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Abstract—Decision support systems coupled with a Geographic
Information System (GIS) are useful for assessing spatialized
risks, which can be either natural, industrial or even anthropic.
However, when the knowledge is not sufficiently precise or when
the processes are complex, the methods of analysis of the GIS are
not always sufficient. In this article, we propose to couple a GIS
with a Fuzzy Expert System capable of evaluating fuzzy spatial
rules, that is to say, fuzzy rules integrating spatial relations or
properties. These are based on fuzzy mathematical morphology
and model high-level metric or topological relationships such as
“being close to”, “being in the direction of” or “being adjacent
to”. The proposed approach has been applied to the identification
of risky issues in the case of wildfires. We detail the expert
knowledge modeled and show the results obtained in a graphic
interface dedicated to the intervention of firefighters.

Index Terms—Fuzzy spatial relations, fuzzy mathematical mor-
phology, vulnerability assessment, situational assessment, wildfire

I. INTRODUCTION

Decision support systems have often been used to assess

risks, whether of natural, industrial or human origins. In

particular, forest fires have been widely studied [1], [2],

notably in the Mediterranean [3], [4] where they are frequent.

Most of the proposed systems collect a large amount of

information in order to jointly assess occurrence and intensity

of fires : historical data from forest fires, meteorological

data, vegetation type and topography of places. The difficulty

is to combine these elements, all the more since there are

interactions among them [1].

Different approaches have been proposed: for instance, they

are based on machine learning [3], [5], dynamic Bayesian

networks [6] and Fuzzy Expert Systems [2], [4]. To help the

people involved in fire management, the first works proposed

different fire propagation models [1]. However, the unpre-

dictable nature of forest fires has led to an interest in very

simplified models which allow calculations in real time [7].

The use of a Geographic Information System (GIS) quickly

became obvious to aggregate this localized information and to

allow a hierarchical and interactive visualization. State of the

art also highlights the need to deal with the uncertainty linked

This work has been conducted as part of a CLE project financially supported
by the European fund FEDER and the Occitanie region.

to knowledge about the phenomenon [1], [2]. Moreover, we

must also consider the input information is not always precise:

for example, the delimitation of the burned area, whether

provided manually or by an algorithm, cannot be precise by

nature. Fuzzy sets and fuzzy logic [8] are an effective way to

reason with uncertainty and to deal with ill-delimited objects.

Schneider [9] defined three different fuzzy objects : fuzzy

points, fuzzy lines and fuzzy regions. More recently, since

vague objects are often extracted from a field (e.g., from

a raster image), five categories of vague objects based on

fuzzy logic are introduced in [10], like direct field-cutting

objects or dynamic boundary objects. Furthermore, different

formulations have been proposed to model spatial relations in

a fuzzy manner [11]–[16].

In particular, ideas emerge for coupling fuzzy reasoning and

a GIS [4], [17]–[19]. The majority of these approaches [4],

[17], [18] consider as inputs some indicators of interest that

must be assessed at different locations. They can also measure

either non-spatial characteristics related to the location (e.g.,

population density) or spatial characteristics (e.g., elevation,

distance to a road). Fuzzy reasoning with fuzzy spatial objects

and a GIS is more integrated in [19], where fuzzy rules can be

applied to them. However, the antecedent of fuzzy rules does

not consider fuzzy relations between fuzzy spatial objects. This

point is addressed by our approach that can handle both fuzzy

spatial reasoning and reasoning on localized measurements.

This article is composed as follows. We briefly describe

in section II the principles of fuzzy morpho-mathematics that

allows to model vague spatial relations. Then, we present the

proposed approach in section III which consists of interoperat-

ing a GIS like GéoPortail 1 and our fuzzy inference engine [20]

that integrates high level operators to process directly spatial

data. Then, we present in section IV an application to the

assessment of risks related to the growth of a forest fire.

Finally, we draw some conclusions and perspectives.

II. FUZZY MATHEMATICAL MORPHOLOGY

Bloch and Maı̂tre [11] proposed the fuzzy mathematical

morphology approach. It evaluates if specific relations between

1https://www.geoportail.gouv.fr/
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an object of interest A and a reference object R occur. A
and R are both localised in the space S. These relations are

either topological ones, such as intersection [13], or metric

relations such as proximity relations [14] and directional

relative positions [13]. All these relations play a major role

in spatial reasoning.

Several advantages of this approach should be emphasised,

because spatial relations:

• may be computed on fuzzy or crisp objects,

• may be well defined or intrinsically vague,

• do not rely only on a point-to-point computation between

fuzzy objects, but may also consider the spatial distance

between them.

We give details on the metric relations computations that will

be used in the next sections.

A. Metric Relation Evaluation

Let μA be the membership function representing the fuzzy

set A in S, such as μA : S → [0, 1]. We can interpret μA(x)
as the degree to which we consider that A really spreads over

the location x.

Metric relations are assessed by a two-step process. First, we

compute the fuzzy landscape μα(R) on S which gives the set

of locations verifying the desired relation α with the reference

object R. Then, the adequacy of A with the fuzzy landscape

μα(R) is assessed for all points x in S. Different functions can

be used to assess this adequacy. The two extreme functions are

given by the degree of possibility ΠR
α (optimistic evaluation)

and the degree of necessity NR
α (pessimistic evaluation):

ΠR
α (A) = sup

x∈S

� [μα(R)(x), μA(x)] (1)

NR
α (A) = inf

x∈S

⊥ [μα(R)(x), 1− μA(x)] (2)

where � is a t-norm (fuzzy conjunction), ⊥ is its associated

t-conorm.

Fig. 1 shows the example of a crisp reference object R
with a triangular shape and two fuzzy landscapes computed

from it. We can see on the fuzzy landscape the locations that

are considered to be close to R and to be at the right of R
respectively. We can see that the values decrease when one

moves away from R or from the desired direction.

B. Fuzzy Landscapes Computation

A fuzzy landscape μα(R) is obtained by the fuzzy dilation

Dν(μ) of the reference object R by a structuring element ν
from spatial domain V in [0, 1] according to [11]:

Dν(μ)(x) = sup
y∈S

� [μ(y), ν(x− y)] (3)

where x and y are two points in S, μ is the membership

function of the spatial fuzzy set representing R, and ν is a

structuring element that characterises the spatial relation. For

simplify, we suppose ν is centered in the center O of the

image.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 1: Reference object R (left) and two examples of fuzzy

landscapes “close to R” (in the middle) and “to the right of

R” (right). The boundary of the reference object has been

subtracted from the fuzzy landscapes in order to visualize its

location (shown as gray pixels).

In the case of the proximity relation assessment, if we want

to assess the same distance relation whatever the direction, ν
must be isotropic by rotation around the center O. We may

use a generating function f from R
+ in [0, 1] that gives the

membership value for each x according to its distance to O.

In the case of the “close to” relation, that is to say, “to be at

a distance lower than d1”, f should be decreasing, such that

f(d(x,O)) is close to 0 when the distance between x and O is

approximately equal to d1. Considering computational costs,

the generation of ν could be restricted to its support.

In the case of directional relative positions between two

objects like “to the right of”, the structuring element ν is

symmetrical according to desired direction −→uα. Obviously, the

closer the direction
−→
Ox to −→uα, the higher the value of ν(x).

We generalise the generating function ν given in [13] :

να,γ(x) = max

[
0, 1− γ−1 arccos

(−→
Ox · −→uα

‖
−→
Ox‖

)]
(4)

where the new parameter γ, called opening angle, sets the

maximal acceptable angular deviation for a minimal satisfac-

tion of the relation. Actually, να,γ is a simple linear function

of the deviation angle β formed between
−→
Ox and −→uα. The size

of να,γ should be at least two times the size of A ∪R if it is

centered around O.

III. PROPOSED APPROACH

We introduce in this section the proposed approach and then

show the integration of fuzzy spatial operators into fuzzy rules.

A. Architecture Overview

To allow the specialization of our inference engine [20] to

process geographical data, while maintaining its genericity, we

add an adapter that the engine calls whenever needed. The goal

of the adapter is to query the GIS and to gather information in

models that can be processed by the inference engine. Fig. 2

represents an overview of the system. The end-user, who is

most of the time on-field, consults the indications on his tablet

or his laptop. The calculations are either deported or local (if

no connection is available) and the graphical interface uses
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Fig. 2: System overview

our inference engine as a web service as often as needed. The

engine receives the geographic area that must be processed

and uses a GIS, itself in the form of a web service, to gather

the geographic data necessary for the calculations. Once the

calculations are completed, the fuzzy expert system returns all

the results to be displayed on a cartographic background of

the graphic interface.

Access to geographic data or cartographic backgrounds of

a GIS can be done using the WFS (Web Feature Service)

and WMS (Web Map Service) data exchange protocols. An

inference engine request can result in a set of GIS requests to

obtain all the information in the area (different layers, different

types of data, etc.). This data is then transformed into an

internal data model using the adapter, then into fuzzy raster,

that is to say fuzzy pixel arrays, on which the spatial rules can

be applied.

B. Fuzzy Spatial Operators in Fuzzy Rules

A set of fuzzy spatial relations and properties presented in

the literature is based on fuzzy mathematical morphology [13],

[14], [21]. It can be usefully exploited in fuzzy rules as new

operators. In our previous work, we proposed to represent a

rule base by a graph [20]. Its nodes represent, for example,

simple or compound propositions, the input data, the output

data, or even the rules themselves. Such a representation is

seamlessly extensible and allows eliminating common subex-

pressions and preventing from redundant computations, in

particular when expressions are expensive to evaluate. Here,

we consider new types of possible nodes: spatial inputs and

expressions representing either spatial properties or relations.

Spatial relations are constructed according to the composi-

tional paradigm introduced in [22]: new operators are built

upon basic ones. Thus, the new operators take benefits from

the material acceleration of the base operators by the SIMD

(Single Instruction Multiple Data) instructions [23].

We use the following notations : � is a t-norm, μA and μ are

the membership functions of the spatial fuzzy set representing

the two objects (fuzzy or not) A and R respectively, x and

y are points in S. Let Hg and ¬ be the height and the

complement of a membership function defined on the spatial

domain, defined by :

Hg(A) = sup
x∈S

(μA(x)) (5)

¬A(x) = 1− μA(x). (6)

The overlap Rec(A,R) between A and R is a point-to-point

operator, and is defined as follows for all x in S :

Rec(A,R)(x) = �(μA(x), μ(x)). (7)

We define the occurrence degree Occ between A and R and

the dilatation of R by the structuring element ν which gives

fuzzy landscapes (3) based only on Hg and Rec :

Occ(A,R) = Hg(Rec(A,R)) (8)

Dν(R)(x) = Hg(Rec(R, νx)) (9)

where νx is defined from S in [0, 1] as νx(y) = ν(x − y).
Occ can be written as the degree of possibility of A and R.

It can be interpreted as the degree of intersection between A
and R. Thus, it is the first topological relation. Note that some

operators, like Rec and Dν(R), are defined from the spatial

domain S to [0, 1], while others, like Hg and Occ, directly

give fuzzy values.

Let να,γ be the structuring element representing the direc-

tion α with an opening angle γ (4) and ν1 and ν2 those

representing the distances less than d1 and d2 respectively,

with the condition that d2 is higher than d1. Then, we evaluate

the two first metric relations “A is in the direction α of

R” (Dir), and “A is close to R” (Close) by the following

definitions :

Dir(A,R, να,γ) = Occ(A,Dνα,γ
(R)) (10)

Close(A,R, ν1) = Occ(A,Dν1
(R)). (11)

Note that we use the degree of possibility (1) to assess if a

metric relation is at least partially verified between two objects.

Now, we derive two other metric relations “A is far away

from R” (Far) and “A is between the distances d1 and d2
from R” (Between) form previous operators :

Far(A,R, ν2) = ¬Close(A,R, ν2) (12)

Between(A,R, ν1, ν2) = �(Close(A,R, ν2),

Far(A,R, ν1)). (13)

Finally, based on these definitions and [14], an adjacency

relationship Adj can be written as :

Adj(A,R, ν1) = �(¬Occ(A,R), Close(A,R, ν1),

Close(R,A, ν1)). (14)

From this definition, one can conclude that two objects are

considered as adjacent if they do not intersect (¬Occ part) and

if each one is close to the second one considering a distance

tolerance. With the same modus operandi, more relations can

be defined.
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Fig. 3: Hierarchical fuzzy rule base system for each issue

and each time horizon h. The different variables (inputs,

intermediate and outputs) are shown upon arrows.

IV. SITUATIONAL ASSESSMENT OF WILDFIRES

In the case of intervention on wildfires, firefighters we met

expressed the need to keep their own decisions during an

intervention. These decisions may concern the number of en-

gaged workforce, the type of intervention, as well as terrestrial

and aerial resources. These decisions derive from the chosen

strategy. This one depends on numerous factors, constraints,

situational assessment, possible hazards anticipation and past

experience. In the case of wildfires, some influencing factors

are weather conditions, local topography and vegetation type.

The considered constraints can be the available resources, the

response time, and the access pathways.

In this context, we proposed to help to accelerate the

situational assessment by highlighting potential risky issues

according to the evolution of the wildfire. The designed fuzzy

rule base system (FRBS) is depicted in Fig. 3 as a hierarchical

fuzzy system [24]. The latter advocates that a hierarchical

fuzzy system helps to reduce system complexity and it is more

interpretable than a flat FRBS when the intermediate variables

are themselves meaningful. In that case, each block of fuzzy

rules can be analysed and interpreted independently.

The hierarchical fuzzy system consists of tree blocks:

• fuzzy spatial rules are defined as a first block in order

to evaluate a vulnerability score for each recorded issue

according to its location and the potential trajectory of

the fire,

• a severity score for each issue is evaluated in a second

block according to its typology and its nature,

• finally, a risk score for each issue and for each time

horizon h is estimated by aggregating both vulnerability

and severity scores by fuzzy rules.

On the graphical interface, the end-user can set the time

horizons h to be considered for each request to the inference

engine. The considered issues in this application are the geo-

graphical items contained in nearly ten layers of BDTOPO® of

French National Geographical Institute located in the area of

the fire. The requested layers are for instance layers with build-

ings (undifferentiated, industrial and remarkable buildings,

lightweight and linear constructions) and Points of Activity

or Interest (PAI). The current adapter can be easily replaced

by another one that accesses to another GIS.

The next three subsections describe the vulnerability, the

severity and the risks assessments. We then detail the spatial

and the rule base settings. We finally show the results.

A. Vulnerability Assessment

An issue is considered vulnerable according to the fire if

it is on its trajectory or nearby at some time horizon. The

human knowledge about fire evolution can be expressed as

follows. The fire spreads in the direction of the wind in an

elliptical shape [7] on a flat land with homogeneous vegetation.

In the South-East of France, the wildfire propagates with a

speed around 3 to 8 % of wind speed according to the land

topography, the type and the density of vegetation. These

parameters are considered during the estimation of the shape

of fire perimeter (fire shape for short), which consists of the

location of the fire and of the burned area at a given time

horizon. The vulnerability of an issue reaches its highest values

when it is located in the spread direction of the fire and close

to the estimated fire shape.

As we can see, the knowledge about fire evolution is

rough and uncertain. This knowledge is translated by the two

following fuzzy spatial rules:

• “If the issue A is close to the fire shape at the time

horizon h and A is in the wind direction according to the

fire shape at the time horizon h Then the vulnerability

of the issue A at the time horizon h is high”,

• “If the issue A is not close to the fire shape at the time

horizon h or A is not in the wind direction according to

the fire shape at the time horizon h Then the vulnerability

of the issue A at the time horizon h is low”.

To take into account the estimated weather parameters for

each time horizon h, the structuring elements defining the

tolerable distances and angular deviations are computed on the

fly at the creation of each set of rules. They are represented

in Fig. 3 as parameters in the block of the fuzzy spatial rules.

B. Severity Assessment

The assessment of severity depends only on the typology of

the issue considered. To do this, we consider the database layer

from which the issue comes and its nature. The maximum level

of severity is reached for all buildings that are open to the

public (such as campsites, schools and hospitals) and for all

constructions which have an interest for the population (e.g.,

water tanks) or a significant risk (e.g., industrial buildings).

An intermediate level is assigned to remarkable buildings,

natural spaces and specific constructions. Finally, a low level

of severity is given to lightweight, linear and undifferentiated

constructions.

Some geographical items coming from different layers are

overlapping : indeed, there can be one item for the commercial

area from the PAI layer and one item for each building

of this area coming from another layer. Nevertheless, their

provenance and their nature are different, so their severity

could be different. For instance, an undifferentiated building

will not trigger an alert considering its severity. If it is on a

campsite, the item representing the campsite area will trigger
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Fig. 4: Combination of fuzzy landscapes associated to the

extension of the fire with the Zadeh t-norm (left) and proba-

bilistic t-norm (center, right) and the opening angle γ = π/2
(left, center) and γ = π/4 (right). A threshold at a minimum

value of 0.5 is applied in order to compare the different maps.

a high alert. The use of different data layers is very useful in

this case.

C. Risks Assessment

Finally, additional fuzzy rules evaluate the risk scores of

each issue at the different time horizons h according to their

estimated vulnerabilities and severity. Therefore, it is possible

to highlight issues that are risky and very vulnerable but

also issues that are less vulnerable but that would present

significant risks if they were affected. These are issues that are

not located exactly in the spread direction of the fire or in the

immediate vicinity of the estimated fire shape. For instance,

we have the following rules:

• “If the vulnerability of issue A at the time horizon h is

high and the severity of issue A is high Then the risk of

issue A at the time horizon h is high”,

• “If the vulnerability of issue A at the time horizon h is

low and the severity of issue A is high Then the risk of

issue A at the time horizon h is medium”.

D. Parameters Setting

Spatial parameter setting consists in choosing an opening

angle γ (4) and a t-norm for the vulnerability assessment

block. At the beginning of the intervention, the fire may be

approximated by a triangular shape, as the reference object

shown on Fig. 1. Fig. 4 shows the influence of these two

parameters when combining conjunctively the two fuzzy land-

scapes representing the expressions “close to the fire” and “in

the spread direction of the fire”. By using the probabilistic t-

norm and by thresholding at a value of 0.5, the shapes obtained

approach an ellipsoidal propagation of a forest fire, more or

less open, as shown in several works [6], [7]. In the following,

we will show the results obtained with γ = π/2 triggering

intermediate alerts in directions that are not totally in the

spread direction of the fire.

The chosen FRBS is a Mamdani-type fuzzy system with

the center of gravity defuzzification method. Following the

analysis in [25], the output variables are composed of trian-

gular membership functions, even on the extremities of their

domain (Fig. 5). Their parameters are adjusted in order to get

Fig. 5: Definition of the output linguistic variables “vulnera-

bility” with two fuzzy sets (left), “severity” and “risk” with

four fuzzy sets (right).

the defuzzified values of the output variables in [0, 5]. This

homogeneous scale helps the understanding of the results.

E. Results

We show in Fig. 6 the results obtained in a human-machine

interface dedicated to the intervention of firefighters. The

inference engine evaluates the fuzzy spatial rules and fuzzy

rules to infer the vulnerability, severity and risk scores of each

identified issue. Different layers of the web interface show the

computed indicators: each geographic item is represented on

the respective layer. Some items are well highlighted even

if they are not the closest to the forecast fire shape or not

directly in the wind direction considering the fire location.

Indeed, the fuzzy rules computing the risk scores aggregate

the vulnerability and severity scores.

An advantage of this approach is that we can easily change

the fuzzy rules in order to refine the knowledge domain. We

can also easily configure the parameters of the structuring

elements if the distances or the angular deviations for risky

issues are not satisfying. New rules and indicators can be

introduced as well in order to take into account more data

and information. Moreover, fuzzy logic captures the vagueness

of spatial relations and allows the end-users to easily author

the rules. In particular, the mathematical complexity of spatial

operators are hidden behind words that are manipulated by the

end-users.

V. CONCLUSION AND PERSPECTIVES

In this article, we have presented an extension of fuzzy

expert systems to the processing of spatial data from GIS. We

have exploited spatial relationships proposed in the literature

and shown that they fit into the compositional paradigm

introduced in our previous work. These relations make it

possible to construct fuzzy spatial rules. Compared to previous

works of the literature, our inference engine can handle both

fuzzy spatial reasoning between fuzzy spatial objects and

fuzzy reasoning on spatial measurements or objects. We have

applied the proposed approach to the assessment of the risky

issues in the case of wildfires.

We will continue our work to integrate more spatial rela-

tionships to increase the available vocabulary to be used in

rules. This will allow us to improve the knowledge modeling,

such as a more direct use of topography. This approach can be

extended to other types of issues (people, vehicles) as well as

to the management of other types of crises (floods, industrial

incidents, etc.).
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(a) Vulnerability assessment (b) Severity assessment (c) Risk assessment

Fig. 6: Situational assessment of constructions and points of activities and interest (PAI) at the 4th hour of the fire represented

as colored points and filled polygons. The color scale goes from green (very low value) to red (very high value). The red

polygons represent the forecast of the fire shape for each hour from the ignition point (red star).
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