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Abstract—Scientific parallel applications often use MPI for
inter-node communications and OpenMP for intra-node orches-
tration. Parallel applications such as particle transport, seismic
wave propagation simulator, or Finite-Element applications often
exhibit workload imbalance due to their nature of ongoing data
movement. These applications usually develop software balancing
strategies triggered when some imbalance thresholds are detected
to reduce this imbalance. These developments are complex
to implement and impact the entire distributed applications’
performance by synchronizing and exchanging the load over the
network. This paper proposes a method to dynamically detect
load imbalance and balance the computation by redistributing
OpenMP threads between MPI processes local to the node. With
minimal impact on the applications’ codes, we demonstrate how
this technique can improve the overall applications’ performance
up to 28% on MiniFE, 17% on Quicksilver, and 3% on Ondes3D.
We also present its impact when executing multiple nodes and
our proposed approach’s limitations.

Index Terms—HPC , MPI+OpenMP, Load Balancing.

I. INTRODUCTION

In the pursuit of higher performance, processors nowadays
can exceed one hundred cores. Utilizing all these resources in
an HPC platform along with its complex memory hierarchy
can be challenging for scientific applications. To harness the
performance of such platforms, applications such as physics
simulations rely on new programming models. It usually
consists of a mix of MPI [1] for communication between
nodes and processes, and a dedicated runtime for orchestrating
the intra-node or intra-process computation. While different
task based runtimes get traction for intra-node, the main
environment remains OpenMP [2].

While using such a combination of MPI and OpenMP
allows to leverage the computing capabilities of the different
cores of the machine, possibly leading to relying on multi-
ple multi-threaded MPI processes per nodes, balancing the
load between the different processes can be challenging. In
particular, some scientific applications exhibit workloads that
dynamically evolve, leading to load imbalance during their
execution.

Different types of such load imbalance can be distinguished.
For instance, an imbalance can happen inside a process be-
tween the different OpenMP threads as they execute a different
computation workload. Another type of imbalance may also
happen between processes, even if their respective OpenMP
regions are balanced. This is the case for particles transport
where the simulation depicts moving objects in a mesh. The
main computation will happen initially in part of the mesh,
but will move dynamically during the execution depending on
the ongoing computation of the simulation: when balancing
the workload at the start of the execution for the initial
conditions on the different processes, the computation will
evolve and lead to a later imbalance between processes. As
these simulations usually translate into alternate phases of
computation and state exchange using synchronization and
communication, this imbalance is characterized by having
some processes with more work to do while others wait in
MPI communications. This situation creates under-utilization
of the resources allocated to the application. In this paper, we
propose to focus on this type of imbalance.

The standard solution to address this imbalance consists in
application specific redistribution of the data and its workload,
which can be quite challenging to implement. In this paper,
we propose to address this imbalance issue by dynamically
redistributing the underlying computation resources while min-
imizing the impact on application source code. To achieve
this goal, we introduce a technique to detect load imbalance
and a method to redistribute the number of OpenMP threads
per process. Our proposed methods rely on the OpenMP tools
interface (OMPT) [3] to interact with the underlying runtime
and measure the time spent by each thread on the computation
in each OpenMP section.

For applications for which each processes exhibit the same
number of OpenMP sections per computation phase, no code
modification are required to benefit from our proposed so-
lution. However for applications where two processes may
have a different number of OpenMP sections per computation



phase, we introduce a single function with no parameter that
the application developer shall use to mark the end of a
computation phase. This enables us to estimate for this type
of applications the workload of an entire computation phase
for balancing. We then leverage this function to evaluate each
process’ workload and decide on the new number of OpenMP
threads to dedicate dynamically to each process.

We implemented the different callbacks to OMPT and the
proposed function inside our library called SABO. Using
this library, we demonstrate the impact on performance on
two mini-apps: Quicksilver and MiniFE with respectively
up to 17% and 28% improvement on execution time. We
also demonstrate the benefit of our approach on a seismic
simulation called Ondes3D with an improvement of up to 3%.
While our proposed technique does not address load imbal-
ance between nodes, we think it can efficiently complement
the classical application-level data balancing by reducing the
frequency at which it is triggered.

In the rest of the paper, we expand on motivation for SABO
in section II followed by related work in section III, before
detailing our proposed method for balancing in section IV and
its performance evaluation in section V.

II. MOTIVATION

This section presents some context of parallel scientific
applications on supercomputers motivating our solution.

Scientific computing applications often use one of the
following two main types of parallelism or mix them:

MPI/domain decomposition parallelism: Domain decompo-
sition [4]–[6] is well known and efficient. It can be used with
one or multiple compute nodes. Nevertheless, an application
using only MPI often suffers from a higher memory consump-
tion due to ghost cells required by the domain decomposition
approach. Ghost cells are a copy of cells owned by neighbor
processes and which are synchronized regularly to keep data
coherency. This overhead in memory consumption is directly
linked to the size of the stencil and the number of dimensions.

OpenMP/Thread parallelism: This parallelism is used within
a node. It is easier to set up compared to MPI decomposition
parallelism. Nevertheless, it is often harder to get full perfor-
mance due to NUMA effects or memory contention.

Most of the time the trade-off is a mix of these two
programming models. Usually, to deal with NUMA effects
and contention, applications use more than one MPI process
per node. We did an evaluation of this trade-off in Table I. One
can see that for the Quicksilver application for 1 or 2 nodes
having each 48 cores, using 8 MPI processes with 6 OpenMP
threads per node is better than using only one MPI process
with 48 OpenMP threads. This is also the case for Ondes3D
with 4 nodes.

Even if MPI + Threads is an efficient way to parallelize
applications, with possibly multiple MPI ranks per node, the
static decomposition implied by the domain decomposition
parallelism may still lead to unbalanced executions. To dynam-
ically balance such executions, it is first essential to have a tool
that detect imbalance during the execution of the application.

Number Exec time for X processes per node
Application of nodes X=1 X=4 X=8 X=16
Quicksilver 1 948,81 296,77 278,95 291,51
Quicksilver 2 573,76 181,34 192,98 182,64
Ondes3D 4 2258 648.75 558,46 439.02

TABLE I
EXECUTION TIME (IN SECONDS) OF QUICKSILVER AND ONDES3D WITH

DIFFERENT NUMBER OF PROCESSES PER NODE.

This tool must be less intrusive not to alter applications’
behavior when measuring imbalance. Moreover it should in-
troduce minimal to no impact to applications’ codes in order to
favor its utilization. It is also necessary to have a method for
correcting the detected imbalance that is both accurate and
quick to perform, not increasing the application’s execution
time. In this paper, we propose a library implementing methods
for detecting imbalance and improve load balancing for this
kind of application with minimal to no code modifications.

III. RELATED WORK

This section details a list of methods that reduce workload
imbalance in an application in the execution context introduced
in the previous section. We will also briefly introduce the key
differences between existing methods and SABO.

Dynamic resource allocation of cores to processes is a
well-known problem and long-studied issue. This problem is
often delegated to the operating system (OS) where Several
scheduling policies have been studied and implemented. Most
OS scheduling policies do not rely on users’ hints or interven-
tions, nor applications’ dynamic workload information. In the
context of High-Performance Computing, dynamic changes of
resource allocation to an application done by the OS scheduler
at any given time may significantly impact its performance due
to context switches and cache degradation [7]. This is why
the classical approach in HPC is to assign resources to each
application statically for its entire execution duration. While
static resource allocation leads to better performance overall
for most HPC applications, it may also lead to resource waste.
For example, when computing threads allocated to computing
resources are not progressing, these idle resources will not be
switched with other applications’ threads.

With the rise of many-core machines, the standard pro-
gramming model for HPC applications has evolved from MPI
to MPI+X. In this context, the number of cores assigned
to each process is also statically allocated so that no two
processes compute over the same resource, and it is up to the
shared memory runtime to manage the load on each computing
resources to maximize their utilization. Usually, the number
of threads to use within this shared memory runtime is set
depending on the underlying allocated resources.

As discussed in the previous section, it is common to
use multiple MPI+X processes on each node. Nevertheless,
some applications have an unbalanced workload by cell/MPI
subdomain. This load imbalance can come from border do-
main conditions that can introduce more compute work to
add reflection or absorption conditions. One other source of
imbalance is present in particle transport simulation, where



the compute cost of a particle varies according to the type of
material it interacts with.

For example, in a Monte Carlo particles transport, a solution
to design the simulation is to split the computing domain into
subdomains dispatched to multiple processes to get a better ex-
ecution time [8]. These types of applications may also exhibit
load imbalance during their execution. In this context, several
approaches exist for dynamic load balancing. These methods
can take place at different levels of the application stack. The
first approach involves implementing dynamic load balancing
directly in the application source code. This is currently the
preferred method used in imbalanced HPC applications [8],
[9]. However, this method puts the burden on the shoulder
of the application developer, who knows her application and
it increases the complexity of the application’s code. Some
solutions in particles transport applications use static data
partitioning obtained from tools such as scotch [10] or metis
[11]. Using these techniques requires defining a cost model to
provide input to the partitioning tool and choosing between
geometric and non-geometric partitioning. With geometric
partitioning, each subdomain has a regular border and a simple
communication scheme, but data decomposition is hard to
perform due to geometric constraints. Using non-geometric
partitioning allows reaching well-balanced decomposition but
implies a complex communication scheme and irregular sub-
domain border. Partitioning is also coarse grain: even if we can
have multiple calls to the partitioning tool during execution,
we cannot perform fine-grain load balancing such as loop load
balancing. While these methods have their merits, in this paper,
we propose a different approach with minimal modifications to
the applications for providing automatic load balancing within
a node.

Non Monte-Carlo simulations may also exhibit load im-
balance. For example [12] presents a framework solution
for Adaptive Mesh Refinement. This solution balances the
load by migrating sections in a mesh between MPI ranks
using MPI communications. This solution, based on domain
decomposition, can be used for different types of simulations
such as Tsunami Wave Propagation or Two-Phase Porous
Media Flow. These data-balancing solutions necessitate heavy
applications’ codes modifications.

Another possibility for introducing load balancing is to
orchestrate it directly in an application’s runtime. In the case
of particles transport simulation, it can consist of dynamic data
partitioning in the multi-threads context. Different techniques
have been proposed, depending on the considered runtime.
For instance, the OpenMP runtime [13] enables the use of
tasks and introduces the notion of dynamic task scheduling.
Other runtimes [14] rely on a task-based approach to propose
better load balancing techniques. With such runtimes, the task
orchestration and data load balancing are quite transparent to
the user. However, it can be challenging to modify/design
an application’s code to fit this task programming model.
Moreover, this approach is often limited to performing load
balancing separately within each MPI process.

Work-stealing techniques can be used in the context of MPI

+ OpenMP applications. In [15] and [16] authors propose
two work-stealing solutions for MPI + OpenMP applications.
The first proposes a push approach where works are pushed
to other threads, and the second describes a pull approach.
In both cases, work-stealing is performed between OpenMP
threads, and a communication thread is required. Because
of this communication thread, applications can only use n-1
threads for computation for each MPI process. Both of these
solutions use data balancing. Compared to these efforts, we
propose balancing the resources instead of the data.

All previous methods are some form of data load balancing.
One method called LeWi [17], [18] uses a resource load
balancing. This method is totally transparent to the user and
works with a hybrid MPI + OpenMP model. With this method,
when a process A is blocked in a MPI communication like
MPI Send, the LeWi algorithm reassigns the cores of this
process A to another process B in the same node to improve
computing capacity and reduce the waiting time of process A.
When process B finishes its computation, all cores are given
back to the process A. Compared to this approach, we propose
evaluating the imbalance dynamically and assigning OpenMP
threads to the different processes accordingly.

DROM [19] is an interface for enabling malleability. The
proposed method connects a resource manager such as Slurm
to an application. It allows this resource manager to request
the dynamic change of the number of threads allocated to an
application. Compared to this work, we propose to compute
the load imbalance dynamically local to each node and to auto-
matically compute new OpenMP threads distribution for each
process without the coordination from the resource manager.

IV. CONTRIBUTION

We will detail in this section the approach we propose
to increase the performance of applications by balancing dy-
namically the underlying resources compared to each process
load. We first introduce our proposed mechanism for detecting
imbalance and then describe our balancing technique.

A. OpenMP Tools Interface (OMPT) and SABO library

To both instrument the detection of imbalance, and assign a
new number of threads and their mapping to cores during the
execution of applications, we propose to rely on the OpenMP
Tools Interface (OMPT) which allows providing callbacks to
some OpenMP internal functions.

With respect to the detection of imbalance using OMPT,
we insert a callback at the beginning of an OpenMP section
and at the synchronization barrier of each OpenMP threads to
compute each thread’s time spent inside an OpenMP section
and accumulate these time measurements among multiple
sections. It is then possible to sum these measurements on
each process to get an estimation of its workload. When
considering computation phases of MPI + OpenMP scientific
applications, two possibilities arise. First possibility: every
process enters the same number of OpenMP sections in
each phase. In this case we can simply rely on estimating
workload of every process at any given same number of



OpenMP section entered. Counting the number of section
entered is performed within the OMPT callbacks and there
is no need for modifying the targeted application code in
order to estimate the workload. Second possibility: at least two
processes can exhibit a different number of OpenMP sections
per computation phase. In this case we cannot rely on counting
OpenMP sections to perform a process’ workload estimation
relevant to computation phases. Instead we introduce a new
function that we call omp balanced(). This function does not
take any parameter. It is then up to the application’s developer
as she is the one knowing the structure of her application to
mark the end of a computation phase by calling our proposed
function. Such call to omp balanced() enables us to sum the
workload relevant to a computation phase for each process
locally to a node.

To simplify, for the first case where computation phases
include the same number of OpenMP sections on every
process, we simply call omp balanced() directly within the
OMPT callback triggered at the end of an OpenMP zone.
This enables us to implement the exchange of information
and possible resulting balancing steps inside omp balanced()
for both cases.

Once we obtain a workload estimation for each process
within omp balanced(), we exchange this information between
every process located on the same node through MPI appro-
priate communicator and MPI Allgather collective operation.
This operation happens on each node separately. Information
exchange is local on each node of the application indepen-
dently of each other and is not performed between the nodes.

B. Determining a new resource distribution

Once load information is shared between the processes
local to the same node, they can independently compute the
respective load of each process compared to the sum of all
processes load on this node. From this information, they can
deduce their respective share of the total of available cores on
this node that they will request and thus the corresponding new
number of threads of each local process. Due to NUMA effect,
we take the policy to not let a process span over multiple
sockets, which would hinder its performance. Thus the last
step consists in finding a proper mapping of these threads to
the node, potentially adjusting the resulting number of threads
per process to reflect this NUMA policy, and reallocating
resources accordingly.

By deciding a new number of threads per process based on
their workload, it is possible not to find any combination of
processes to map on each socket. We propose here a method
for mapping processes per socket and adjusting the number
of threads per process by using a research graph. This step is
important because a process may change of the socket from
the previous state.

This method is based on the well known branch and
bound algorithm [20]. It relies on an exploration tree with an
associated decision function to stop the exploration. We map
processes in decreasing order of workload and explore the tree
with a depth-first search approach. A state of a node of the

Fig. 1. Example of Exploration Tree.
Dx represents the number of free cores available on socket x.

tree corresponds to the list of processes associated with each
socket along with the number of available free cores remaining
from this current mapping. Initially, we map one process per
socket, resulting in the state of the root of the exploration
tree. Let us consider a node n of this tree. We first apply the
decision function which counts the number of cores c that are
missing to fulfill the proposed mapping. This function keeps
the lowest value of such a number minc obtained so far once
every process has been mapped, thus at a previously seen leaf
of the tree, and is set initially to infinity. If c >= minc, we
do not continue to explore this branch of the tree as a better
mapping has been found elsewhere. If c < minc, we generate
a child n′ that corresponds to the mapping of the next process
to the first socket with a positive number of available cores.
Once all processes have been mapped, we update the value of
minc if necessary. This algorithm creates a tree with a depth
of number of processes per node - the number of sockets per
node. An example of this exploration tree is provided in Fig.1
with 4 processes started with 12 threads each. The processes
0,1,2 and 3 request respectively 14, 9, 13, 12 threads. In this
example, the node has 2 sockets with 24 cores each. In this
example we explore 4 nodes and the root. In the end, the
solution with processes 0 and 1 on socket 1 and processes 2
and 3 on socket 2 is the best solution with minc = 1 (arrow
4).

Once obtained a number of threads and their map-
ping, the resource allocation is changed by resetting
OMP NUM THREADS and KMP AFFINITY. Note that as
this environment variables changes happen between OpenMP
sections and not within, it is consistent with the OpenMP
standard.

C. Using SABO library on balanced applications

We want our proposed library to have no impact on applica-
tions that are balanced or which exhibit limited imbalance. In



the case of limited imbalance, the resulting number of threads
for each process computed by our method can be equal to their
previous number of threads. In this case, we simply ignore the
mapping resulting from the computation of the research graph
and do not change the mapping of these processes, in order
not to introduce cache misses and context switches induced
by a different thread placement.

It is also possible that the limited load imbalance leads
our method to compute a different number of threads per
process by adding or removing one thread on some processes.
If the load imbalance is limited, it is possible that removing a
thread from one process to increase another one degrades the
overall application’s performance. To address this issue, we
introduce a verification step after computing the tree decision,
in which we forecast the possible impact of the proposed
change in the number of threads per process. This forecast
is computed using the following method: for each process we
know its last number of thread lastNbth, its last execution
time time and how many threads newNbth they would get
with the proposed balancing decision. We can predict the
future process execution time as timeP = time∗lastNbth

newNbth
. Let

maxtime be the highest execution time of all processes in the
last step. If ∃P ∈ EnsP , timeP >= maxtime, with EnsP
is the ensemble of all processes of a node, then we decide
to not balance the application’s resources. Addressing these
issues also enables using our proposed SABO library even
with limited knowledge of applications’ load imbalance as it
prevents affecting already balanced applications.

D. Other considerations on omp balanced() calls

omp balanced() is the function where both workload in-
formation is exchanged and balancing is performed. We im-
plemented the possibility of executing omp balanced() only
every X time this function is called, or only once at the Xth

call. This leads to reducing the number of synchronization
injected in the application and conversely reduces the number
of opportunities for balancing the applications’ resources.
Selecting the value of X is currently the responsibility of
the user using an environment variable. In principle such a
selection could be automated within our proposed solution.
It is not trivial and has impact on the considered application
performance, and is thus out of the scope of this paper.

Finally, note that when omp balanced() is inserted at the
end of a computation phase by a developer, the introduction
of synchronization has limited impact as usually the end of
a computation phase already includes synchronization and
exchange step on its own. The supplementary synchronization
introduced with this MPI Allgather should have a minimal
impact on application performance in that case.

V. EXPERIMENTS

We detail in this section the performance evaluation of the
SABO library. We first describe our experimental conditions
and two benchmarks we used, Quicksilver and MiniFE, before
detailing our results using the SABO library explained in the
previous section. For simplification, we present in this section

the results of the executions done with omp balanced function
call placed in the application.

A. Experimental setup

All the experiments were performed on our platform named
Pise located in Echirolles, France. It consists of 32 nodes con-
nected by InfiniBand Mellanox ConnectX-6 HDR @200Gb/s.
Each node is composed of a dual-socket, 24 cores each, AMD
EPYC 7402 CPU @2.8GHz, and 128GB of memory.

The installed environment is Red Hat Enterprise Linux
Server release 8.2, with a Linux kernel version 4.18.0. We used
Open MPI 4.0.4 with the PML ucx. The Intel environment we
used is composed of the compiler 2020 Update 4.

B. Experimental benchmarks

1) Quicksilver: Quicksilver [21] is a proxy application,
from the CORAL benchmark suites, which implements a
simplified dynamic Monte Carlo particles transport problem
of the Mercury workload. Quicksilver includes an optional
module for balancing data on demand during the computation.

2) MiniFE: MiniFE [22] Finite Element mini-application,
also from the CORAL benchmark suites, which implements
some kernels representative of implicit finite element appli-
cations. MiniFE, compared to Quicksilver, has a parameter
to generate load imbalance between MPI processes during
the execution. This parameter simulates the imbalance in real
application with multiple materials and/or physics.

C. Methodology

For each benchmark, four sets of experiments were done.
The first set consists in analyzing the impact on the perfor-
mance of the library on a single node for different number
of processes, different values of imbalance for MiniFE, and
balancing triggered in different applications’ steps. Note that
changing the number of processes also affects the initial
number of threads per process. For these first experiments, the
problems’ sizes do not change. These experiments exhibit the
impact of the library on the execution time of the applications.
The second set of experiments consists in showing the impact
on performance when the number of nodes increases and the
problems’ sizes do not change. This is done for different
values of imbalance for MiniFE.The value used in [23] is the
largest value use in our expermientations. The third set of
experiments consists in showing the impact on performance
when the number of nodes increases and the problems’ sizes
change for MiniFE. The last set of experiments consists in
showing the impact of a threads redistribution happening in
the 2nd step, the best case for our solution as exhibited in the
next section, on performance compared to the Quicksilver data
balancing module.

When not specified otherwise, The threads redistribution
happens in the 20th step for MiniFE as it corresponds to
the best step following the study presented next section. In
all our experiments, we dynamically balance the benchmark’s
execution only once, as these benchmarks exhibit a relatively
small execution time. This is legitimate in the context of these



benchmarks but in a real execution, the execution time will be
longer and several load-balancing will be necessary.

D. Single node analysis

The objective of these experiments is to show the impact
on the performance of the library in one node. In these
experiments, the size of each problem does not change.
Different imbalance values for MiniFE are tested, and calling
our balancing technique at different application’s step values
are evaluated for Quicksilver.

The step value chosen to call SABO is important. If the
call of SABO is too late, the balancing will happen toward
the end of the execution and the gain will be less important
compared to doing the call of SABO after a little number
of steps. Nevertheless using SABO after a little number of
steps allows to have a better execution time in all cases with
Quicksilver. This variation is visible in Fig. 2, which shows
the benefit of using SABO on Quicksilver execution time. The
time obtained without using SABO corresponds to the time
reported in the first line of Table I. If the cell is yellow the gain
is greater while if the cell is blue the gain is smaller or negative
in one case. For example, in step 9 the gain is 1% whereas if
the call is in step 2 the gain can be up to 12%. This variation
is also visible in Fig. 3, which shows the gain for MiniFE with
1 node and 8 processes. In this example, the total number of
steps is 200 and the best gain is obtained with balancing at the
20th step of this application for different values of imbalance.
Nevertheless using SABO with 8 processes allows to have a
better execution time in all values of imbalance.

Fig. 2. Percentage of execution time reduction for three different numbers
of processes when using SABO’s balancing method at different application’s
step for Quicksilver

When the number of processes increases in the same node,
the number of threads per process decreases, as the total
amount of cores does not change and we do not want to
oversubscribe cores. The Table II and Figure 2 show that the
gain depends on the initial number of threads. The impact on
performance is better when the number of threads is not too
small for some application. When the initial number of threads
per process is too small, like 3 threads per process such as pre-
sented in Table II with 16 processes, our proposed balancing
technique can have a negative impact on performance. This is
due to the architecture of the machine we are conducting the
experiments on. It is composed of dual AMD 7402 processors
of 24 cores each, with 8 x L3 shared caches, each L3 cache
being shared by 3 cores. The initial execution condition of the

Fig. 3. Percentage of execution time reduction for different values of
imbalance in MiniFE. Three MiniFE step values of the total 200 are evaluated
for triggering our balancing technique

Number of Number of Value of imbalance
processes threads 100 200 500

8 6 10% 24% 30%
16 3 -18% -1% 2%

TABLE II
PERCENTAGE OF EXECUTION TIME REDUCTION ON ONE NODE WHEN

USING SABO COMPARED TO EXECUTION WITHOUT FOR MINIFE

application makes it benefit fully from this cache architecture
which is not the case anymore once we change the number of
threads of some processes. We also measured the overhead of
our library by comparing runs of MiniFE with 8 processes, 6
threads each, with a imbalance value of 0 with and without our
library. We obtained an overhead of 0,26 seconds over the total
execution time of 66,96 seconds, which is quite negligible.

E. Strong scaling

For these experiments, the number of processes per node
is set to 8, 6 threads each, and the problem size is set
to 400 × 400 × 400 for MiniFE and 100 000 000 particles
for Quicksilver. Selecting 8 processes per node results from
having the best execution time in one node with 8 processes.
Even if the gain for 16 processes with SABO is better in the
percentage of execution time, it is not better compared to 8
processes with SABO. Fig. 4 shows that when the imbalance is
small, the impact on application performance of our local-to-
the-node balancing can be negative. Yet, when the imbalance is
large enough, a gain is achieved. Our proposed technique does
not address inter-node load balancing but achieves intra-node
balancing. For distributed execution on multiple nodes, balanc-
ing the slowest nodes and decreasing their execution time will
result in an overall performance improvement. The limit of our
approach is that it will not improve the performance further
once the slowest node exhibit a balanced workload between its
processes, in which case a balancing strategies between nodes
is required. We believe our method can still complement and
reduce the number of such data balancing to perform at the
application level between nodes.

F. Weak scaling

For these experiments, the number of processes per node is
set to 8, 6 threads each. The problem size is defined to ensure
that each process has the same initial data size for MiniFE,



Fig. 4. Percentage of execution time reduction for 1, 2 and 4 nodes

with an initial size of 4003 for 1 node. Table. III shows that
SABO library has still an impact on distributed computation
spanning multiple nodes.

Number of nodes size gain
1 4003 30%
2 5043 28%
4 6353 21%
8 8003 25%

16 10083 24%
20 10863 18%

TABLE III
COMPARISON OF EXECUTION TIME GAIN ON MINIFE WITH 8 PROCESSES

PER NODE AND IMBALANCE=500

G. Comparison with load balancing algorithm integrated in
Quicksilver

Some applications, such as Quicksilver, implement their
own balancing algorithms. These algorithms are effective as
they are tuned specifically for one application. Thus these
methods provide a performance target for a generic method
like SABO. Here we compare our method with Quicksilver’s
load balance algorithm, we performed runs with 8 processes
per node with different numbers of nodes. To have a longer
execution time and get closer to a real application, the number
of steps launched was increased to 20 and the call of the
SABO library was made at steps n=2 for our method. Results
are summarized in Table IV. Although the executions made
with the SABO library do not allow us to reach the level
of performance of these algorithms, we can obtain decent
performance results with up to 17% of performance gain where
a dedicated algorithm reaches 29%. Yet, for applications that
do not have such algorithms, our generic method can be used
quite easily with at most its single function to be inserted in
the application code.

VI. ONDES3D EXPERIMENTS

We detail in this section the performance evaluation of
the SABO library in a real simulation application. We first

Number of nodes
Method 1 2 4

SABO step 2 17% 9% 12%
Balance module 29% 36% 42%

TABLE IV
COMPARISON OF EXECUTION TIME GAIN ON QUICKSILVER WITH 8

PROCESSES PER NODE

Application Max time spent Mean time spent Max
exec time (s) in OpenMP (s) in OpenMP (s) gain

558,46 511,56 399,51 20%

TABLE V
POSSIBLE GAIN WITH ONDES3D WITH 1000 STEPS

describe the Ondes3D [24] application, before detailing our
results using the SABO library explained in the previous
section. All performance evaluation were conducted on the
same experimental setup as described section V-A.

A. Ondes3D

Ondes3D [24], [25] is an application dedicated to earth-
quake modeling. It is a numerical finite-element simulation of
seismic wave propagation.

B. Methodology

Ondes3D’s code repository provides two test examples
with their data. We chose to use the SISHUAN example.
This test case is executed on 4 nodes with 8 processes per
node. Each process has 6 threads at the beginning of the
execution. For these experiments, we run 11 times each type
of execution. The first run is discarded as a warm-up execution
and we keep the last 10 executions. For all these experiments,
Ondes3D performs 1 000 computation steps. We evaluate the
performance impact of balancing resources once, at either step
100, 200 or 300 and report our finding in the following result
section.

C. Results

Table V represents the maximum theoretical gain one can
achieve by perfectly balancing the load of the application. If
every process spends the same time in the OpenMP zone in
average, this gain would be around 20%. Our library does not
balance resources between different nodes and thus can not
reach this target.

Figure 5 shows the execution time with and without using
the SABO library for different values of steps. We exhibit the
average time of 10 executions, the minimum execution time
achieved and the maximum execution time of these 10 runs.
Whichever is the selected step for balancing resources with
SABO, the average execution time is better than not balancing
at all.

We can have a gain with SABO library of 3.19% in the
best case. Almost all of the executions have a small gain
but we notice that using the SABO library does not increase
the average execution time. Without the SABO library the
performance variation is between -0.70% and 0.71% and with
the SABO library it is between -0.62% and 3.19%. Based on
these experiments, we can deduce that the use of the SABO
library when the application is quite balanced does not degrade
the average performance.



Fig. 5. Percentage of execution time of Ondes3D with 4 nodes and 8 processes
per node

VII. CONCLUSION

We presented our balancing technique and its implementa-
tion into the SABO library. It relies on computing the load
of every process’ OpenMP thread on the same node and
redistributes dynamically the number of threads accordingly.
The proposed balancing happens on each node separately. The
SABO library is easy to use and requires little knowledge of
an application to understand if it needs, and where to insert,
its single function compared to implementing a dynamic data
redistribution in a scientific application. We evaluated on a
single node and multiple nodes the impact on the performance
of our proposed method using two different mini-applications
representative of actual simulations and obtained performance
improvement in both cases. Currently, our proposed technique
does not address load balancing between nodes but could
complement a data balancing implemented in the application.
Future work aims at overcoming this limitation, for instance
by making use of distributed shared memory environments.
With the distributed shared memory, the cores of one node
could be used for doing the work of a process in another node.
This solution would enable load balancing strategies between
processes located on different nodes.
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and J. Corbalan, “DROM: Enabling efficient and effortless malleability
for resource managers,” in Proceedings of the 47th International Con-
ference on Parallel Processing Companion, 2018, pp. 1–10.

[20] J. Clausen, “Branch and bound algorithms-principles and examples,”
Department of Computer Science, University of Copenhagen, pp. 1–30,
1999.

[21] D. F. Richards, R. C. Bleile, P. S. Brantley, S. A. Dawson, M. S.
McKinley, and M. J. O’Brien, “Quicksilver: a proxy app for the monte
carlo transport code mercury,” in 2017 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2017, pp. 866–873.

[22] “MiniFE performance benchmark and pro-
filing,” in HPC Advisory Council,
http://www.hpcadvisorycouncil.com/pdf/miniFE Analysis and Profiling.pdf,
December 2015.

[23] T. Dionisi, S. Bouhrour, J. Jaeger, P. Carribault, and M. Pérache,
“Enhancing load-balancing of mpi applications with workshare,” in
European Conference on Parallel Processing. Springer, 2021, pp. 466–
481.

[24] F. Dupros, F. De Martin, E. Foerster, D. Komatitsch, and J. Roman,
“High-performance finite-element simulations of seismic wave propaga-
tion in three-dimensional nonlinear inelastic geological media,” Parallel
Computing, vol. 36, no. 5-6, pp. 308–325, 2010.

[25] “Ondes3d,” https://bitbucket.org/fdupros/ondes3d/, October 2017.


