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Abstract

In this paper, we describe a morpho-syntactic tagger of tweets, an important component of the
CEA List DeepLIMA tool which is a multilingual text analysis platform based on deep learning.
This tagger is built for the Morpho-syntactic Tagging of Tweets (MTT) Shared task of the 2018
VarDial Evaluation Campaign. The MTT task focuses on morpho-syntactic annotation of non-
canonical Twitter varieties of three South-Slavic languages: Slovene, Croatian and Serbian. We
propose to use a neural network model trained in an end-to-end manner for the three languages
without any need for task or domain specific features engineering. The proposed approach com-
bines both character and word level representations. Considering the lack of annotated data in
the social media domain for South-Slavic languages, we have also implemented a cross-domain
Transfer Learning (TL) approach to exploit any available related out-of-domain annotated data.

1 Introduction

Part-of-Speech (POS) tagging is one of the basic and indispensable tasks in any Natural Language Pro-
cessing (NLP) pipeline; it consists of assigning adequate and unique grammatical categories (Part-of-
Speech tags) to words in the sentence. When POS tags are enriched by Morpho-Syntactic Descriptions
(MSDs), such as gender, case, tenses, etc. the task is called Morpho-Syntactic Tagging (MST) (Agić et
al., 2013). As an example, we provide a Slovene sentence with its MS tags in Figure 1.

MST is a challenging task especially for languages with rich word inflections and free word order like
South-Slavic languages. In addition, MST of informal text like social media content of these languages
is a more complex task, especially conversational texts. This is due to the conversational nature of the
text, the lack of conventional orthography, the noise, linguistic errors, spelling inconsistencies, informal
abbreviations and the idiosyncratic style. Also, social media platforms such as Twitter pose an additional
issue by imposing 280 characters limit for each tweet.

While recent approaches based on end-to-end Deep Neural Networks (DNNs) have shown promising
results for sequence tagging in many languages such as English, much less work has been done on neural
models for MST of Slavic languages. In this paper, we evaluate the effect of using neural networks
techniques for MST of South-Slavic tweets, where we are faced with a large number of possible word-
class tags and only a small hand-tagged in-domain dataset.

NLP neural models with high performance often require huge volumes of annotated data to produce
powerful models and prevent over-fitting. Consequently, in the case of social media content, it is difficult
to achieve the performances of state-of-the-art models based on hand-crafted features by applying neural
models trained on small amounts of annotated data. For this reason, Transfer Learning (TL) was proposed
to exploit annotated out-of-domain data-sets. TL aims at performing a task on a target dataset using
features learned from a source dataset (Pan and Yang, 2010).

The method presented in this work aims to overcome the problem of the lack of annotated data by
significantly limiting the necessary data and instead extrapolating the relevant knowledge from another,
related domain. This contribution generalizes previous results for POS tagging of user generated content
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in social media for five languages: English, French, Italian, German and Spanish (Meftah et al., 2018),
by applying our approach on three Twitter corpora of South-Slavic languages: Slovene, Croatian, and
Serbian.

Figure 1: Example of a morphologically-tagged sentence in Slovene: To ni nobena novost (”This is not
a novelty” in English) .

2 The Model

In this section, we introduce the model we experimented for MS tagging of South-Slavic languages. The
model takes as input a tweet T , separated into a succession of n tokenswi, such as T = {w1, w2, ..., wn}.
The objective is to predict the morpho-syntactic tag ŷi for each token wi of the tweet.

2.1 System Architecture

We use a similar architecture to that used in (Meftah et al., 2018) for English, French, Spanish, Italian and
German Social Media content’s POS tagging, we propose to use a bi-GRU (bidirectional Gated Recurrent
Unit) sequence labelling model, preceded by a hybrid word representation. The model architecture is the
same among all languages and tasks (Figure 3).

2.1.1 Words Representation
The model learns word-level wei and character-level cei representations respectively for each token xi,
and combines them to get the final representation xi.

Character level embedding: To capture morphological features, instead of Convolutional Neural
Networks (CNNs) used in our previous work (Meftah et al., 2018), we apply in this work a bi-GRU
encoder on all characters of each token to induce fully context sensitive character level embedding.

Figure 2 shows the character-level embedding model, a word wi is divided into a succession of l
characters ci, each defined as a one-hot vector, with value 1 at index ci and 0 in all other dimensionality,
such aswi will be represented with a v×l dimensional matrix. Next it’s embedded into a d×l dimensional
matrix, where v is the character’s vocabulary size of the training set, l is the maximal length of words and
d is the character embedding’s dimension. Next, a forward GRUs model reads the character vectors from
left to right and a backward GRUs model reads characters from right to left. The combination between
the last hidden state of the forward GRUs and the last hidden state of the backward GRUs represents cei:
the character level embedding for the word wi.

Word-level embedding: we initialize words vectorswei with FastText (Bojanowski et al., 2016) word
embeddings to accurately capture words’ semantics.

The combination between character-level embedding and word-level embedding xi is fed into the
bi-GRUs layer.

2.1.2 Bidirectional Gated Recurrent Units
Word vectors {x1, x2, ..., xn}, which are constructed as a combination of word-level embeddings and
character-based representations, are given as input to a 100-dimension bi-GRUs layer which iteratively
passes through the sentence in both directions. Let

−→
ht be the GRUs hidden state at time-step t. Formally,

a forward GRUs model’s unit at a time-step t takes xt and the previous hidden state
−−→
ht−1 as input, and

outputs the current hidden state
−→
ht . Each GRUs apply the following transformations:
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Figure 2: Bi-GRUs layer for character-level embedding.

−→rt = σ(Wrxxt +Wrh
−−→
ht−1) (1)

−→zt = σ(Wzxxt +Wzh
−−→
ht−1) (2)

−→̂
ht = tanh(Whxxt +Whh(

−→rt ⊗
−−→
ht−1)) (3)

−→
ht = −→zt ⊗

−−→
ht−1 + (1−−→zt )⊗

−→̂
ht (4)

Here, W’s are model parameters of each unit, ĥt is a candidate hidden state that is used to compute ht,
σ is an element-wise sigmoid logistic function defined as σ(x) = 1/(1 + e−x), and ⊗ denotes element-
wise multiplication of two vectors. The update gate zt controls how much the unit updates its hidden
state, and the reset gate rt determines how much information from the previous hidden state needs to be
reset.

In order to take into account the context on both sides of that word, hidden representations
−→
ht and←−

ht from forward and backward units, respectively, are concatenated at every token position, resulting ht
vectors.

ht = [
−→
ht ;
←−
ht ] (5)

2.1.3 Sequence Labelling
Hidden representations at each time-step are fed through a 80 dimension Fully Connected Layer (FCL)
with a ReLU activation, followed by a final dense layer with a softmax activation to generate a probability
distribution over the output classes at each time-step.

3 Neural Transfer Learning Methodology

Neural transfer learning is applied to address the problem of the need for annotated data for morpho-
syntactic tagging of social media texts. It consists of learning a parent neural network on a source
problem with enough data, then transferring a part of its weights to represent data of a target problem
with few training examples.

In this work, we experiment with cross-domain transfer; knowledge is transferred from a source do-
main to a target domain. In our case, the source domain is a standard text corpus of a language and the
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Figure 3: Overall system architecture. First, the system embeds each word of the current sentence into
two representations: a character-level representation using bi-GRUs and a word-level representation.
Then, the two representations are combined and fed into a bi-GRUs layer, the resulting vector is fed to a
fully connected layer and finally a softmax layer to perform MS tagging.

target domain is the Twitter text of the same language. The source and the target problems are trained
for the same task (MST), even if source and target data-sets do not share the same tag-set.

As illustrated in Figure 4, we have a parent neural networkNp with a set of parameters θp split into two
sets: θp = (θ1p, θ

2
p), and a child network Nc with a set of parameters θc split into two sets: θc = (θ1c , θ

2
c ).

(1) We learn the parent network on annotated data from the source problem on a source dataset Ds.

(2) We transfer weights of the first set of parameters of the parent network Np to the child network
Nc: θ1c = θ1p.

(3) Then, the child network is fine-tuned to the target problem by training it on the target data-set Dc.

Figure 4: Cross-domain transfer learning scheme for morpho-syntactic tagging.
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Language Domain Corpus Tag-set size # Sentences # Tokens

Slovene

Out of domain All 1,304 27,829 586,248

In
domain

Train 758 3,934 37,756
Dev 422 713 7,056
Test 598 2023 19,296

Croatian

Out of domain All 772 24,611 506,460

In
domain

Train 580 4,089 45,609
Dev 363 791 8,886
Test 487 1,883 21412

Serbian

Out of domain All 557 3891 86765

In
domain

Train 575 3463 45,708
Dev 385 737 9581
Test 498 1,684 23327

Table 1: Statistics of the different source and target data-sets.

4 Experiments Setup

4.1 Task and Data Description

Two types of data-sets were provided in the MTT shared task (Zampieri et al., 2018) for each language:
(1) a small manually annotated Twitter data-set (in-domain data) (Erjavec et al., 2017; Ljubešić et al.,
2017a; Ljubešić et al., 2017b); (2) a large manually annotated raw canonical data-set (out-of-domain
data) (Erjavec et al., 2015; Ljubešić and Klubička, 2014)1.

The statistics of the data-sets are described in table 1. All corpora are in the CoNLL format. They are
already tokenized. Each token in a tweet is associated with a single morpho-syntactic tag using different
alphabetical characters for denoting different category values. The first letter represents POS tag, while
other tag positions represent morpho-syntactic categories like case, genre, etc. For instance, the MS tag
Ncfsn of the word novost in the example, provided in figure 1, would denote a noun, common, feminine,
singular, nominative token.

4.2 Transfer Learning Experiments

Cross-domain TL is evaluated on the three languages: Slovene, Serbian and Croatian, following three
main phases: (1) training the parent network on the source problem on rich out-of-domain data, (2)
transferring weights of the first set of parameters to the target problem (these weights are used to initialize
the child model’s first set of parameters, rather than starting from a random position2), and finally (3)
fine-tuning the child network on low-resource in-domain data.
Our experiments have shown that using a smaller learning rate for weights that will be fine-tuned (first set
of weights), in comparison to the randomly initialized weights (second set of weights) leads to slightly
improvements.

4.3 Implementation Details

All experiments described in this section are implemented using the PyTorch deep learning library. We
use the Stochastic Gradient Descent (SGD) optimizer with momentum of Nesterov (Sutskever et al.,
2013) in all experiments. We set the character embedding dimension at 50, the dimension of hidden
states of the character level embeddings GRUs layer at 80, 100 for sequence labelling GRUs layer and
FCL dimension at 80. We use dropout training with probability 0.3 before the input to GRUs and FCL
layers in order to avoid overfitting.

Tokens are lowercased while the character-level component still retains access to the capitalization
information. Word embeddings were set to size 300, pre-loaded from publicly available FastText pre-
trained vectors on common crawl3. Word level embeddings are fine-tuned during training. The training
was performed in batches of 64 sentences for parent models training and 32 sentences for child networks

1A large automatically annotated web data was also provided by the shared task organizers, but we did not make use of it in
this work.

2The weights of the second set of parameters of the child model are randomly initialized.
3https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md
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training, and was stopped if development set accuracy did not improve for 4 epochs. The best overall
model on the development set was then used to report performance on the test data.

5 Results

In this section, we report the results of our system described in section 3. Firstly, we report the results of
our system submitted to the MTT shared task. Thereafter, we present some improvements done on our
model after the submission of the results for this task.

Language Slovene Croatian Serbian
Acc. without transfer learning (%) 79.8 80.3 81.2
Acc. with transfer learning - A (%) 82.6 82.9 82.1
Acc. with transfer learning - B (%) 83.36 83.87 82.54

Table 2: Our system accuracy (acc.) with and without cross-domain transfer learning (A represents the
results of the system submitted to the shared task, and B an improved performance after the submission).

In Table 2, we compare the performances of the neural network model described in section 3 trained
only on target data-set (first line) against the neural network trained with TL (second line). We can see
that the TL method significantly improves results on all languages. Table 2 further shows that the im-
provements made by cross-domain TL for Slovene and Croatian (+2.8% , +2.7% ) are more important
than improvements made by cross-domain TL for Serbian (+0.9%). This phenomenon can be explained
by the fact that as illustrated in Table 1, the source data-set for Serbian experiments is very small com-
pared to source data-sets for Slovene and Croatian, hence the improvement is less substantial.

In the above experiments submitted to the MTT shared task, we transfer the parameters of the parent
network when they achieve the highest performance on development set of the out-of-domain data-set.
However, as shown in previous studies on TL (Mou et al., 2016), the parameters perfectly trained on
a source data-set may be too specific to it, hence, the model may underfit on the target data-set. We
therefore made more experiments to pick the parent model trained on the ideal epoch for the target data-
sets for further fine-tuning. In the third line in table 2, we give the highest performance of TL on target
data-sets.

6 Discussion

6.1 Ablation Study
In order to assess the importance of embeddings to handle the problem of Out Of Vocabulary words
(OOVs), we have conducted a series of experiments through ablating one layer each time, character-
level embedding and word-level embedding and observing how that affects the performance.

For these experiments, we use the neural model described in section 2 without TL technique (i.e., only
in-domain data).

In table 3, we report the results of our experiments on Slovene data-set. In each column, we provide
the results on a different set of tokens. In the first, we used all tokens of the test set, in the second,
only In Training Vocabulary words (ITVs), i.e words that have been seen in the training set, in the third,
Out Of Training vocabulary words (OOTVs), in the fourth, In Embedding Vocabulary words (IEVs), i.e
words that have been found in the FastText pre-trained words vectors, and in the fifth, Out Of Embedding
Vocabulary words (OOEVs).

We provide for each set of tokens, the number of tokens in the first line, the vocabulary size in the
second, the simple neural model’s accuracy in the third, the accuracy of the neural network without
character-level embedding in the fourth and the accuracy of the neural network without pretrained word-
level embedding (i.e, words embeddings are randomly initialized) in the fifth.

We notice in table 3 a significant gap between the overall accuracy on ITVs (89.78%) and the accuracy
on OOTVs (45.92%). We can also see that removing character-level embedding drops significantly the
overall accuracy (-7%). However, the accuracy on OOTVs drops by 27% (33.40% error reduction)
while the one for ITVs drops only by 1.5% (13.7% error reduction), which confirms the effectiveness of
character-level embedding on OOTVs.
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All tokens ITVs OOTVs IEVs OOEVs
# tokens 19,296 14,828 4.468 17,045 2,251
Vocabulary size 6,538 2,400 4,138 4,850 1,688
Neural model (NM) acc. (%) 79.8 89.78 45.92 80.86 70.27
NM without character embedding acc. (%) 72.16 88.23 18.80 74.23 56.46
NM without pre-trained words embedding acc. (%) 76.42 88.67 36.05 77.88 65.97

Table 3: Ablation study on character-level embedding and pre-trained words embedding for Slovene
tweets MS tagging.

6.2 Impact of Transfer Learning

In the experiments below, we are interested on the impact of using TL on Slovene data-set. In table 4,
we compare the performance of our model on the full MSD features and the performance on only POS
tags. The first two columns give token-level and the sentence-level accuracy without using TL, and the
second two columns give token-level and the sentence-level accuracy using TL. The first line shows the
accuracies on all MSD features (the overall accuracy), the second one gives the accuracies on only POS
tags.

Table 4 shows that POS accuracy is quite high compared to the full accuracy, this is due to the small
POS tag-set (13 POS tags). In addition to that, POS ambiguity of Slovene words is relatively low con-
versely to the other MSD features. We can observe an improvement of 4.56% brought by TL on the
token-level full accuracy, and 2.16% on POS tags. This means that 50% of the error reduction made by
TL was on POS tags.

Without transfer learning With transfer learning
Token acc. (%) Sentence acc. (%) Token acc. (%) Sentence acc. (%)

All MSD features 79.8 27.92 83.36 33.61
Only POS Tags 89.55 45.72 91.71 53.97

Table 4: Comparison between our model accuracy on Slovene on the full MSD features and on POS tags.

Table 5 gives the results for the Slovene data-set first tagged without TL and then using TL. The first
two columns give the numbers and the percentage of tokens that have their POS tags changed by the
model using TL compared to the model without TL, and the second two columns give the numbers and
the percentage of tokens with changed morpho-syntactic tags (including POS tags). The first line shows
the tags that were wrong, but the TL changed to the correct ones, the second gives the numbers of those
tokens which the standard neural network tagged correctly, but the TL technique falsified. The third
line shows those instances where the tag was not changed by the TL technique. The last line shows the
number of tokens that have tag assigned that was subsequently changed by the TL technique into a wrong
tag.

POS tags Morphosyntactic descriptions
# Token Percentage (%) # Token Percentage (%)

Corrected 949 4.91 1,402 7.26
Falsified 532 2.75 682 3.53
Identical 17,459 9047 15,789 81.82
Confused 356 1.84 1,423 7.37

Table 5: Modifications made by transfer learning on Slovene data-set.

We can observe that 7.26% of MSD tags were corrected by the TL technique and 3.53% were falsified.
In table 6, we investigate which POS tags have benefited the most from the cross-domain TL technique.
The first column presents the number of tokens of each POS tag on the test-set, the second (the third) set
of columns gives the accuracy, number of true positives (TP), number of false negatives (FN) and false
positives without using TL (with TL). We can observe a significant accuracy improvement on adjectives
(+10%), nouns (+6%) and adverbs (+2%), with a drop of accuracy on abbreviations and interjections
(-8%).
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Without transfer learning With transfer learning
POS tags # tokens Accuracy (%) # TP # FN # FP Accuracy (%) # TP # FN # FP

X (Residual) 1782 88.10 1570 212 150 90.62+ 1615 167 217
Q (Particle) 1011 89.02 900 111 78 89.61+ 906 105 88
R (Adverb) 1548 85.01 1316 232 265 87.33+ 1352 196 211

Z (Punctuation) 2872 99.68 2863 9 6 99.75+ 2865 7 5
N (Noun) 2808 79.98 2246 562 551 86.36+ 2425 383 379
V (Verb) 3427 92.64 3175 252 357 94.28+ 3231 196 245

P (Pronoun) 1652 88.68 1465 187 149 90.25+ 1491 161 129
C (Conjunction) 1571 96.37 1514 57 59 96.05- 1509 62 49

A (Adjective) 852 69.71 594 258 281 79.34+ 676 176 151
S (Adposition) 1096 96.98 1063 33 33 97.71+ 1071 25 25

Y (Abbreviation) 107 87.85 94 13 23 86.91- 93 14 30
M (Numeral) 334 89.82 300 34 22 90.41+ 302 32 34

I (Interjection) 236 76.69 181 55 41 68.64- 162 74 35

Table 6: The impact of transfer learning on POS tags prediction on Slovene data-set.

6.3 Improvements when Using Conditional Random Fields

In this section, we report new improvements of the performance of our model after the submission to
the MTT shared task. Instead of using a softmax function in the topmost of the model for inference (MS
tagging), as described in the section 2, we use Conditional Random Fields (CRFs) (Lafferty et al., 2001)
layer to decode the best tag sequence from all possible tag sequences with consideration of outputs from
bi-GRUs layer and correlations between surroundings labels.

Indeed, it has been shown that CRFs are more appropriate for sequence labelling tasks and can produce
higher performances (Huang et al., 2015; Ma and Hovy, 2016). Table 7 shows a significant improvement
on the performances of our system for all languages, by replacing the softmax function by a CRFs layer
(Ma and Hovy, 2016).

Slovene Croatian Serbian
Model + softmax acc. (%) 83.36 83.87 82.54
Model + CRFs acc. (%) 86.23 87.47 86.4

Table 7: Comparison between the model’s performances using Softmax and CRFs layers.

7 Conclusion

In this paper, we have presented a neural network model using Transfer Learning (TL) for Morpho-
syntactic (MS) tagging of Twitter texts. In particular, we have conducted experiments on tweets for
three South-Slavic languages: Slovene, Croatian and Serbian. We have more specifically used an ap-
proach which combines both character and word level representations. The obtained results show that
TL improves the performance of the MS tagging task for the three involved languages.

This work leaves two important open issues, which certainly deserve further research. First, we intend
to apply our model to other morphologically rich languages like MSA and its dialects. The second
perspective consists in modelling the lexical and syntactic similarities between the source and target
languages (domains) in order to incorporate this external linguistic knowledge in the neural network
model.
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