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Abstract
We investigate the decomposition of the electromagnetic Poynting momentum density in
three-dimensional random monochromatic fields into orbital and spin parts, using analytical and
numerical methods. In sharp contrast with the paraxial case, the orbital and spin momenta in
isotropic random fields are found to be identically distributed in magnitude, increasing the
discrepancy between the Poynting and orbital pictures of energy flow. Spatial correlation
functions reveal differences in the generic organization of the optical momenta in complex
natural light fields, with the orbital current typically forming broad channels of unidirectional
flow, and the spin current manifesting larger vorticity and changing direction over
subwavelength distances. These results are extended to random fields with pure helicity, in
relation to the inclusion of electric-magnetic democracy in the definition of optical momenta.

Supplementary material for this article is available online

Keywords: statistical optics, optical momentum, Poynting vector, spin momentum,
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1. Introduction

Conservation of electromagnetic (EM) energy is determined
by the well-known theorem of Poynting [1]: in the absence of
charges, the rate of change of EM energy density is equal to
the divergence of the Poynting vector P = E ×H, the cross
product of the electric and magnetic fields. By analogy with
other continuity equations, it is customary to interpretP as the
direction and magnitude of EM energy flow [2, 3]. However,
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this choice often fails to produce an intuitive picture, even in
seemingly elementary situations: for instance, the Poynting
vector for two crossed plane waves [4] or in a single evan-
escent surface wave [5, 6] exhibits a counterintuitive compon-
ent perpendicular to the direction of propagation. Similarly,
the (time-averaged) radiation pressure exerted by an optical
field on a subwavelength probe particle is generally not pro-
portional to the Poynting vector [7, 8].

Divided by c2, the Poynting vector also defines the linear
momentum density of the EM field. It is now well under-
stood that in monochromatic fields, the time-averaged linear
momentum P is the sum of orbital PO and spin PS parts,
respectively generating the orbital and spin angular momenta
[9–11]. In [10], these vector fields were dubbed optical cur-
rents. This Poynting vector splitting has deep foundations, as
the orbital momentum in fact corresponds to the canonical

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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momentum density derived from application of Noether’s the-
orem to translational invariance in the relativistic field the-
ory formulation of electromagnetism [12, 13]. The orbital
momentum correctly accounts for the radiation pressure on
dipole particles, and can provide a more intuitive picture
of energy flow than the Poynting vector in the situations
mentioned above. In the field theory framework, the spin
momentum corresponds to a term introduced by Belinfante
[14] to guarantee symmetry and gauge-invariance to the EM
stress–energy tensor [12], which does not contribute to the
total linear momentum of the field when integrated over space.
As such, the Belinfante spin momentum is often described
as a ‘virtual’ quantity introduced for theoretical reasons.
Nevertheless, this spin momentum has recently been evid-
enced experimentally, by measuring the extraordinary optical
force it induced on a nano-cantilever [15]. Importantly, the
couplings to the orbital and spin parts of the Poynting vec-
tor differ by orders of magnitude, highlighting their distinct
physical nature.

Recent experimental and theoretical studies have thus
demonstrated striking differences between the Poynting,
orbital, and spin momenta, and continue to redefine our views
of EM energy flow and optical forces [8, 11, 16]. Still, they
have so far been limited to rather elementary, highly symmet-
ric fields, with geometries optimized to best showcase the dif-
ferences between the three optical currents. In particular, the
focus on light beams ensures the orbital momentum, related to
the propagation k-vector of the field, is typically large, whereas
the spin momentum, related to the rate of change of polariza-
tion with position, is smaller.

In this work, we explore generic features of these optical
currents, to build insight into their organization in natural, iso-
tropic light fields: what are their properties when many inde-
pendent waves interfere with no particular symmetries? To
this end, we investigate their behavior in completely coherent,
monochromatic, isotropic randomEMvector fields, a conveni-
ent statistical model of 3D EM fields specified by only one
physical parameter, the wavelength λ. Strikingly, we will see
that in this model, the magnitudes of the spin and orbital cur-
rents have the same probability distribution, but that the two
vector fields have different spatial correlations: the apparent
weakness of the spin current in this setting is due to its failure
to organize coherent correlated vector structures over large dis-
tances in space, unlike the orbital current (and Poynting vec-
tor itself). We demonstrate these facts using analytical stat-
istics and numerical simulations for the vector random wave
model.

2. Theoretical framework

2.1. Poynting, orbital and spin momenta

We work in units where ε0 = µ0 = c= 1. In a monochro-
matic field with frequency ω = ck= c(2π/λ), the electric

and magnetic fields are represented by complex-valued vector
fields E and H, where the physical fields are E = Re{Ee−iωt}
andH= Re{He−iωt}. The temporal cycle-averaged Poynting
momentum can be written

P=
1
2
Re{E∗ ×H}. (1)

Using Maxwell’s equations and the vector identity A× (∇×
B) = A · (∇)B− (A ·∇)B (where we use the customary
notation [A · (∇)B]i =

∑
jAj∂iBj), the Poynting momentum

can be split into a sum of orbital and spin momenta [10],

P=
1
2ω

Im{E∗ · (∇)E}− 1
2ω

Im{(E∗ ·∇)E}

= PE
O+PE

S .
(2)

This splitting is not unique: expressing the Poynting
momentum using the electric (resp. magnetic) field only, we
obtain the electric-biased (resp. magnetic-biased) momenta
PE
O,S (resp. PH

O,S) as in (2). But another option, retaining the
electric-magnetic symmetry of Maxwell’s equations for free
fields, is to take the mean of the two representations,

P=
1
4ω

Im{E∗ · (∇)E+H∗ · (∇)H}

− 1
4ω

Im{(E∗ ·∇)E+(H∗ ·∇)H}

= PEH
O +PEH

S ,

(3)

producing the so-called democratic (or dual) momenta
PEH
O ,PEH

S [10]. In general non-paraxial fields, these are all dis-
tinct quantities, and in monochromatic fields, their definition
is unambiguous (otherwise the splitting is gauge-dependent).
An interesting situation arises in fields with pure helicity, con-
sisting only of circularly-polarized plane wave components of
same handedness: such fields satisfy E=±iH, such that all
biased and democratic quantities become identical.

The dual formulation of electromagnetism that treats elec-
tric and magnetic fields equally has many attractive features
when working with free fields, in the absence of matter [13,
17] — for instance, democratic momenta naturally split into
two independent parts associated with components of oppos-
ite helicity [18]. However, experimental measurements require
material probes, which typically do not respond identically
to electric and magnetic fields: a common example is the
radiation pressure on a subwavelength particle responding in
the electric dipole approximation, which is proportional to
the electric-biased orbital momentum PE

O only. We therefore
choose to center our discussion on electric-biased quantities,
and devote section 3.3 to observations on democratic momenta
and pure helicity fields for which the distinction vanishes.

For reference, we briefly recall the typical magnitudes of
the three momenta in a paraxial beam [9, 11] propagating
along z, for which the field is approximatelyE≈ ei kz(Ex,Ey,0)
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with transverse amplitude and polarization profiles Ex(x,y)
and Ey(x,y) varying over a lengthscale W≫ λ, on the order
of the beam waist. We find that P and PE

O are mostly longitud-
inal, that PE

S is purely transverse, and the following orders of
magnitude

|P| ∼ E2,

|PE
O| ∼

1
ω

Im{E∗∂zE} ∼
k
ω
E2 ∼ E2,

|PE
S | ∼

1
ω

Im{E∗∂xE} ∼
λ

W
E2 ≪ E2.

We conclude that in a regular optical beam, orbital and
Poynting momenta are closely aligned, the spin momentum
being small in comparison.

2.2. Gaussian random optical fields

We model generic, natural EM light fields as superpositions
of N→+∞ plane waves, with randomly sampled propaga-
tion directions taken uniformly over the sphere of directions,
random elliptical polarizations, and random overall phases.
This construction aims to portray an unprepared field, akin
to ambient light in a room, or thermal black-body radiation,
composed of many waves emitted from independent points or
having scattered off various surfaces, producing a field with
no particular symmetries or preferred directions, but statistic-
ally homogeneous and isotropic. This approach builds on the
long history of the study of speckle patterns [19–21] and stat-
istical properties of spatial structures in random light fields
[22–26], which revealed salient features underlying the organ-
ization of all EM fields. Physically and geometrically, these
random vector fields are very different from directed, paraxial
optical beams.

The complex electric and magnetic fields can be paramet-
erized as follows,

E=

√
2
N

N∑
n=1

eikn·r+iψn

[
eiαn/2 cos

βn
2
e+ (kn)

+e−iαn/2 sin
βn
2
e− (kn)

]
, (4a)

H=

√
2
N

N∑
n=1

eikn·r+iψn
1
i

[
eiαn/2 cos

βn
2
e+ (kn)

−e−iαn/2 sin
βn
2
e− (kn)

]
, (4b)

where the sum runs over the N≫ 1 plane waves, with
wavevectors kn sampled uniformly on the sphere of direc-
tions with spherical angles (θn, ϕn) and identical magnitudes
k, and polarizations sampled uniformly on the Poincaré sphere
with angles (βn, αn), and uniformly sampled global phasesψn.
e±(k) = [e1 ± ie2]/

√
2 are helicity basis vectors, with {e1,e2}

a basis of two real orthogonal unit vectors transverse to k (see
the SI for explicit expressions and alternative parameteriza-
tions). We introduce the following notation for the real and
imaginary parts of the fields [2, 26]

E= pE + iqE, H= pH + iqH,

since statistics are convenient with real quantities only.
Ensemble-averaging over many random fields is denoted by
brackets and amounts to integrating over the five random
angles

⟨•⟩=
N∏
n=1

[
1

32π3

ˆ π

0
sinθndθn

ˆ 2π

0
dϕn

×
ˆ π

0
sinβndβn

ˆ 2π

0
dαn

ˆ 2π

0
dψn

]
• . (5)

From the definitions above, it can be seen that any component
of the real or imaginary part of a field is a sum ofN real-valued,
identically distributed random variables. The central limit the-
orem ensures that in the limit N→+∞, each component is a
real random variable obeying Gaussian statistics [19, 20]. The
same reasoning holds for all derivatives of the components. In
our case these variables are all centered, hence we only require
their variances and correlations to fully describe the statist-
ics. They are obtained by direct integration using (5), and are
tabulated in the SI. With these provided, an ensemble average
rewrites as an integral over a set of M Gaussian random vari-
ables u= (pEx ,p

E
y . . .)

⟨•⟩=

√
detΣ−1

(2π)M

ˆ
. . .

ˆ
dMuexp

{
−u⊺Σ−1u

2

}
•, (6)

where Σ is the covariance matrix, with Σij = ⟨ui uj⟩. Useful
formulae and strategies for computing averages are further
described in the SI, and can be found in [22, 23, 25–27].

2.3. Spatial correlation functions

To investigate local order in the spatial organization of the
optical currents, we will average products of vector compon-
ents at two different positions in space. The statistical, direc-
tional correlators in random Gaussian vector fields, here rep-
resenting EM waves, are analogous to those used in the the-
ory of isotropic turbulence in fluids [28]. For a homogeneous
random vector field v to be isotropic requires the two-point
correlation tensor to have the form

⟨vi (0)vj (r)⟩= [f(r)− g(r)]
ri rj
r2

+ g(r)δij,

where f and g are scalar functions depending only on the
magnitude r= |r| of the separation vector. They respectively
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describe longitudinal and lateral autocorrelations of a given
vector component

f(r) = ⟨vi (0)vi (rei)⟩ , g(r) = ⟨vi (0)vi (rej)⟩ (i ̸= j) .

where the separation vector rei is taken along some chosen dir-
ection i = x,y,z. If, in addition, the field is solenoidal (∇· v=
0), f and g are related, such that the full correlation tensor can
be determined from, for example, the longitudinal correlation
function f only,

⟨vi (0)vj (r)⟩=− rf ′ (r)
2

ri rj
r2

+ δij

[
f(r)+

rf ′ (r)
2

]
. (7)

Since there are no charges in the model field, cycle-
averaging Poynting’s theorem yields ∇·P= 0. As the spin
momentum itself is the curl of a vector field [10], it is
divergenceless ∇·PS = 0, and consequently we also have
∇·PO = 0. Hence all momenta are isotropic homogeneous
solenoidal random fields, to which the above results apply.
They also apply to the complex electric and magnetic fields
themselves. In our calculations, we will be able to express all
correlation functions using the longitudinal and lateral auto-
correlation functions of the electric field [29], that we respect-
ively denote L and T

L(r) =
〈
pEx (0)p

E
x (rex)

〉
=

sin(R)−Rcos(R)
R3

T(r) =
〈
pEx (0)p

E
x (rey)

〉
=
Rcos(R)−

(
1−R2

)
sin(R)

2R3
,

where R= kr. Further useful strategies and elementary correl-
ation functions are provided in the SI.

3. Results and discussion

All analytical derivations can be found in great detail in the SI.
We mostly state final results here, except when intermediate
steps are useful for understanding how a result comes about.

3.1. Magnitudes and relative directions of the optical
momenta

We begin by deriving the fundamental statistical distributions
for the magnitudes of the Poynting, orbital and spin momenta.
In terms of real and imaginary field components, the Poynting
momentum writes

P=
1
2

[
pE ×pH +qE ×qH

]
.

Each component of P is a sum of products of two Gaussian
random variables. As detailed in the SI, isotropy allows us
to retrieve the magnitude distribution D(P) from that of the

x-component Dx(Px) only [26]. We briefly outline this first
derivation, to see the main steps involved:

Dx (Px) =

〈
δ

Px−∑
j,k

ϵxjk
2

[
pEj p

H
k + qEj q

H
k

]〉

=

ˆ
ds
2π

e−isPx

〈
exp

{
i s

1
2
pEy p

H
z

}〉4

=

ˆ
ds
2π

e−isPx

[
1

1+ s2σ4
x/4

]2

=
1+ 2|Px|/σ2

x

2σ2
x

exp

{
−2|Px|

σ2
x

}
,

where σ2
x =

〈
(pEx )

2
〉
= 1/3 (see tabulated variances in the SI).

The second step involves factorization of the average using
the statistical independence of field components, the third step
uses (6), and the last step is an integration in the complex plane.
The distribution for the magnitude of the Poynting momentum
is then

D(P) =−2P
∂Dx (Px)
∂Px

∣∣∣
Px=P

= 108P2 exp{−6P} .

The electric-biased orbital and spin momenta read

PE
O =

1
2ω

pE · (∇)qE − 1
2ω

qE · (∇)pE

PE
S =− 1

2ω

(
pE ·∇

)
qE +

1
2ω

(
qE ·∇

)
pE.

Again, each component is a sum of products of two Gaussian
random variables (one field component and one space deriv-
ative), and we only have to find the distribution for the x-
component. For the orbital momentum this is

Dx

(
PEO,x

)
=

〈
δ

PEO,x−∑
j

1
2

[
pEj ∂xq

E
j − qEj ∂xp

E
j

]〉

=

ˆ
ds
2π
e−isPE

O,x

〈
exp

{
i s
2
pEx ∂xq

E
x

}〉2〈
exp

{
i s
2
pEy ∂xq

E
y

}〉4

= . . .

and the distribution for the magnitude is

D
(
PE
O

)
= 180PE

O

[
e−6

√
5PE

O −

[
1− 3

√
10
2

PE
O

]
e−3

√
10PE

O

]
.

Surprisingly, we find that in repeating the calculation for
the spin momentum, the result is the same. Indeed, the first
steps of the derivation read

4
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Figure 1. Magnitudes and relative orientations of the Poynting, orbital and spin momenta. (a) Analytical (lines) and numerical (dots)
probability distributions for the magnitudes of the Poynting, orbital and spin momenta. (b) Distribution of the angles between momenta,
obtained numerically. (c) Illustration of one realization of the random field, showing the three vector fields on the faces of a cubic region of
side λ/2, and a set of streamlines seeded near the center of the cube. Numerical data in this figure was obtained from 105 realizations of the
random field, each containing N= 103 plane waves.

Dx

(
PES,x

)
=

〈
δ

PES,x−∑
j

1
2

[
pEj ∂jq

E
x − qEj ∂jp

E
x

]〉

=

ˆ
ds
2π
e−isPE

S,x

〈
exp

{
i s
2
pEx ∂xq

E
x

}〉2〈
exp

{
i s
2
pEy ∂yq

E
x

}〉4

and since ∂xqEy and ∂yqEx are both uncorrelated to pEy and have
the same variance (see tables in the SI), the rest of the calcu-
lation is strictly identical to that for the orbital momentum,
and we conclude that the orbital and spin momenta obey
the exact same magnitude distribution. All these distributions
are wavelength-independent, and only scale with the overall
intensity in the field.

They are plotted and checked against numerical estim-
ates in figure 1(a). It is interesting to observe that the
spin momentum, usually negligibly small in paraxial
beams, becomes here equivalent in magnitude to the orbital
momentum, responsible for the actual energy flow. The intu-
itive reason for the different order of magnitude is that in the
fully non-paraxial case, there are waves propagating in all
directions, such that all space derivatives result in a factor
∼ i k, whereas transverse gradients are only of order∼ 1/W in
the paraxial case. Moving away from paraxiality, part of the
linear momentum converts from an orbital to a spin nature, in

a manner strictly similar to how the angular momentum does
[30].

To complete the picture of the three momenta at a given
point in space, we present in figure 1(b) the distributions for
the angles between each pair of momenta. They were obtained
numerically, as attempting to compute analytical joint distri-
butions of two momenta hardly leads to tractable expressions.
We observe that the angle between PE

O and PE
S has a broad dis-

tribution roughly centered on π/2 (with a slight skew towards
larger angles), indicating that they tend to point in perpen-
dicular directions. Since they have comparable magnitudes,
the resulting Poynting momentum is generically not closely
aligned with either of them. This implies that the streamlines
for the three optical currents tend to diverge away from one
another.

In figure 1(c), we illustrate one realization of the random
field, in a cubic region of side λ/2. We plot the three momenta
on the sides of the box, and a set of streamlines seeded near the
center of the cube. The three vector fields are indeed observed
to generically point in different directions, and the streamlines
to follow seemingly unrelated paths in space, crossing with
angles in agreement with the distributions of figure 1(b). This
reinforces the claim that the Poynting and orbital currents gen-
erally provide contrasting pictures of EM energy flow, both in
terms of magnitude and direction. These observations could
prove important for simulating optical forces in complex nan-
ophotonics systems.
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3.2. Short-range organization of the currents

3.2.1. Spatial correlation tensors. Going beyond their
identical magnitude distribution, we find that the orbital and
spin momentum vector fields are actually arranged very dif-
ferently in space. To explore this, we compute two-point spa-
tial correlation tensors for all pairs of components of a given
momentum. Each tensor will be of the form in (7), given
entirely by the longitudinal autocorrelation function f (r). For
the Poynting momentum, this function writes

fP (r) = ⟨Px (0)Px (rex)⟩

=
∑
j,k,l,m

⟨
1
4
ϵxjkϵxlm

[
pEj p

H
k + qEj q

H
k

]
(0)

[
pEl p

H
m + qEl q

H
m

]
(rex)

⟩
.

To evaluate these averages we make use of Isserlis’ theorem
for moments of Gaussian variables [19]. fP(r) is obtained as

fP (r) = T2 (r)+
(kr)2

4
L2 (r) ,

and the correlation tensor is

〈
Pi (0)Pj (r)

〉
=
ri rj
r2

[
2R

(
R2 − 3

)
sin(2R)

+
(
6R2 − 3

)
cos(2R)+ 2R4 + 3

]/
8R6

+ δij

[
R
(
2−R2

)
sin(2R)+

(
1− 2R2

)
cos(2R)− 1

]/
4R6.

The strategy is similar for the orbital and spin momenta. We
find

ω2fO (r) =
1
2

[
L ′2 (r)−L(r)L ′ ′ (r)

]
+
[
T ′2 (r)−T(r)T ′ ′ (r)

]
,

giving the correlation tensor

⟨
PE
O,i (0)P

E
O,j (r)

⟩
=
ri rj
r2

[
1
2

(
R4 − 24R2 + 72

)
Rsin(2R)

+3
(
R4 − 10R2 + 6

)
cos(2R)+R6 − 3R4 − 6R2 − 18

]/
4R8

+ δij
[
−
(
R4 − 20R2 + 54

)
Rsin(2R)

+
(
−5R4 + 46R2 − 27

)
cos(2R)+ 3R4 + 8R2 + 27

]/
8R8.

And for the spin momentum,

ω2fS (r) =
3
4
L ′2 (r)− L(r)L ′ ′ (r)

2
− 2L ′ (r)

T(r)
r

with the correlation tensor

〈
PES,i (0)P

E
S,j (r)

〉
=
ri rj
r2

[
3
(
R4 − 14R2 + 24

)
Rsin(2R)

+
(
16R4 − 69R2 + 36

)
cos(2R)+ 2R4 − 3R2 − 36

]/
8R8

+ δij

[(
−3R4 + 32R2 − 54

)
Rsin(2R)

+
(
−13R4 + 52R2 − 27

)
cos(2R)−R4 + 2R2 + 27

]/
8R8.

For each momentum, the (normalized) autocorrelation func-
tion of the x-component for separation vectors r in the xy-
plane is plotted in the top row of figure 2. For the orbital
momentum, the degree of correlation is largely positive, and
longer-ranged in the longitudinal direction. In sharp contrast,
components of the spin momentum tend to change sign peri-
odically, and more strongly so in the lateral directions. These
findings hint at qualitatively distinct spatial organizations for
the two currents. In the middle row of figure 2, we show 2D
streamlines for each momentum in a slice through one real-
ization of the random field, and color them according to the
value of the x-component. Zero-crossings of the x-component
are shown in black to better distinguish regions of ‘upwards’
and ‘downwards’ flow along x. We observe that the orbital
current keeps the same direction across relatively broad chan-
nels, with a typical size in accordance with the correlation
function given above. Such structures are channels of energy
flow. Conversely, the spin current changes direction more fre-
quently, particularly along the lateral (y) direction, forming
narrow pockets of oppositely directed flow. These two con-
trasting behaviors can seemingly be traced back to the ele-
mentary building block of the non-paraxial field, consisting
of two interfering plane waves and studied in [4], in which it
was found that PO homogeneously points along the bisector,
whereas PS oscillates in the transverse direction.

Corresponding results for the Poynting current, shown in
the third column of figure 2, indicate a less clear-cut beha-
vior, close but not identical to that of the orbital current. At
this point, it is enlightening to compare the currents of the
vector EM field to the simpler case of a random complex
scalar field Ψ = pΨ + iqΨ, defined by dropping the polariz-
ation term in brackets in (4). Ψ obeys the Helmholtz equation
with wavevector k, and there is a single, divergenceless current
J= 1

2ω Im{Ψ∗∇Ψ}. Its longitudinal autocorrelation function
is given by

ω2fJ (r) =
1
2

[
C ′2 (r)−C(r)C ′ ′ (r)

]
,

with C(r) = L(r)+ 2T(r) = sin(kr)/kr (we remark the simil-
arity of this expression to that for the orbital momentum), and
the correlation tensor is
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Figure 2. Local structure of the optical currents. First three columns: optical currents of the vector EM field V= PE
O, P

E
S , P. Last column:

current in the complex scalar field V= J. First row: normalized analytical spatial autocorrelation functions ⟨Vx(0)Vx(r)⟩/
⟨
(Vx)2

⟩
of the

x-component of each momentum, for separation vectors r in the xy-plane. Second row: in-plane streamlines of each momentum in a slice
through one realization of the random vector field (first three columns) and one realization of the random scalar field (last column), each
containing N= 103 plane waves. Streamlines are colored according to the value of the x-component of the vector field, and zero-crossings
are shown in black to better distinguish regions having a flow oppositely directed along x. Third row: in-plane streamlines in the same slices
as in the second row, after local averaging of the vector fields over a spherical volume of diameter λ (dashed circle). All plots in a given row
share the same colorbar.

⟨Ji (0)Jj (r)⟩=
ri rj
r2

[(
2R2 +Rsin(2R)+ 2cos(2R)− 2

)
4R4

]

+ δij

[
− (Rsin(2R)+ cos(2R)− 1)

4R4

]
.

The correlation behavior of the scalar current, shown in the
rightmost column of figure 2, appears to lie in between that of
the orbital and Poynting currents, and is similar to both. This
in turn emphasizes the ‘spin’ nature of PS, which possesses
a behavior unfound in the scalar case; it raises the interest-
ing question of how corresponding currents would behave for
tensor waves describing other fundamental particles with dif-
ferent spin.

Finally, we discuss the experimental observability of these
optical currents. As mentioned in [11] , a small probe particle
can hardly image subwavelength structures, as its own pres-
ence will distort the field on a comparable lengthscale. With

this in mind, it is tempting to only consider local spatial
averages of the currents. Our correlation functions suggest
that the orbital current will survive local averaging, as it
is largely positively correlated to itself over a wavelength-
sized volume. Conversely, neighboring pockets of opposite
spin flow will cancel each other out. In the bottom row of
figure 2, we plot the same streamlines again, but after hav-
ing performed a local average of the field over a spher-
ical volume of diameter λ (rendered by the dashed circle).
The integrated spin current indeed quickly vanishes. As a
result, orbital and Poynting currents will tend to recon-
cile, if probed by sufficiently large particles that effectively
average over the generic subwavelength inhomogeneities of
the spin momentum. Consequently, we expect the differ-
ence in the orbital and Poynting streamlines highlighted in
figure 1 to have its significant impact on the motion of
very subwavelength objects, such as single atoms or atomic
clusters.

7
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Figure 3. Vorticity distributions. Analytical (lines) and numerical
(dots) probability distributions for the magnitudes of the vorticities
of the Poynting, orbital and spin currents. Numerical data was
obtained from 105 independent realizations of the random field,
each containing N= 103 plane waves.

3.2.2. Vorticity of the currents. The tendency of the spin cur-
rent to ‘turn’ more can be further quantified by deriving stat-
istical distributions for the vorticities of the optical currents,
that were discussed in previous studies [10, 11]

ΩP =∇×P ΩE
O =∇×PE

O ΩE
S =∇×PE

S . (8)

The strategy for these calculations follows closely that for
the magnitudes of the momenta themselves. We note that the
additional space derivative involved now makes the distribu-
tions wavelength-dependent. The magnitude distributions for
the three vorticities are

D(X=ΩP/ω)

=
9X

78 886 240
×
[(

237
√
5X+ 172

)
819 200e−6

√
5X

+
(
939 752 400X− 44 642 639

√
10
)
sinh(20X)e−8

√
10X

+
(
1 860 213

√
10X− 880 640

)
160cosh(20X)e−8

√
10X

]

D
(
X=ΩE

O/ω
)

=
225
77

X×
[
64e−(15/2)X− 99e−10X+ 35e−6

√
5X
]

D
(
X=ΩE

S /ω
)

=
25X

361 504
×
[
83 187e−20X+ 9 628 125e−12X

−5 824 512e−10X+ 286 374
√
10sinh(20X)e−8

√
10X

−4 792 320e−6
√

5X+ 905 520cosh(20X)e−8
√

10X
]

These distributions are shown in figure 3. Despite being
identically distributed in magnitude, orbital and spin momenta
have different vorticities: in agreement with the observations
of the previous section, that of the spin current is statistic-
ally larger. An interesting extension of this investigation could

be to explore whether or not this relates to some difference
in the density of singularities in the orbital and spin flows
[11]. The geometry of these singularities, in the special case
where all components of the complex electric field vanish, was
recently studied in [31], where it was found that the orbital
momentum always arranges in elongated ‘pseudo vortex lines’
in the vicinity of such zeros. Visual exploration of the random
fields (not shown) indicates that such a coiling structure seems
to occur frequently near generic zeros of both the orbital and
spin momenta.

3.3. Democratic momenta and fields with pure helicity

Throughout this work, we have focused on electric-biased
momenta. Equivalent statistics would evidently hold for the
magnetic-biased quantities, but not for democratic ones. Berry
and Shukla recently investigated the difference between biased
and democratic quantities in similar statistical calculations
[26], and concluded that as a rule of thumb, democratic quant-
ities tend to vary more smoothly and follow narrower distri-
butions. Indeed, including contributions from both the electric
and magnetic fields (which are uncorrelated to some extent)
effectively suppresses regions of strong interference, simil-
arly to the way vector quantities built from three field com-
ponents also show less interference detail than correspond-
ing scalar quantities. We derived the magnitude distributions
for the democratic momenta (see SI) and present them in
figure 4(a). The distribution is still identical for the orbital
and spin parts, but is indeed slightly narrower than for the
biased momenta (dashed grey line). Interestingly, when com-
puting the angle distributions numerically in 4(b), we find that
the angle between PEH

O and PEH
S is on average narrower than

that between the corresponding biased quantities. As a res-
ult, democratic momenta are (slightly) more closely aligned
with the Poynting vector than their biased counterparts. Our
investigations in randomly polarized fields did not reveal more
striking differences between biased and democratic momenta,
and we believe all qualitative descriptions given in previous
sections to hold for democratic currents as well.

It is enlightening at this point to backtrack on our assump-
tion of randomly polarized plane wave components, to con-
sider instead random fields with pure helicity σ =±1. This
amounts to fixing βn to 0 or π in (4), and enforces H=−iσE
such that biased and democratic quantities become equal (we
denote them by a σ superscript). As detailed in the SI, this adds
new non-zero correlations between variables in our statistics,
though values of local averages that were already non-zero
in the randomly polarized case are unaffected. Taking these
new correlations into account, we can proceed through similar
calculations. It is however easy to predict what the distribu-
tions will be, as democratic momenta always split into two
independent terms originating from components of opposite
helicity P= [P+ +P−]/2 [18]. In a randomly polarized field,
this becomes a sum of two independent identically distrib-
uted variables, whose distribution simply results from the self-
convolution of the distribution for a pure helicity term. This
easily appears considering the Fourier transform form of our
calculations (see SI). Distributions in pure helicity fields are
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Figure 4. Statistics of democratic momenta in randomly polarized
and pure helicity fields. (a) Analytical (lines) and numerical (dots)
probability distributions for the magnitudes of the Poynting, orbital
and spin (democratic) momenta in randomly polarized fields (the
thin dashed curve shows the distribution for the biased momenta of
figure 1), and in pure helicity fields (Pσ). (b) Distribution of the
angles between democratic momenta in randomly polarized fields,
obtained numerically. Numerical data in this figure was obtained
from 105 realizations of the random field, each containing N= 103

plane waves.

also shown and checked against numerics in figure 4(a), and
they are broader than all distributions in the randomly polar-
ized case. This is likely explained by a weaker ‘suppression of
interference’ effect, since there is now even less independence
between the different components of the EM field.

Finally, it was recently shown by Aiello that for instant-
aneous (that is, not time-averaged) democratic quantities, the
fast-oscillating double-frequency terms also happen to be the
cross-helicity terms [32, 33]. Consequently, cycle-averaging
becomes equivalent to ignoring cross-helicity terms, and has
therefore no effect on democratic quantities in pure heli-
city fields. For this reason, the distributions derived here
for pure helicity fields are also expected to be the mag-
nitude distributions for instantaneous democratic momenta
(for which the nature of the polarization should be irrelev-
ant). Extending our approach to general time-dependent poly-
chromatic fields is beyond the scope of this article, but repres-
ents an intriguing avenue, that could highlight profound rela-
tions between electric-magnetic democracy, helicity and time-
averaging.

4. Concluding remarks

We have investigated various statistical properties of the
Poynting, orbital and spin opticalmomenta in generic isotropic
random light fields. This isotropy, equivalent to extreme non-
paraxiality, was found to increase the discrepancy between
Poynting and orbital flows, as the spin momentum unexpec-
tedly becomes equivalent in magnitude to the orbital one.
Deriving correlation functions, we were able to describe the
distinct spatial structures of the orbital and spin currents, the
former arranging in broad channels of energy flow akin to
those found in a scalar random field, when the latter has
higher vorticity and changes direction on a subwavelength
scale. Upon local averaging over a wavelength-sized volume,
the spin current rapidly averages out, leading the orbital and
Poynting currents to reconcile. Still, the very different beha-
vior of the orbital and spin currents interrogates what our
approach would reveal in other types of waves. Indeed, the
field-theoretic formalism decomposing the kinetic (Poynting)
momentum into canonical (orbital) and Belinfante (spin) parts
is of broader generality, and these investigations could be
extended and compared to waves describing other particles,
such as electrons described by the Dirac equation whose
current decomposition into orbital and spin contributions is
known as the Gordon decomposition [34, 35], but also to tur-
bulence in acoustic [36] and gravity water waves [37], the lat-
ter extensions appearing very natural considering that results
from fluid dynamics were used in the present study. The spin
angular momentum density of all types of waves could also
be studied, as it is arguably the more relevant quantity from a
field-theory perspective, the Belinfante momentum being con-
structed from it.

Preliminary investigations have been extended to the ran-
dom paraxial case (equivalent to the models in [24, 25]). In
particular, it appears that in analogy with the isotropic case,
here the transverse orbital and spin momenta have equival-
ent probability distributions ! The question about correla-
tions appears more subtle, and depends on the chosen paraxial
spectrum; upon spatial averaging we anticipate this will lead
again to dominance of the orbital current. Furthermore, such
correlations between the orbital and spin parts might indic-
ate features of optical spin-orbit relations distinct from those
in the ordered, structured paraxial beams previously studied,
although such a discussion goes beyond the scope of this work.

Further investigations of the isotropic EM case could char-
acterize the generic singularities of the optical currents (isol-
ated points in 3D space) and the statistical geometry of the
flows around them, something that has so far only been
explored for non-generic zeros of the full complex electric
field [31]. More advanced correlation functions (involving
more than two positions, evaluated near extrema, etc…) could
reveal finer features of the optical currents as well; ran-
dom fields generally offer endless possibilities of statistical
investigation [21].

Finally, there appears to be profound links to uncover
in relating electric-magnetic democracy, helicity and time-
averaging. This prompts the extension of our approach to gen-
eral time-dependent fields, which could require introducing

9



J. Opt. 26 (2024) 065604 T Gadeyne and M R Dennis

the vector potentials for defining instantaneous momenta, and
the weighing of plane wave components by a power spectrum
[22, 25]. This could represent a step towards better understand-
ing of the spin-orbit decomposition of optical momentum,
which as of today remains largely confined to the monochro-
matic case.
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