ror between the interpolated result of the outputs over
(S j,i

v ) 1⩽ j⩽n
1⩽i⩽m j

and interpolated measurements given by

RBF interpolation by filtering out the buildings. As er-
ror functions, we have considered the Mean Absolute
Error (MAE) or its Normalized version (NMAE) where
we additionally weight the pixel error according to the
distance matrix value. Best ranked model is then se-
lected for mutation and placed in the trained popula-
tion. The oldest and worst in the rank are then removed
to keep the population size equal to 20 models.

The entire learning process is outlined in Algorithm
1. We begin with a labeled training dataset and uti-
lize the RBF interpolation method to estimate mea-
surements for unlabeled training data. The true mea-
surements from the labeled training set and the RBF-
estimated measurements are subsequently partitioned
into smaller matrices, which are used as inputs to the
NAS module. Once the NAS module identifies the neu-
ral network model with optimized architecture, fθ, we
address two scenarios for learning its associated pa-
rameters θ by minimizing the following objective func-
tion:

L( fθ, S ℓ∪S j,i
u\ )=

1

n

n∑
j=1

1

m j

m j∑
i=1

 1

|S i, j
ℓ |

∑
(x,y)∈S i, j

ℓ

ℓ(y, fθ(x))

+
1

|S j,i
u\ |

∑
(x,̃y)∈S j,i

u\

ℓ(ỹ, fθ(x))

 . (4)

Algorithm 1: SLNASind

Input: A labeled training set with given
measurements: (X j

m,Y
j

m)1⩽ j⩽n and an
unlabeled set (X j

u)1⩽ j⩽n

Init: Using (X j
m,Y

j
m)1⩽ j⩽n, find interpolated

measurements (Ỹ j
u)1⩽ j⩽n over (X j

u)1⩽ j⩽n

using the RBF interpolation method;
Step 1: Cut the initial measurements maps
(Y j

m ⊕ Ỹ j
u)1⩽ j⩽n into smaller matrices:

(S j,i) 1⩽ j⩽n
1⩽i⩽m j

.

Step 2: Search the optimal NN architecture
using (S j,i) 1⩽ j⩽n

1⩽i⩽m j

;

Scenario 1: Find the parameters θ⋆1 of the NN
model fθ :
θ⋆1 = argminθ L( fθ, S ℓ ∪ S j,i

u\ ) # (Eq. 4);

Scenario 2: Apply fθ⋆1 on unlabeled data and
obtain new pseudo-labeled measurements S j,i

u\
and find the new parameters θ⋆2 of the NN model
fθ :

θ⋆2 = argmin
θ

L( fθ, S ℓ ∪ S j,i
u\ )

Output: fθ⋆1 for scenario 1 or fθ⋆2 for scenario 2.

These two scenarios relate to obtaining model pa-
rameters on labeled and pseudo-labeled measurements
using just RBF interpolated data (scenario 1) or pre-
dictions from a first model learnt on these data (sce-
nario 2).

5. Evaluation Setup

We have considered three case studies from Paris,
Antwerp (The Netherlands) and Grenoble. In the area
of data-based research and in the field of machine
learning singularly, it is usually hard to find large open-
source datasets made of real data. In some works,
however alternatively (or as a complement) to using
real data, synthetic data can be generated, for instance
through deterministic simulations.

In our study, we make use of three distinct databases
of outdoor RSS measurements with respect to multi-
ple base stations. The first one was generated through
a Ray-Tracing tool in the city of Paris, France. The
second database, which is publicly available (See [2]),
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consist of real GPS-tagged Long Range Wide Area
Network (LoRaWAN) measurements that were col-
lected in the city of Antwerp (The Netherlands). Fi-
nally, a third database, which is also made of real GPS-
tagged LoRaWANmeasurements, was specifically gen-
erated in the city of Grenoble (France), in the context
of this study.

5.1. Paris dataset

This first dataset is made of synthetic outdoor RSS
measurements, which were simulated in a urban Long
Term Evolution (LTE) cellular context with a ray-
tracing propagation tool named VOLCANO (commer-
cialized by SIRADEL). Those simulations were cali-
brated by means of side field measurements [9]. This
kind of deterministic tool makes use of both the de-
ployment information (typically, the relative positions
of mobile nodes and base stations) and the descrip-
tion of the physical environment (i.e., a city layout
with a faceted description of the buildings, along with
their constituting materials) to predict explicitly the
electromagnetic interactions of the multipath radio sig-
nal between a transmitter and a receiver. Beyond the
main limitations already mentioned in section 2.1 re-
garding mostly computational complexity and prior in-
formation, we acknowledge a certain number of dis-
crepancies or mismatches in comparison with the two
other datasets based on real measurements. For exam-
ple, in the simulated scenario, the dynamic range of
observed RSS is continuous in the interval [-190, -60]
decibel-milliwatts (dBm), while with the real measure-
ment data, a receiver sensitivity floor of -120 dBm is
imposed. Moreover, the available simulation data was
already pre-aggregated into cells. The overall scene is
1000m×1000m, each pixel being 2m×2m, thus form-
ing a matrix of size 500× 500. The area considered in
these simulations is located in Paris between Champ de
Mars (South-West), Faubourg Saint Germain (South),
Invalides (Est), and Quai Branly / d’Orsay (North), as
shown in Fig. 3.

Fig. 3. Buildings map and corresponding Base Stations positions (in
red) for Paris dataset. The x and y axes are in meters.

For each pixel, the RSS value was simulated with re-
spect to 6 different Base Stations. An example is given
for one of these base stations in Fig. 4. Further de-
tails regarding the considered simulation settings can
be found in [9].

Fig. 4. Example of signal strength distribution (in dBm) generated
through Ray-Tracing in the Paris dataset, with respect to one partic-
ular base station roughly located in (300m, 300m). The x and y axes
are in meters.

5.2. Antwerp dataset

Measurement campaign and experimental settings
The LoRaWAN dataset was collected in the urban are
at the city centre of Antwerp from 17 November 2017
until 5 February 2018, [2], [1]. The dataset consists of
123,529 LoRaWAN messages with GPS coordinates on
the map with RSSI measurements for that location.
It was collected over a network driven by Proximus
(which is a nation-wide network) by twenty postal ser-
vice cars equipped with The City of Things hardware.
The latitude, longitude and Horizontal Dilution of Pre-
cision information were obtained by the Firefly X1
GPS receiver and then sent in a LoRaWAN message
by the IM880B-L radio module in the 868 MHz band.
The interval between adjacent messages was from 30s
to 5 min depending on the Spreading Factor used.
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The information was collected for 68 detected base
stations in the initial database. We have filtered out
some stations which have overall less than 10000 mes-
sages and/or which were located far from the collec-
tion zone having a flat signal. Finally we considered 9
base station – from Base-Station BS ′

1 to Base-Station
BS ′

9 (see Fig. 5).

Fig. 5. Buildings map and corresponding considered 9 Base Stations
positions (in red) for Antwerp dataset. The x and y axes are in me-
ters.

The initial dataset with information about each
Base-Station (BS) or gateway (GW), Receiving time of
the message (RX time), Spreading Factor, Horizon-
tal Dilution of Precision, Latitude, Longitude looks as
following:

Dataset preprocessing and analysis. As an example,
in this part we will explain the way the dataset was
processed for the future application. We aggregated the
received power into cells of the size 10 meters × 10
meters (10m× 10m) and then averaged this power and
translated into signal strength. To perform this aggre-
gation, we measured the distance from the base station
location based on local East, North, Up coordinates.

To compute the measurements density after data ag-
gregation into cells of size 10m × 10m, we considered
the close zone around the base station location of the
size 3680m × 3680m. As an example, in the following
Table 1 there is information about the first three con-
sidered base stations from this dataset.

Base station number Amount of
measurements

after
aggregation

Spatial density (per km2)

BS ′
1 6450 440

BS ′
2 5969 389

BS ′
3 7118 525

Table 1
Amount of measurements for each base station located in the center
of 368 × 368 image size after 10m × 10m aggregation, Antwerp
dataset. Base stations with the highest amount of measurement
points around the base station location were selected.

We consider the zone of full city of the size 7000m×
7000m which covers the positions and most of the col-
lected measurements in the city area, and we did the
10m × 10m aggregation.

In the initial dataset if in the visited point on the map
there was no captured signal, this point for correspond-
ing base station was marked as -200 dBm, so in the
Fig. 6 the informative range of the signal values lies in
[-120; -60] dBm, where the left boundary correspond
to the sensitivity of the device.

Fig. 6. RSSI values distribution, base station Antwerp, 10m × 10m
pixel resolution. The x and y axes are in meters.

5.3. Grenoble dataset

We have carried out an experimental campaign,
and which is currently ongoing, aimed at gathering
LoRA measurements within the actual urban setting
of Grenoble city. This dataset holds significant value
for future applications, primarily due to the scarcity
of available data for research purposes in this do-
main. Furthermore, efforts are underway to expand this
dataset further, which includes the installation of addi-
tional base stations and the collection of a larger vol-
ume of measurements, among other enhancements. In
Appendix 8, we thoroughly present how these mea-
surements were been collected.

Just like for the Antwerp dataset, after removing
outliers/artefacts, we then aggregated the signal in the
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cells. We converted the RSS into milliWatts (as dBm
= 10log10[mW]), computed its mean per cell in the
cells of size 10m × 10m, and converted back the re-
sult into signal strength values. To perform this aggre-
gation, we measured the distance from the base station
BS 1 location considered to be (0,0) 2D Cartesian co-
ordinate based on local East, North, Up coordinates.
Finally, we considered an overall area of interest of
3680m × 3680m (also for the radio mapping applica-
tion), which covers the entire city, while containing
most of the deployed base stations, as shown in Fig. 7.

Fig. 7. Part of the Grenoble map, with a selection of the deployed
base station positions (red circles) and two canonical streets in LoS
(red rectangles. The x and y axes are in meters.

To compare the measurements std values per cell in
different conditions, we considered two types of aggre-
gation cell sizes: 50m×50m and 10m×10m, as shown
in Fig. 8. In case of 50m × 50m aggregation cells, the
amount of informative pixels (i.e., visited pixels with
sufficient measurements) obviously reduces, but at the
same time the aggregated value is more stable as a
function of space (from pixels to pixels), while with
10m × 10m aggregation cells, we can see significantly
larger fluctuations of the mean received power as a
function of space but making available a larger amount
of informative points for mapping.

(a) 10x10 aggregation (b) 50x50 aggregation

Fig. 8. RSSI values distribution, base station BS 1 Grenoble, for dif-
ferent aggregation cell sizes. The x and y axes are in meters.

The amount of measurements for two base stations
in the Grenoble-1 dataset for 10m × 10m aggregation
cells are shown in Table 2.

Base station number Amount of
measurements

after
aggregation

Spatial density (per km2)

BS 1 16577 1231
BS 2 7078 515

Table 2
Amount of measurements for 2 base stations in the Grenoble-
1 dataset (first version). Only the Base stations with the highest
amount of points were selected.

Finally, the size of maps are 500 × 500 pixels for
the generated dataset from Paris, 700 × 700 pixels
for the dataset collected in Antwerp and 368 × 368
for Grenoble. For that, as a reminder, we aggregated
and averaged the power of collected measurements in
cells/pixels of size 10 meters × 10 meters by the mea-
sured distance from base station location based on lo-
cal ENU coordinates for Grenoble and Antwerp, while
for Paris dataset the cell size is 2 meters × 2 meters.
As we also consider the generalization task, the algo-
rithm should learn from all the available base stations
data simultaneously.

In our settings, our available base station data is lim-
ited in scale, falling short by several orders of magni-
tude when compared to the datasets mentioned earlier.
To address this inherent limitation, we devised a solu-
tion by artificially generating smaller submatrices from
the original images by cutting them into smaller ones
(we tested over 96 by 96 pixels size because of mem-
ory issues during learning of the neural network for
the storing of the model weights). We also added the
flipped and mirrored images and we also did a shift in
20 pixels meaning that in our dataset there were over-
lapping between the images. Moreover, if the amount
of pixels with measurements in the initial cutted image
was high enough (more than 3% of the presented pix-
els) then we masked out the randomly sampled rect-
angle of presented measurements similar to the cutout
regularization ([15]). By doing this we force the algo-
rithm to do the reconstructions in the zones without
measurements (not only locally) and be more robust to
the amount of input data.

Matrices of the side information were used in the
models as additional channels concatenated with mea-
surements map. Before feeding the data into the algo-
rithm, all the values have been normalized between 0
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and 1 in each channel separately before cutting them
into smaller sizes to feed into the models.

Evaluation of the results over held out base stations
To evaluate the result we left one base station out of the
initial set of each city to compare further the models
performances with baselines, namely test Antwerp and
test Grenoble. To do this, all the points were divided
into two parts, namely train and test points for 90%
and 10% respectively.

Fig. 9. Illustration of (a) Test points across various circular zones and
(b) Training points within the corresponding region of the Antwerp
dataset. The location of the base station is denoted by a black point.
Coordinates are in meters.

This will be used throughout all the following sec-
tions. Moreover, to highlight the importance of the
zones close to base station (as it was mentioned in the
Introduction) we compare the performance of the al-
gorithms over different considered circles around the
base station location, namely 200 meters, 400 meters
and 800 meters radii (see Fig. 9).

Information about base stations for each city, amount
of all points, points, that were used in the valida-
tion/test process, and training set are given in Table 4.

We considered state-of-the-art interpolation ap-
proaches which are: Total Variation (TV) in-painting
by solving the optimization problem, Radial basis
functions (RBF) [7] with linear kernel that was found
the most efficient, and the k Nearest Neighbors (kNN)
regression algorithm. The evolutionary algorithm in
the model search phase was implemented using the
NAS-DIP [25] package4. All experiments were run on
NVIDIA GTX 1080 Ti 11GB GPU.

6. Experimental Results

In our experiments, we are primarily interested in
addressing the following two questions: (a) does the

4https://github.com/Pol22/NAS_DIP

use of side contextual information aid in the more ac-
curate reconstruction of RSSI maps?; and; (b) to what
extent is the search for an optimum NN design effective
in the two scenarios considered (Section 4)?

Regarding the first point, we consider the following
learning settings:

1. given only the measurements (no side informa-
tion),

2. given both measurements and distance maps,
3. given measurements, distances and elevation maps,
4. given measurements, distances maps and map of

amount of buildings on the way from base station
to corresponding point in the map (or, in other
words, buildings count).

From the standpoint of application, accurate inter-
polation in all regions where the signal varies the most
is critical. We will compare the cumulative mistakes
across held-out pixels for each of the zones that are
close enough to the test base station for the LoRa sig-
nal (by considering the fixed radius of 1 km).

In the following, we will present our findings using
the UNet model utilizing side information as a multi-
channel input.

6.1. Generalization ability of UNet

We conducted an architectural optimization search
for UNet using a Genetic Algorithm similar to one
presented in [41] with the implementation of [25]. To
configure the genetic algorithm, we defined a mutation
rate of 5% to encourage diversity within the popula-
tion and promote convergence. Moreover, we permit-
ted the encoder-decoder networks to have asymmetric
structures. The population size was determined to be
20 individuals, and the number of generations for the
algorithm to iterate through was set at 30. The archi-
tecture is characterized by its "U" shape, where the en-
coder down-samples the input image to capture fea-
tures, and the decoder upsamples to generate the final
output. The number of layers in each component of the
obtained U-Net architecture varied depending on the
dataset used. More specifically:

– The encoder consists of multiple 2D-convolutional
layers with Relu activation functions and hav-
ing an increasing feature channels. The number
of layers is determined based on experimentation
and performance on the validation set. In our ex-
periments, The convolutional layers found were
3 to 5 followed by a pooling or striding opera-

https://github.com/Pol22/NAS_DIP
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tion to reduce spatial dimensions. These configu-
rations are fine-tuned after that the search of the
architecture is completed.

– The bridge found, was a stack of 5 to 7 2D-
convolutional layers with a smaller receptive
field. It is usually thinner in terms of feature chan-
nels compared to the encoder and decoder which
prevents overfitting.

– The decoder of the models contained also 3 to
5 layers, with transposed convolutions or up-
sampling layers to increase spatial dimensions.

– Skip connections were added between corre-
sponding layers in the encoder and the decoder.
There were as many skip connections as there
were layers in the encoder and decoder.

– Finally, the output layer which is responsible for
generating the output RSSI sub-metric is a sin-
gle convolutional layer with a sigmoid activation
function. We have found that the fine-tuning part
at the end produces meaningful predictions spe-
cific to the dataset.

It is to be noted that the number of layers is de-
termined based on experimentation and performance
on the validation set. Furthermore, to mitigate over-
fitting; dropout and batch normalization regularization
techniques are incorporated during the optimization
process. These methods introduce randomness during
training, preventing the model from relying too heavily
on specific features of the training set. As an example,
Table 3 outlines the neural network architecture layers
discovered during the architecture search phase for the
RSSI Map of the city of Grenoble.

Layer Operation Input layer Size

1 (Conv2D+BatchNorm+LReLu)×2+MaxPool (368,368,32)
1a Conv2D 1 (46,46,8)
1b SpaceToDepth+Conv2D 1 (184,184,64)
2 (Conv2D+BatchNorm+LReLu)×2+MaxPool 1 (92,92,16)
2a DepthToSpace+Conv2D 2 (184,184,8)
3 (Conv2D+BatchNorm+LReLu)×2+MaxPool 2 (92,92,8)
2a DepthToSpace+Conv2D 2 (184,184,8)
4 Concatenation 3+1b (46,46,16)
5 (Conv2D+BatchNorm+LReLu)×2+Upsampling 4 (92,92,4)
6 Concatenation 5+3a (92,92,8)
7 (Conv2D+BatchNorm+LReLu)×2+Upsampling 6 (184,184,8)
8 Concatenation 1a+2a+7 (184,184,80)
9 (Conv2D+BatchNorm+LReLu)×2+Upsampling 8 (368,368,32)
10 (Conv2D+BatchNorm+LReLu)×2 9 (368,368,32)
11 Conv2D 10 (368,368,1)

Table 3
Description of the Neural network architecture structure by layers
found by the architecture search phase for the RSSI Map of the city
of Grenoble used in our experiments.

all points train points validation points status
city name

Grenoble BS 1 6264 5591 673 train
BS 2 2728 2448 280 train
BS 3 7266 6516 750 train
BS 4 6836 6096 740 test

Paris BS ′′
1 - BS ′′

5 250000 7495 242505 train
BS ′′

6 250000 7495 242505 test

Antwerp BS ′
1 6060 5440 620 train

BS ′
2 5606 5034 572 train

BS ′
3 7548 6785 763 train

BS ′
4 2539 2276 263 train

BS ′
5 2957 2667 290 train

BS ′
6 4940 4453 487 train

BS ′
7 3154 2829 325 train

BS ′
8 8277 7455 822 train

BS ′
9 4335 3888 447 test

Table 4
Summary over the settings for different cities: total amount of avail-
able measurements, points used as an input to the models, validation
(test) points that were used also in the computation of the loss (dur-
ing the evaluation)

We first study the learnability of the UNet model
for RSSI map reconstruction without the use of un-
labeled data. In order to see if there is an effect of
using side information we have just considered dis-
tance maps as additional context information and con-
sidered the model with a hand-crafted classical archi-
tecture used for in-painting [55]. The input was either
only the measurements array or the measurements ar-
ray stacked with the distances matrix.

The goal of this early experiment is to validate the
usage of UNet for this task and investigate what ef-
fects the side information and labeled measurements
have. For this we consider the simplest Paris data case
where we keep only the points on the roads (as the
points could be collected over the street by the vehi-
cle drivers or pedestrians). The difference with Greno-
ble and Antwerp datasets is in the sampling procedure,
as in reality it is very hard to obtain the collected data
sampled uniformly in all the regions while in Paris
dataset this is the case. All the RSSI measurements
also exist in Paris dataset, this allows to see the im-
portance of labeled information in the predictions by
varying the percentage of labeled measurements in the
training set.

Fig. 10 depicts the evolution of MAE in measure-
ments with respect to the distance to the test base sta-
tion getting lower in comparison with the RBF inter-
polation, as well as the overall error becomes smaller
(BS ′′

6 - Table 4), of RBF, UNet using only measure-
ments (UNet only msm) and UNet using measure-
ments and distance maps (UNet msm+dist). From
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these results, it comes that RBF outperforms UNet us-
ing only measurements in a circle zone of less than
150m radius around the base station. However, when
distance maps are added to the model’s second chan-
nel, the situation is reversed.

Fig. 10. MAE for the distance from the base station for the RBF and
fixed UNet outputs over Paris dataset with validation set compli-
ment to the train one, measurements and distances or only measure-
ments input

With the inclusion of side-information, we see that
UNet performs around 1 point better in MAE than RBF.
This situation is illustrated on the map reconstruction
ability of both models around the test base station BS ′′

6

in Fig. 11. As can be observed, the projected signal
levels are more discernible on the roads, which are ac-
tually the zones of interest where the signal is sought,
as predicted by the UNet model.

Fig. 11. Map reconstruction of RBF (left) and UNet (right) over the
test base station BS ′′

6 in Paris shown by a red dot.

As a result, these findings show that the UNet
model can effectively account for side-information.
We examined the RBF and UNet models for the in-
fluence of labeled measurements on the predictions
by altering the percentage of labeled data utilized by
RBF for discovering the interpolation and by the UNet
model for learning the parameters. With regard to this
proportion, Fig. 12 displays the average MAE 200 me-
ters (left) and 400 meters (right) away from the test
base station. The test error of the RBF model on un-
seen test data remains constant as the quantity of la-
beled training data increases, but the test error of the
UNet model decreases as this number increases.

(a) 200 meters from the
base station

(b) 400 meters from the
base station

Fig. 12. MAE with respect to different percentage of labeled data in
the training set 200 meters (left) and 400 meters (right) away from
the test base station.

6.2. The use of unlabeled data by taking into account
side information with NAS

We now expand our research to real-world data sets
from Grenoble and Antwerp, taking into account more
side-information and investigating the impact of neu-
ral architecture search on the creation of a better NN
model. As in this case, the labeled training measure-
ments are scarce we examine the usage of unlabeled
data in addition to the labeled measurements as de-
scribed in the previous section.

We begin by envisaging scenario 1 of Algorithm 1
(Section 4) and investigating the impact of side infor-
mation on the performance of the optimized NN model
discovered by NAS.

Fig. 13 illustrates the evolution of MAE within a
variable-radius circular zone for fθ⋆1 trained solely on
measurements and measurements accompanied by dis-
tance maps (upper panel). In contrast, the lower panel
depicts the performance of fθ⋆1 trained on measure-
ments, distance maps, elevation, and building count for
the test base stations of Antwerp BS ′

9. The integra-
tion of distance maps to complement measurements
demonstrates enhanced prediction accuracy, consistent
with our prior observations. When incorporating ad-
ditional side information, such as building counts, the
inclusion of elevation leads to superior signal estima-
tions compared to scenarios where this information is
omitted. This improvement can be attributed to the im-
pact of building heights on signal transmission, high-
lighting the significance of considering elevation infor-
mation in the training of the model.

As a best model obtained by Algorithm 1, scenario 1
we consider the case with three input channels: mea-
surements, distances and elevations and present com-
parative results with other baselines in Table 5. The
lowest errors are shown in boldface. The symbol ↓ de-
notes that the error is significantly greater than the best
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Model MAE, dB, 200m MAE, dB, 400m

RBF[7] 8.34↓ 7.04↓

kNN 7.98↓ 7.08↓

TV 7.50↓ 6.97↓

UNet [55] 6.37↓ 6.81↓

DIP [62] 6.55↓ 6.63↓

fθ⋆1 5.88 6.37

Model MAE, dB, 200m MAE, dB, 400m

RBF [7] 4.03↓ 5.29↓

kNN 3.84↓ 4.92↓

TV 4.53↓ 5.91↓

DIP [62] 4.64↓ 5.50↓

fθ⋆1 3.40 4.32

Table 5
Comparisons between baselines in terms of MAE with respect to the
two distances to Antwerp’ test base station BS ′

9 (left), and Grenoble
test base station BS 4 (right). Best results are shown in bold.

Fig. 13. Cumulative MAE distribution of fθ⋆1 (scenario 1 of Algorithm
1) according to the distance to the test base station for the city of
Antwerp BS ′

9; with measurements and, measurements with distance
maps (top) and measurements, distance maps, and elevation with and
without building counts (down).

result using the Wilcoxon rank sum test with a p-value
threshold of 0.01. According to these findings, fθ⋆1 out-
performs other state-of-the-art models as well as the
UNetmodel with a handcrafted architecture. These re-
sults suggest that the search of an optimal NN model
with side-information has strong generalization ability
for RSSI map reconstruction.

Fig. 14 depicts the average MAE in dB of all models
as well as the NN model fθ⋆2 corresponding to scenario
2 of Algorithm 1, with respect to the distance to the test
base Station BS ′

9 for the city of Antwerp. For distances
between 200 and 400 meters, fθ⋆2 consistently outper-
forms in terms of MAE. As in paper [41], these findings

imply that self-training constitutes a promising future
direction for RSSI map reconstruction.

Fig. 14. Average MAE in dB of all models with respect to the distance
to the test base Station BS ′

9 for the city of Antwerp.

Fig. 15 presents the average MAE in dB of all models
with respect to the distance to the test base Station BS 4

for the city of Grenoble. These results are consistent
with those obtained over the city of Antwerp.

(a) Comparison between different ap-
proaches

(b) Zoom distance
<400m

Fig. 15. Average MAE in dB of all models with respect to the distance
to the test base Station BS 4 for the city of Grenoble.

The general conclusion that we can draw is that
knowing about local patterns (even if from different
locations/distributions/base stations) allows us to use
this information in signal strength map reconstruction
for application to unseen measurements from different
base stations, demonstrating the ability to generalize
output in the same area. In order to get a finer gran-
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ularity look at the estimations of the suggested tech-
nique, fθ⋆2 , Fig. 16 depicts the errors heatmaps on cir-
cular zones of radius 200m and 400m surrounding the
test base stations for Antwerp and Grenoble.

Fig. 16. Heatmap of the errors between true and predicted values of,
fθ⋆2 , over test base stations in Grenoble (left) and Antwerp (right).

Each point reflects the difference between the real
and predicted signal values. For both cities, we notice
that there is

– an overestimation of the signal (higher predicted
values than the true ones) within the zone of ra-
dius less than 200 meters where the values of the
true signal are high. In absolute value, the average
MAE in dB are respectively 3.6 for Grenoble and
6.3 for Antwerp.

– an underestimation of the signal (lower predicted
values than the true ones) within the zones of ra-
dius between 200 and 400 meters where the val-
ues of the true signal are low. In absolute value,
the average MAE in dB are respectively 4.9 for
Grenoble and 6.2 for Antwerp.

To better understand the aforementioned results, we
provide the empirical cumulative distribution function
of different techniques in a 200-meter zone around
the test base stations in Grenoble (Fig. 17, left) and
Antwerp (Fig. 17 right). From these results, it comes
that the probabilities of having less absolute dB error is
higher for both fθ⋆1 and fθ⋆2 than the other approaches.

(a) (b)

Fig. 17. Empirical cumulative distribution function of different tech-
niques in a 200-meter zone around the test base stations in Grenoble
(left) and Antwerp (right).

The primary takeaway from these findings is that
searching a Neural Network model with generalization
capabilities might be useful for RSSI map reconstruc-
tion. To further investigate in this direction, we con-
sidered Scenario 1 of Algorithm 1 in which the train-
ing points of both cities are combined, with the goal of
evaluating the model’s ability to produce predictions
for one of the cities. The average MAE in db with re-
spect to the distance to the base stations for different
approaches are shown in Fig. 18.

Fig. 18. MAE over the distance to the base station evaluated over
unseen base stations for Grenoble (left) and Antwerp (right), fθ⋆1 is
trained over mixed dataset Grenoble+Antwerp.

Discussion According to these findings, the inclu-
sion of signal data from another city and the resulting
disruption in the search for an efficient NN model for
Received Signal Strength Indicator (RSSI) measure-
ments highlight an important consideration in the field
of machine learning for signal strength mapping. This
disruption is primarily due to the fact that the charac-
teristics of radio signal propagation can vary signifi-
cantly from one location to another. The environmen-
tal conditions, infrastructure, and geographical layout
all influence the behavior of radio waves.

Indeed, different locations have unique characteris-
tics that affect radio signal propagation. For example,
urban environments with tall buildings may exhibit dif-
ferent signal behaviors compared to rural areas with
open landscapes. The presence of obstacles, building
materials, and even weather conditions can impact sig-
nal strength. As a result, NN models trained on data
from one location may not generalize well to another.
When building NN models for RSSI measurements,
it is essential to focus on their ability to generalize to
new, unseen data. The disruption caused by incorpo-
rating data from a different city suggests that models
need to adapt to the specific characteristics of the lo-
cation they are deployed in. This is often referred to
as “model adaptation”. It would be interesting to study
over alignment strategies, such as those proposed for
domain adaptation [31], in order to narrow the gap be-
tween these distributions in future work.

To address the challenges of location-specific char-
acteristics, another approach is to develop an ensemble
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of models. Each model is trained on data from a spe-
cific location or under specific environmental condi-
tions. The choice of which model to deploy can then be
based on information about the incoming radio maps.
For example, by using techniques like geolocation tag-
ging to determine the source of the incoming data and
selecting the corresponding model.

7. Conclusion and Future work

In this paper, we conducted an extensive investiga-
tion into the importance of incorporating additional
side information for optimizing NN architectures in
the context of map reconstruction across three diverse
datasets. Our research underscores the pivotal role that
auxiliary data, such as building distance and elevation,
can play in substantially enhancing the performance of
NN models with tailored architectures. Specifically, we
found that by augmenting our training data with these
contextual features, we achieved a significant reduc-
tion in the mean absolute error in dB, affirming the ef-
ficacy of our optimized architecture.

Our proposed approach demonstrates a notable ad-
vantage over agnostic techniques, particularly in prox-
imity to the test base stations. The model’s ability to
accurately reconstruct signal strength maps, especially
in the near vicinity of base stations, holds promising
implications for practical applications such as urban
planning and wireless network optimization. Impor-
tantly, our analysis reveals that our NN-based approach
exhibits strong generalization capabilities, bolstering
its utility in varying real-world scenarios.

However, it is essential to acknowledge that in situ-
ations where a distribution shift between two maps ex-
ists, the predictive confidence provided by the trained
model may exhibit biases that render it less reliable.
Substantial dissimilarities between two different Re-
ceived Signal Strength Indicator (RSSI) maps can
lead to a substantial degradation in the model’s per-
formance due to inaccuracies in pseudo-labels. While
techniques like noise modelling may mitigate some of
these issues in practice [22], it is vital to note that there
remains a theoretical gap in our understanding. Specif-
ically, exploring semi-supervised learning techniques
under distribution shifts represents an important av-
enue for future research.

To address this challenge effectively, future work
could focus on the development of Neural Dynamic
Classification algorithms that adapt dynamically to
distribution shifts [48]. These algorithms would enable

the model to update its pseudo-labeling strategy based
on evolving data distributions, enhancing its robust-
ness in the face of changing environments.

Furthermore, the incorporation of Dynamic Ensem-
ble Learning Algorithms could be explored to combine
predictions from multiple models, each specialized for
different distribution scenarios [46]. This ensemble ap-
proach may help mitigate the impact of distribution
shifts by selecting the most appropriate model for the
given context, further improving the reliability and ac-
curacy of map reconstructions.

Additionally, self-supervised learning techniques
offer a promising direction for enhancing the model’s
performance under distribution shifts [49]. By leverag-
ing self-supervised learning, the model can learn use-
ful representations from unlabeled data and adapt to
new distribution patterns more effectively.

In summary, our findings underscore the potential of
tailored NN architectures and the significance of aux-
iliary data in map reconstruction. However, address-
ing the challenges posed by distribution shifts remains
an important direction for future research, with the po-
tential for Neural Dynamic Classification algorithms,
Dynamic Ensemble Learning Algorithms, and self-
supervised learning to play a pivotal role in enhancing
model reliability and accuracy in diverse and evolving
scenarios.
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8. Appendix: RSSI measurements in Grenoble

The Grenoble data were collected for several base
stations installed in Grenoble and consists of several
parameters such as latitude, longitude, and correspond-
ing RSSI value for each recognized base station. The
collected data is similar to one described for Antwerp,
but has a bit different structure, see Table 6.

The data was collected by different types of move-
ments: walking of pedestrians, riding a bike or driv-
ing a car. Total amount of stored lines in the database
collected from 13-01-2021 to 11-01-2022 is 1574588.
The data was collected in the frequency band of 868
MHz in the LoRaWAN network by several users with
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GateWay_ID Device_ID RS S latitude longitude time

7276ff002e0701e5 70b3d5499b4922dc -95 45.199308 5.712627 2021-08-29T13:46:35
7276ff002e0701f1 70b3d5499b4922dc -103 45.199308 5.712627 2021-08-29T13:46:35

. . . . . . . . . . . . . . . . . .
Table 6

Example of the dataset format for the field measurements collected in the Grenoble area, where for each connected gateway-tag pair, we report
the corresponding device position, time of collection, RSS value.

personal tags. One example of stored data is shown in
Table 6.

To collect the data, COTS telecom grade gateways
iBTS from Kerlink manufacturer (see Fig. 19) based
on the LoRaWAN technology have been used. These
gateways have fine time-stamping capability, and are
synchronized with the GPS time through a Pulse-per-
Second signal generated by GNSS receiver included in
the gateway with an accuracy of a few nanoseconds.
In LoRaWAN technology, each of the tag uplift pack-
ets can be received by more that one base station, de-
pending on the local structure (which cause interfer-
ence) and mainly path loss. To store the received in-
formation from the gateways the LoRaWAN Network
Server was used, as it is shown in Table 6 (the amount
of stored metrics is bigger – like Signal-to-Noise Ra-
tio, Time of Arrival, uplink network parameters : fre-
quency, DataRate, etc. but here we will focus on the
data used in our study).

During the data collection, there was different de-
ployment characteristics of the base stations and dif-
ferent amount of them. We consider the second version
of the dataset (Grenoble-2) consisted of four base sta-
tions located in Grenoble and one which was far from
the city region and thus was discarded because of the
flatten signal in the zone with the biggest amount of

Fig. 19. Gateway BS 3 which is installed on the roof near the cable
car station at Bastille, Grenoble

measurements (the first one could be found in [41]).
Position of four considered base stations are shown in
the Fig. 7. This deployment is also interesting as one
of the base stations (BS 3) is installed on the mountain
peak higher than all the other base stations and thus
quite specific to this database.

Dataset preprocessing and analysis. First, we needed
to filter out of the dataset the unreliable data resulting
from errors during the data collection or from mea-
surement artefacts. For example, the exact GPS posi-
tion could be significantly different from the real po-
sition (due to a lack of visibility to satellites) or, due
to a specificity in the tag design, data transmission
still occurs while charging indoor, thus giving both the
wrong RSS value and/or the wrong GPS position. For
instance, regarding the latter issue that is quite obvious
to detect, we simply rejected all the measurements ex-
hibiting too high RSS values and/or being static for a
long time, which were most likely collected during the
charging of the device. Being more precise, first we
detected the base stations for which the received signal
strength was higher than -55 dBm for the entire acqui-
sition time sequence and then removed the correspond-
ing measurement points collected at the same time for
this device with respect to all the other base stations.
However, RSS values saturating at short distances or
reaching receiver sensitivity at large distances were
preserved in the database, for being somehow indi-
rectly indicative of the tag distance to the BS. Finally,
we filtered out all the measurements for which the GPS
latitude was not valid (out of tolerated range).

RSS dispersion per cell The empirical standard de-
viation std of the collected measurements per cell af-
ter data aggregation has also been calculated for the
two previous cell sizes, so as to study its distribution
over cells having at least 3 measurements. First, the
dependence of std on the cell size is analyzed on both
Fig. 20 and Table 7. While comparing the two settings,
the distribution mean looks similar, while other char-
acteristics differ only marginally. For the 50m × 50m
cell size, it turns out that the points with high std are
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mostly located closer to the base station, while for the
10m × 10m granularity, the std values are distributed
more uniformly over the entire considered region of
368 by 368 cells. It comes from the fact that, within
typical 50m×50m cells close to the BS, the mean RSS
signal dynamic is such that the dispersion around the
cell mean value (i.e., the mean of all the measurements
collected in this cell) between the minimum and the
maximum measurement values (i.e., even besides fast
fading fluctuations) is naturally much larger than in the
10m × 10m case. In other words, the fine-grain mean
deterministic range-dependent power decay is inter-
preted as extra random fluctuations in 50m×50m cells,
due to a loose spatial grid. Thereby, to preserve more
information about the variability of the signal while
solving the problem of map reconstruction, we will
consider a 10m×10m cell granularity in the following.

Granularity Mean all, dB Median all, dB Std, dB

10x10 4.50 4.04 2.69
50x50 4.50 4.24 2.26

Table 7
Different characteristics for the distribution of the STD value per cell
in one street, for the points with more than 3 aggregated real
measurements.

Then, keeping a 10m × 10m cell size, we further
investigate the influence of the minimum amount of
available measurement points per cell (spanning from
3 up to 30 measurements), with or without remov-
ing 10% of the points having the largest variance of
RSS measurements divided by the number of sam-
ples after in-cell data aggregation (See Fig. 21). This
indicator indeed gives a hint of the capability to re-
duce fast fading dispersion through the coherent in-
tegration of in-cell instantaneous RSS measurements
(i.e., variance of residual dispersion after in-cell aver-
aging). After filtering out the data (Fig. 21b), the over-
all empirical distribution shape looks rather similar,
even if its standard deviation is clearly decreased, as
expected. This contributes typically to limit the num-
ber of cell occurrences hosting a RSS std larger than
10dB, which are expected to very harmful to the finger-
printing process (typically, by limiting the suppression
of fast-fading through averaging). Beyond, as a rela-
tively limited amount of input points could be visited
physically during the collection campaign within this
experimental dataset, when the minimum number of
points to keep the cell is too demanding, the number of
exploitable cells decreases drastically while the distri-
bution characteristics over the cells do not vary much.

Accordingly, in terms of data preprocessing strategy, in
the following (for further model parameters extraction
or before applying our map interpolation algorithms),
we will systematically reject 10% of the cells with the
highest RSS variance divided by number of measure-
ments, while keeping 10m × 10m cells with at least 3
measurements.

(a) 10m × 10m data aggre-
gation cells

(b) 50m × 50m data aggre-
gation cells

Fig. 20. Distribution of the standard deviation of RSS measurements
per cell (over all the cells), for different aggregation cell sizes.

(a) Without removing
the points.

(b) After removing the
points.

Fig. 21. Mean value over std with different threshold over amount of
points in each cell, dB, for 10m × 10m cell size

Extraction of path loss model parameters For any tag
position ν = (x, y), we consider a set of independent
mean received power measurements {PdBm

i }, i = 1..N
(in dBm) with respect to N base stations, which are as-
sumed to be zero-mean and normally distributed with
respective variances {σ2i }, according to the classical
log-normal path loss model of Eq. 5):

PdBm
i (ν) = PdBm

0,i − 10n log10
di(ν)

d0,i
+ wi, (5)

where di(ν) =
√
(x − xi)2 + (y − yi)2 is the dis-

tance from a base station i of 2D Cartesian coordinates
(xi, yi) to a tag of Cartesian coordinates ν = (x, y),
PdBm
0,i is the free-space mean received power at the ref-

erence distance d0,i, i = 1...N, wi ∼ N (0, σ2i ). For
simplicity in the following, we note PdBm

i (ν) = Pi,
d0,i = 1 m and PdBm

0,i = P0, ∀i = 1..N and di(ν) = di.
Prior to addressing more explicitly the radio map

reconstruction problem (and its implications in terms
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of theoretical positioning performances), our goal here
is first to determine empirically from real measure-
ment data the key parameters of the path loss model
introduced in Eq. 5, namely n, PdBm

0 and σ, condi-
tioned on propagation conditions. The objective is in-
deed two-fold. First, we want to observe in practice the
global trends of the received signal strength in our con-
crete experimental context and set-up, as a function of
both the transmission range and the operating condi-
tions (e.g., the dispersion over line-of-sight (LoS) and
non-line-of-sight (NLoS) conditions [19] or over serv-
ing Base Stations, the practical ranges for reaching re-
ceiver sensibility or saturation, etc.). This will indeed
be helpful to qualitatively interpret the dominating fac-
tors impacting the received signal dynamics (as a func-
tion of space). One more point is also to feed an anal-
ysis based on the evaluation of theoretical positioning
performance bounds, while relying on synthetic mod-
els with representative radio parameters (See next sec-
tion). For this purpose, we perform Least Squares (LS)
data fitting out of real field RSS measurements from
the Grenoble pre-processed datasets. Let us denote
mBS = (mBS

1 ,m
BS
2 , ...,m

BS
K )⊺ the vector of K measured

values of the signal strength for the corresponding base
station BS at distances dBS

k , P(ηBS ) = ABS .ηBS the
vector of noise-free signal strength values calculated
for the same distances dBS

k based on Equation 5. For
each base station BS , it hence comes:

mBS = P(ηBS ) + ϵBS , (6)

where ϵBS
k ∼ N(0, (σBS )2) are assumed to be in-

dependent and identically distributed residual noise
terms (i.i.d.), dBS

0 is the reference distance, dBS
k =√

(xBS − xk)2 + (yBS − yk)2 is the distance from the
base station of 2D Cartesian coordinates (xBS , yBS ) to
some tag position (xk, yk).

To compute the required model parameters, we thus
need to solve the set of equations for all the measured
points by minimizing the sum of squared errors, as fol-
lows:

(mBS − ABS ηBS )⊺(mBS − ABS ηBS ) → min
ηBS

(7)

So the set of optimal parameters is calculated as fol-
lows :

η̂BS = ((ABS )⊺ABS )−1(ABS )⊺mBS (8)

Retrospectively and in first approximation, residuals
can be interpreted as noise in Equation 5, so that
the standard deviation parameter σBS is simply deter-
mined with the optimal model parameters and Equa-
tion 5:

σ̂BS = std(ABS η̂BS − mBS ) (9)

The results of this LS data fitting process for a few
representative Base Stations of the Grenoble dataset
are reported in Tables 8 and 9. As it was mentioned
above, we compared two settings with or without re-
moving 10% of the cells with the highest variances
of measured RSS values per cell. It was done because
of the possible errors or artifacts during the experi-
mental data collection phase (e.g., erroneous GPS po-
sition assignment due to satellite visibility conditions)
or for a very small amount of collected data that were
spotted to have non consistent values (e.g., due to tag
failures, etc.). As we can see, removing even such
a modest amount of those incriminated pathological
cells can significantly impact the computation of the
path loss model parameters ruling the deterministic de-
pendency of mean RSS as a function of transmission
range, while the standard deviation accounting for the
dispersion of RSS measurements around this average
model remains unchanged. By the way, for all the con-
sidered Base Stations, the standard deviation value std
is observed to be high, which could be imputed to the
fact that the underlying mean path loss model is too in-
accurate and can hardly account for so complex prop-
agation phenomena. Moreover, the amount of points
is not so high (maximum around 10% of all the zone
of interest), so that data fitting could be degraded by
the sparseness and/or non-uniform distribution of the
measurement points (with respect to the distance to the
base station), which could lead to over-weighting the
influence of some measurements in particular trans-
mission range domains.

BS n̂BS σ̂BS , dB P̂BS
0 , dBm

B2I (BS 1) 3.20 8.31 -44.58
BCC (BS 4) 2.32 8.73 -55.21

Bastille (<500m) (BS 3) 2.34 7.87 -67.81
Bastille (>1 km) (BS 3) 2.87 8.07 -33.56

Bastille (BS 2) 4.01 11.90 -44.74
Table 8

Extracted path loss model parameters for some of the Base stations
from Grenoble dataset, as shown on Fig. 7, with data aggregation in
10m × 10m cells.
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BS n̂BS σ̂BS , dB P̂BS
0 , dBm

B2I (BS 1) 3.46 7.90 -41.77
BCC (BS 4) 2.59 8.22 -52.18

Bastille (<500m) (BS 3) 2.31 8.01 -68.67
Bastille (>1 km) (BS 3) 2.10 8.62 -51.67

Bastille (BS 2) 3.65 11.18 -50.49

BS 1 ∪ BS 2 ∪ BS 4 2.89 10.51 -51.88
Table 9

Recomputed path loss model parameters (after removing 10% of the
data) for the same Base stations from Grenoble dataset, as shown on
Fig. 7, with data aggregation in 10m × 10m cells.

In Table 9, there are two sets of parameters for one
of the base stations (namely "Bastille", BS 3), as we
have identified two distinct zones in terms of topology
(and hence, two propagation regimes): (i) on the hill
hosting the base station, with a larger angular distribu-
tion of the incoming radio signals from the tags and
(ii) in the rest of city where the direction of arrival of
the signal at the base station does not vary much (and
accordingly the receive antenna gain). Moreover, the
position of the base station could not cover all the area
around, similarly to BS (BS 2), being located on the
Western border/part of the city, this base station natu-
rally serves tags whose transmitted signals arrive sys-
tematically from the same side of the city (hence with
a reduced span for possible angles of arrivals accord-
ingly, which could somehow bias our extracted statis-
tics). Another remark is that the path loss exponent n
can differ significantly from one base station to an-
other and is usually larger in more complex environ-
ment contexts (i.e., in case denser buildings are present
in the surroundings of the BS), inducing more proba-
ble NLoS propagation conditions, and hence stronger
shadowing effects even at short distances, which lead
to lower RSS values as a function of the distance in
mean. But the dispersion around the fitted path loss
model, as accounted here by the standard deviation σ,
is also very high on its own, primarily due to a relative
lack of accuracy of the single-slope path loss model,
but also to the remaining effect of instantaneous re-
ceived power fluctuations even after in-cell measure-
ments averaging (e.g., caused by multipath under mo-
bility, fast changing tag orientation during measure-
ments collection...).

In Fig. 22 below, we also show the overall RSS dis-
tribution over 3 base stations in town (all except the BS

“Bastille”, which again experiences a specific propa-
gation regime due to the terrain elevation) as a func-
tion of the Tx-Rx distance, along with the superposed
fitted function according to the path loss model. As ex-
pected, the dispersion accounted by the standard de-
viation is thus even worse here than that of previous
BS-wise parameters extractions, while the other path
loss parameters are close to their mean values over the
three considered base stations.

Fig. 22. RSS distribution as a function of transmission range, over
3 base stations: measured values (blue) vs. model-based prediction
(orange) with extracted parameters P0 = -51.88dBm, n=2.89, σ =
10.51 dB.

Illustration of RSS distribution along a LoS street
As an illustration, we consider the longest street in
LoS conditions served by the Bastille Base station,
where it is theoretically easier to model the behavior
of the signal distribution as a function of transmis-
sion range, due to the absence of any big obstacles
on the way of the signal. Considering again the path-
loss model from Eq. 5, the parameters have been deter-
mined through data fitting and the resulting model is
confronted to the measurements, as shown in Fig. 23.
As we can see, it becomes evident that the log-distance
classical path-loss model aligns reasonably well with
the overall trend of the collected data. However, there
remains a substantial degree of dispersion around the
anticipated or predicted values. This dispersion serves
as an indicator that conventional parametric model-
based positioning (i.e., not based on fingerprinting)
would pose challenges, even in the presence ofLoS
conditions.

As in this LoS case we can model the signal be-
havior, then it is possible to compare the gradients re-
ceived by this model with the possible interpolations
methods and then use it as one of the quality metrics
in the map reconstruction problem.
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(a) RSS measurements distribu-
tion and model-based 1D mean
prediction in LoS, as a function
of transmission range

(b) Model-based 2D
prediction in LoS, as
a function of tag’s
position, based on
extracted path loss
model parameters.

Fig. 23. Illustration of RSS distribution over one particular street:
measured RSS values vs. model-based line-of-sight predictions.


	Introduction
	Related State of the Art
	Interpolation and data-augmentation techniques
	NN based models trained after data augmentation 
	Semi-Supervised Learning
	Neural Architecture Search

	Application to the Stated RSS Map Reconstruction Problem
	NAS with Genetic Algorithm for RSSI map reconstruction using side information
	Evaluation Setup
	Paris dataset
	Antwerp dataset
	Grenoble dataset

	Experimental Results
	Generalization ability of UNet
	The use of unlabeled data by taking into account side information with NAS

	Conclusion and Future work
	References
	Appendix: RSSI measurements in Grenoble

