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Abstract— Compton imaging is one of the main methods to 
localize radioactive hotspots, which emit high-energy gamma-ray 
photons, above 200 keV.  Most of the Compton imaging systems 
are composed by at least two detection layers or one 3D position 
sensitive detector. In this study, we demonstrate the application of 
a new miniature pixelated single plane detector to Compton 
imaging. In this configuration, we do not have the information on 
interaction depth but we successfully test its ability to perform 
Compton localization by means of comparing different Compton 
reconstruction algorithms applied to real data measured with our 
single plane detection system. 

 Index Terms – Compton imaging, SOE, Bayes, Caliste, 
Compton inversion. 

I. INTRODUCTION

OMPTON imaging systems are used to localize
radioactive sources which emit high-energy gamma-ray
photons. This information is necessary in different 

domains such as nuclear safety, in accidental situations or 
decommissioning contexts [1], in medicine for hadron therapy 
dose monitoring [2] or in space observations [3] for instance. 

These systems rely on the Compton scattering effect, which 
is the main interaction process at work for photons with an 
energy above 200 keV, in most of materials. 

The principle of the method for gamma-ray imaging is to 
apply Compton kinematics [4] to find the possible origin of an 
impinging photon. If we note 𝐸𝐸� the initial energy of a photon,
𝐸𝐸� the energy of the scattered photon, 𝐸𝐸� the energy deposited
by Compton interaction and 𝜃𝜃 the scattering angle, the energy 
and total relativistic momentum conservations lead to the 
formula: 

cos(𝜃𝜃) = 1 −𝑚𝑚�𝑐𝑐�
𝐸𝐸�
𝐸𝐸�𝐸𝐸�

  (eq. 1) 

Where 𝑚𝑚�𝑐𝑐� = 511  keV is the energy mass of an electron at
rest. 

Regarding the reconstruction method, Compton kinematics 
give only the angle 𝜃𝜃 between the direction of the original 
photon and the scattered photon, which gives a cone with an 
angle 𝜃𝜃 of possible origins in 3D. 

Usual Compton imaging systems measure the Compton 
scattering interaction, which deposits 𝐸𝐸�, followed by the
photoelectric interaction of the scattered photon. 
Most of the systems use two detection layers, one scatter layer 
and one absorption layer, which fully absorbs the scattered 
photon [5]. Other systems perform Compton imaging with three 
or more layers, allowing reconstruction even if the final photon 
is not fully absorbed, assuming that the photon is scattered at 
least two times [6]. Finally, 3D-position sensitive systems, 
which are able to localize the interactions in the detector in 3D, 
are also used as Compton camera [7]. 

In this paper, we demonstrate the feasibility of Compton 
imaging with a single plane pixelated miniature detector, 
namely Caliste [8], by exploiting its advantages, especially its 
spectral and spatial resolution through Compton event 
selection. We study different Compton reconstruction 
algorithms to achieve the best localization performance with 
our detector: Direct Back-Projection (DBP) of the cones 
obtained by Compton kinematics, Stochastic Origin Ensemble 
with Resolution Recovery [9] and we introduce a new Bayesian 
approach and a new inversion of the Compton DBP. 
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Other algorithms for Compton reconstruction exist, such as 
Filtered Back-Projection or List-Mode Maximum Likelihood 
Expectation Maximization (LM-MLEM) [10]. LM-MLEM has 
been unsuccessfully tested for our particular detection 
configuration. 

The paper is structured as follows: 
Section II focuses on the detection system properties. Section 
III is dedicated to the Compton events selection. Section IV 
describes the different algorithms we have developed and 
implemented for reconstruction and Section V presents the 
results we get from real data acquisitions. 

II. CALISTE: A MINIATURE CDTE SPECTRO-IMAGER

Caliste is a hybrid CdTe detector module, initially developed 
for high-energy astronomy in space, declined in different 
versions depending on its applications. The version used for this 
study is Caliste-HD [11], [12]. 

Caliste-HD is a pixelated imaging spectrometer made of a 
16×16 pixels array with 625-μm pitch patterned on a 1 cm2 
monolithic CdTe crystal, 1 mm thick. The CdTe crystal is 
placed on top of a 3D electronics package where eight ultra-low 
noise read-out ASICs IDeF-X HD [13] are embedded. In such 
an architecture, each pixel is a miniature and independent 
spectrometer channel. The package size is 10×10×16.5 mm3. 
Caliste-HD performance has an excellent spectral response with 
670 eV FWHM at 60 keV and 4.1 keV at 662 keV for single 
events in the summed spectrum of all pixels, with an energy 
range from 2 keV to 1 MeV for single events. An operating 
temperature of -10°C and an electric field of 300 V/mm are 
appropriate to reach these performances. 

Figure 1 shows a picture of Caliste-HD. 

Figure 1: Caliste-HD 

We use these characteristics to perform Compton imaging 
with this detector integrated in a very compact system, namely 
WIX-HD, with a total weight of 1 kg. WIX-HD includes one 
Caliste-HD module installed into a small vacuum tight 
enclosure connected to a data acquisition electronics system. 
The cooling is realized by miniature thermos-electric Peltier 
coolers. 

 TABLE I 
CHARACTERISTICS OF CALISTE-HD 

PARAMETER CALISTE-HD 

Number of pixels 256 (16×16) 

Pixel Pitch 625 μm 

Crystal thickness 1 mm 

Dimension without 
CdTe 10×10×16.5 mm3 

Power 
Consumption 200 mW 

Energy Range 2 - 1000 keV 

FWHM at 60 keV 670 eV 

FWHM at 662 keV 4.1 keV 

This system is slightly different to the usual Compton 
imaging gamma-ray cameras. It is indeed composed of one 
planar layer of detection without interaction depth 
measurement, which causes disadvantages in terms of angular 
resolution because of the uncertainty on the interaction depth. 
If the two deposited energies are compatible with Compton 
scattering, we are not able to distinguish the Compton scattering 
interaction and the photoelectric absorption at first glance. 
Moreover, the planar configuration of our detection system 
implies that the detector plane is a symmetric plane in the 
reconstructed image, so that the field of view is not 360°×180° 
but 180°×180° instead. 

Like every Compton imaging system, the localization 
resolution is essentially limited by the Doppler broadening 
effect [14].  

However, we use the other advantages of the system, its 
spectroscopic performances and its small size, associated to 
specific algorithms, in order to perform Compton 
reconstruction.  

III. EVENTS SELECTION

The first step of Compton reconstruction is the selection of 
the relevant events to perform the reconstruction. In a 
measurement with Caliste-HD, we first select multiple events, 
which are events, registered in time coincidence into the 
detector. The time between the Compton scattering interaction 
and the second interaction is indeed small compared to the time 
resolution of the detector of 20 μs. 

The second rule is that the two events do not occur in 
neighbouring pixels, so that there is no possible confusion with 
charge sharing caused by a single interaction between the two 
pixels [15]. The events are also accepted if they are recorded in 
two separated clusters of pixels. Figure 2 shows some different 
and typical multiple events detection patterns. 

The position in 2D associated with the events is considered 
to be the center of the pixel, when only single pixel hits are 
detected such as illustrated as type a on Figure 2. Conversely, 

the interaction position is considered to be the centroid of the 
cluster weighted by the energy depositions in the cluster’s 
pixels, see Figure 2, types b and c. For instance, in the case of 
events type c, the centroids of each clusters are calculated 
separately to determine the most probable interaction 
coordinates in the detector array. 

   a  b   c     d 

Figure 2: Multiple event configurations, a: Two pixels separated, accepted 
pattern; b:  One single pixel and one cluster, accepted pattern; c: Two clusters 
separated, accepted pattern; d: One cluster, rejected pattern. 

Figure 3: Single-event spectrum of 137Cs source 

Figure 4: Multiple events sum spectrum of a 137Cs source measurement with 
Caliste-HD 

Once these events are discriminated, we use energy 
conservation to select events with one Compton scattering 
interaction with an energy deposition 𝐸𝐸� and a photoelectric
absorption of the scattered photon 𝐸𝐸�.

𝐸𝐸� = 𝐸𝐸� + 𝐸𝐸�     (eq. 2) 

In our case, we assume having a prior knowledge of 𝐸𝐸� as a
result of a spectral source identification performed on a single-
event spectrum such as shown in Figure 3. This information can 
be obtained with a Bayesian Convolutional Neural Network 
[16], especially in case of small counting statistics. 

Figure 4 shows a spectrum of summed multiple events, 
separated by at least one pixel, for a 137Cs source measurement. 
The 662 keV line corresponds to reconstructed double events 
with a Compton scattering in the detector followed by a 
photoelectric absorption of the scattered photon, so that the total 
energy deposited corresponds to the full energy of the original 
photon.  

The cases of single 662 keV Compton events whose scattered 
photons escape from the detector form the Compton edge at 478 
keV as illustrated in Figure 3. However, as expected in our 
simulations, 662 keV double Compton events whose second 
scattered photon escapes from the detector tend to shift the 
Compton edge towards 500 keV as shown in Figure 5. In that 
case, the maximum reachable energy deposition is 𝐸𝐸��� =
555  keV as expressed in eq. 3. 

𝐸𝐸��� = 𝐸𝐸� −
𝐸𝐸�

1 + 4𝐸𝐸�
𝑚𝑚�𝑐𝑐�

  (eq. 3) 

Whatever the Compton interaction is, single or double, the 
backscatter peak remains at 184 keV for 662 keV photons 
emitted by a 137Cs source (eq. 4).  

𝐸𝐸� =
𝐸𝐸�

1 + 2𝐸𝐸�
𝑚𝑚�𝑐𝑐�

  (eq. 4) 

Figure 5: Energy selection with a 137Cs source measurement on double events 
with Caliste-HD. The shape of the line includes a narrow peak populated with 
double events type a (45% of the events), a larger bump populated with double 
events type b (43%) and an even broader bump populated with double events 
type c (12%) 
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As shown in Figure 5, the line shape at 662 keV is composed 
of three event populations: the narrow peak structure is 
populated with events of type a (45%) summed up with two 
other bumpy populations from events of type b and c. The 
energy of the main line emission of the source is 662 keV. 
Because of the slightly non-linear detector response [17] and 
charge loss due to split events, we use a selection window, 
between 647 keV and 670 keV, which is considerably larger 
than the detector resolution for single events. The selection is 
made in the main peak of the spectrum so that we keep only the 
best events in energy to reduce the influence of the energy 
uncertainty on the computation of the scattering angle 𝜃𝜃. 

When these events are selected, we have to determine the 
order of the two measured interactions, i.e. which of the 
interactions is most likely corresponding to the Compton 
interaction. When one of the energies recorded is below the 
minimal energy of a Compton scattered photon 𝐸𝐸�, this
interaction is associated to the Compton scattering and the other 
one to the photoelectric absorption. 

In this case, we distinguish the two interactions. However, 
the Doppler broadening effect may result in an energy of the 
scattered photon lower than 𝐸𝐸�, which induces an error in the
identification of the interaction order. 

When the two deposited energies are between 𝐸𝐸� and 𝐸𝐸� −
𝐸𝐸�, we are not able to distinguish the two interactions with this
rule. This situation happens when the energy of the original 
photon is above ����

�
= 255.5  keV. One solution is to compute 

the two possibilities accepting that one is necessarily wrong, 
which causes noise in the reconstructed image, making the 
treatment more challenging. Alternatively, considering that the 
probability of photoelectric interaction is lower when the 
energy of the photon is higher, we attribute the photoelectric 
absorption to the lower deposited energy.  

Writing 𝐸𝐸� and 𝐸𝐸� as the two measured energy deposits, the
selection rule is: 

 if 𝐸𝐸� > 𝐸𝐸� − 𝐸𝐸� or 𝐸𝐸� ≤ 𝐸𝐸� <
��
�

, 𝐸𝐸� is attributed to
the photoelectric absorption;

 otherwise, 𝐸𝐸� is attributed to the photoelectric
absorption.

Eventually, the formula for Compton kinematics (eq. 1) can 
be used with different parameters, considering the energy 
conservation (eq. 2). We can use 𝐸𝐸� + 𝐸𝐸� instead of 𝐸𝐸�, 𝐸𝐸� −
𝐸𝐸� instead of 𝐸𝐸� and 𝐸𝐸� − 𝐸𝐸� instead of 𝐸𝐸�. Analyzing the
sensitivity of 𝜃𝜃 in (eq. 1) on the energy measurements 𝐸𝐸� and
𝐸𝐸� according to the different forms of the expression, we
conclude that using 𝐸𝐸� − 𝐸𝐸� instead of 𝐸𝐸� leads to the
minimization of the maximal error on 𝜃𝜃. Thus, we use the 
formula: 

cos(𝜃𝜃) = 1 − 𝑚𝑚�𝑐𝑐�
𝐸𝐸�

(𝐸𝐸� − 𝐸𝐸�)𝐸𝐸�
  (eq. 5) 

IV. RECONSTRUCTION ALGORITHMS

After Compton event selection, we perform Compton 
imaging using different algorithms. In this study, we have 
implemented four algorithms that we explain in this section and 
we evaluate their performance with our detector system on real 
data in Section V. 

A. Direct Back-Projection (DBP)

Also called Simple Back-Projection, this algorithm is the 
direct application of the Compton kinematics. We note 𝐴𝐴, the 
position of the Compton interaction, 𝐵𝐵 the position of the 
photoelectric absorption and 𝜃𝜃 the angle computed according to 
equation 5. We determine the equation of the cone of axis [𝐵𝐵𝐴𝐴), 
of apex 𝐴𝐴 and angle 𝜃𝜃. 

We compute the intersection of the cone with a sphere of 
radius 𝑟𝑟, where 𝑟𝑟 is the expected distance from the detector to 
the source. In most cases the distance is unknown and r is set to 
a sufficiently high value so that we consider an infinite radius 
length comparatively to the detector size. This intersection is 
called the projection of the cone. 

This algorithm is applied to each individual event and the 
cones are added iteratively, so that we get a back-projection 
map in the end. For a point source, this algorithm localizes the 
source at the intersections of the cones, with an uncertainty 
caused by the spatial and spectral resolutions of the detector.  

However, when two point-sources or more with the same 
emission energy 𝐸𝐸� are present in the field of view, the cones
created by one source turns to be a noise source for the other 
sources, wherever they are on the reconstructed image. The 
problem is naturally more important when the sources are close 
to each other, as we will see in the results in Section V. 
Consequently, more advanced algorithms are required to be 
able to localize and separate multiple point sources emitting at 
the same energy. 

B. Stochastic Origin Ensemble with Resolution Recovery
(SOE-RR)

Stochastic Origin Ensemble [18] is a Monte-Carlo Markov 
Chain algorithm applied to Compton imaging. It associates each 
event to a pixel of the reconstructed image. For each iteration, 
each event might move to another pixel according to a transition 
probability. 

For initialization of this iterative method, one particular 
azimuthal direction on the back-projected cone is randomly 
selected. The selection can be uniform along the projection of 
the cone or it is also possible to use a prior distribution, based 
on a DBP calculation for instance. 

A density map 𝑑𝑑(𝑥𝑥) is then computed on the reconstructed 
image, counting the number of events attributed to each pixel 
𝑥𝑥. 

At each iteration, for each event 𝑖𝑖, another position is 
randomly selected on the back-projected cone. 𝑛𝑛� being the new

selected position, 𝑜𝑜�  the old position, the transition probability
is: 

𝑝𝑝� = min �1;
(𝑑𝑑(𝑛𝑛�) + 1)�(��)��(𝑑𝑑(𝑜𝑜�) − 1)�(��)��

𝑑𝑑(𝑛𝑛�)�(��)𝑑𝑑(𝑜𝑜�)�(��)
�  (eq. 6) 

In eq. 6, if the detection efficiency of each pixel is known, 
we can multiply this term by the ratio of the efficiency of the 
new and the old pixel. 

After a sufficient number of iterations, depending on the 
counting statistics, the sources positions, and the number of 
sources in the field of view, the algorithm converges to a 
stationary state, which gives the most probable positions of the 
sources. 

The SOE version with Resolution Recovery [9] constructs 
the back-projection cone randomly according to the spatial and 
spectral resolutions of the detector. In this work, we consider 
only the spatial resolution: for each interaction, we pick up a 
position randomly around the estimated position of the event, 
uniformly in a size of one detector pixel, and we randomly 
select the interaction depth, uniformly in the detector volume. 
The measured energy is kept as measured, without any 
modification. 

Finally, all the events are processed  at once, by parallelizing 
the computation in order to accelerate the calculation as many 
iteration are needed to converge, typically 20 000). 

C. Bayesian algorithm

We propose a new application of a Bayesian algorithm [19] 
to Compton reconstruction. The idea of this algorithm is to draw 
each cone by accumulating the information thanks to the 
previous events and by applying Bayes’ theorem. 

On a pixelated reconstructed image, we attribute a counter 
𝑘𝑘(𝑗𝑗) to each pixel 𝑗𝑗, firstly initialized to 0. We also attribute a 
prior probability 𝑝𝑝(𝑗𝑗) of the origin of the photons, which could 
be either uniformly initialized or initialized with a prior 
knowledge depending on the geometry of the detector. For 
instance, in the case of Caliste and its direct environment, we 
use a uniform prior in the field of view of the detector. 

For each event 𝑖𝑖, we compute the following posterior 
probability for each pixel 𝑗𝑗 to be the origin of this measurement 
𝑖𝑖 thanks to Bayes’ theorem: 

𝑝𝑝(𝑗𝑗|𝑖𝑖) =
𝑝𝑝(𝑗𝑗)𝑝𝑝(𝑖𝑖|𝑗𝑗)

𝑝𝑝(𝑖𝑖)
  (eq. 7) 

Where 𝑝𝑝(𝑗𝑗) is the current prior probability of observing an 
event originated from the pixel 𝑗𝑗. 

 𝑝𝑝(𝑖𝑖|𝑗𝑗) is the probability to observe the event 𝑖𝑖 among all of 
the observable Compton events originated from the pixel 𝑗𝑗. The 
rigorous computation of this probability requires a heavy 

simulation of the detector response in terms of Compton events 
for each position of the reconstructed image. With this 
approach, a histogram of all recorded events is made, 
considering the positions of the first and the second interaction 
and the energy deposited in the second interaction. The bin is 
defined according to the detector configuration. For instance, a 
bin of one pixel for the two interaction positions and 1 keV in 
energy can be used. 

However, this simulation is very long to compute to get a 
sufficient number of examples. For 𝐸𝐸� = 662  keV, 𝐸𝐸� − 𝐸𝐸� =
478  𝑘𝑘𝑘𝑘𝑘𝑘 and considering that neighbouring interactions are 
excluded, the number of bins required is: 

256 × (256 − 9) × 478 = 30 224 896 
This is the order of magnitude of the number of events to 

simulate in order to get a fair approximation of 𝑝𝑝(𝑖𝑖|𝑗𝑗). 
Moreover, this simulation must be performed for every pixel 𝑗𝑗, 
i.e., 2025 times for a pixelization of 4°×4° in a field of view of
180°×180°.
 Consequently, we chose to approximate 𝑝𝑝(𝑖𝑖|𝑗𝑗) by 
considering the function 𝑓𝑓(𝑖𝑖|𝑗𝑗), which is chosen equal to 1 in 
the pixels 𝑗𝑗 belonging to the cone defined by 𝑖𝑖 and equal to 0 
for the other pixels. This approach is similar to the 
approximation made in some implementations of LM-MLEM 
[10]. 

In eq. 7, 𝑝𝑝(𝑖𝑖) is the probability to observe the event 𝑖𝑖. Its 
computation is not necessary by using the rule that ∑ 𝑝𝑝(𝑗𝑗|𝑖𝑖)� =
1. 

A normalization constant 𝐶𝐶 is computed as: 

𝐶𝐶 = �𝑝𝑝(𝑗𝑗)𝑓𝑓(𝑖𝑖|𝑗𝑗)
�

     (eq. 8) 

Consequently, 𝑝𝑝(𝑗𝑗|𝑖𝑖) is computed as: 

𝑝𝑝(𝑗𝑗|𝑖𝑖) =
𝑝𝑝(𝑗𝑗)𝑓𝑓(𝑖𝑖|𝑗𝑗)

𝐶𝐶
  (eq. 9) 

Then, the counter 𝑘𝑘 is updated as: 𝑘𝑘(𝑗𝑗) ≔ 𝑘𝑘(𝑗𝑗) + 𝑝𝑝(𝑗𝑗|𝑖𝑖). 

We update the prior probability with: 

𝑝𝑝(𝑗𝑗) =
𝑘𝑘(𝑗𝑗)

∑ 𝑘𝑘(𝑗𝑗�)��
  (eq. 10) 

This update is made after accumulating some events to avoid 
that the first events put a probability of 0 to some pixels. We 
empirically chose to update 𝑝𝑝(𝑗𝑗) after processing 10 % of the 
total number of events. 

After processing all events, 𝑝𝑝(𝑗𝑗) gives a proportion map of the 
presence of radioactive sources. 

Reference [19] gives more details on possible variations of 
this Bayesian based algorithm.  
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As shown in Figure 5, the line shape at 662 keV is composed 
of three event populations: the narrow peak structure is 
populated with events of type a (45%) summed up with two 
other bumpy populations from events of type b and c. The 
energy of the main line emission of the source is 662 keV. 
Because of the slightly non-linear detector response [17] and 
charge loss due to split events, we use a selection window, 
between 647 keV and 670 keV, which is considerably larger 
than the detector resolution for single events. The selection is 
made in the main peak of the spectrum so that we keep only the 
best events in energy to reduce the influence of the energy 
uncertainty on the computation of the scattering angle 𝜃𝜃. 

When these events are selected, we have to determine the 
order of the two measured interactions, i.e. which of the 
interactions is most likely corresponding to the Compton 
interaction. When one of the energies recorded is below the 
minimal energy of a Compton scattered photon 𝐸𝐸�, this
interaction is associated to the Compton scattering and the other 
one to the photoelectric absorption. 

In this case, we distinguish the two interactions. However, 
the Doppler broadening effect may result in an energy of the 
scattered photon lower than 𝐸𝐸�, which induces an error in the
identification of the interaction order. 

When the two deposited energies are between 𝐸𝐸� and 𝐸𝐸� −
𝐸𝐸�, we are not able to distinguish the two interactions with this
rule. This situation happens when the energy of the original 
photon is above ����

�
= 255.5  keV. One solution is to compute 

the two possibilities accepting that one is necessarily wrong, 
which causes noise in the reconstructed image, making the 
treatment more challenging. Alternatively, considering that the 
probability of photoelectric interaction is lower when the 
energy of the photon is higher, we attribute the photoelectric 
absorption to the lower deposited energy.  

Writing 𝐸𝐸� and 𝐸𝐸� as the two measured energy deposits, the
selection rule is: 

 if 𝐸𝐸� > 𝐸𝐸� − 𝐸𝐸� or 𝐸𝐸� ≤ 𝐸𝐸� <
��
�

, 𝐸𝐸� is attributed to
the photoelectric absorption;

 otherwise, 𝐸𝐸� is attributed to the photoelectric
absorption.

Eventually, the formula for Compton kinematics (eq. 1) can 
be used with different parameters, considering the energy 
conservation (eq. 2). We can use 𝐸𝐸� + 𝐸𝐸� instead of 𝐸𝐸�, 𝐸𝐸� −
𝐸𝐸� instead of 𝐸𝐸� and 𝐸𝐸� − 𝐸𝐸� instead of 𝐸𝐸�. Analyzing the
sensitivity of 𝜃𝜃 in (eq. 1) on the energy measurements 𝐸𝐸� and
𝐸𝐸� according to the different forms of the expression, we
conclude that using 𝐸𝐸� − 𝐸𝐸� instead of 𝐸𝐸� leads to the
minimization of the maximal error on 𝜃𝜃. Thus, we use the 
formula: 

cos(𝜃𝜃) = 1 − 𝑚𝑚�𝑐𝑐�
𝐸𝐸�

(𝐸𝐸� − 𝐸𝐸�)𝐸𝐸�
  (eq. 5) 

IV. RECONSTRUCTION ALGORITHMS

After Compton event selection, we perform Compton 
imaging using different algorithms. In this study, we have 
implemented four algorithms that we explain in this section and 
we evaluate their performance with our detector system on real 
data in Section V. 

A. Direct Back-Projection (DBP)

Also called Simple Back-Projection, this algorithm is the 
direct application of the Compton kinematics. We note 𝐴𝐴, the 
position of the Compton interaction, 𝐵𝐵 the position of the 
photoelectric absorption and 𝜃𝜃 the angle computed according to 
equation 5. We determine the equation of the cone of axis [𝐵𝐵𝐴𝐴), 
of apex 𝐴𝐴 and angle 𝜃𝜃. 

We compute the intersection of the cone with a sphere of 
radius 𝑟𝑟, where 𝑟𝑟 is the expected distance from the detector to 
the source. In most cases the distance is unknown and r is set to 
a sufficiently high value so that we consider an infinite radius 
length comparatively to the detector size. This intersection is 
called the projection of the cone. 

This algorithm is applied to each individual event and the 
cones are added iteratively, so that we get a back-projection 
map in the end. For a point source, this algorithm localizes the 
source at the intersections of the cones, with an uncertainty 
caused by the spatial and spectral resolutions of the detector.  

However, when two point-sources or more with the same 
emission energy 𝐸𝐸� are present in the field of view, the cones
created by one source turns to be a noise source for the other 
sources, wherever they are on the reconstructed image. The 
problem is naturally more important when the sources are close 
to each other, as we will see in the results in Section V. 
Consequently, more advanced algorithms are required to be 
able to localize and separate multiple point sources emitting at 
the same energy. 

B. Stochastic Origin Ensemble with Resolution Recovery
(SOE-RR)

Stochastic Origin Ensemble [18] is a Monte-Carlo Markov 
Chain algorithm applied to Compton imaging. It associates each 
event to a pixel of the reconstructed image. For each iteration, 
each event might move to another pixel according to a transition 
probability. 

For initialization of this iterative method, one particular 
azimuthal direction on the back-projected cone is randomly 
selected. The selection can be uniform along the projection of 
the cone or it is also possible to use a prior distribution, based 
on a DBP calculation for instance. 

A density map 𝑑𝑑(𝑥𝑥) is then computed on the reconstructed 
image, counting the number of events attributed to each pixel 
𝑥𝑥. 

At each iteration, for each event 𝑖𝑖, another position is 
randomly selected on the back-projected cone. 𝑛𝑛� being the new

selected position, 𝑜𝑜�  the old position, the transition probability
is: 

𝑝𝑝� = min �1;
(𝑑𝑑(𝑛𝑛�) + 1)�(��)��(𝑑𝑑(𝑜𝑜�) − 1)�(��)��

𝑑𝑑(𝑛𝑛�)�(��)𝑑𝑑(𝑜𝑜�)�(��)
�  (eq. 6) 

In eq. 6, if the detection efficiency of each pixel is known, 
we can multiply this term by the ratio of the efficiency of the 
new and the old pixel. 

After a sufficient number of iterations, depending on the 
counting statistics, the sources positions, and the number of 
sources in the field of view, the algorithm converges to a 
stationary state, which gives the most probable positions of the 
sources. 

The SOE version with Resolution Recovery [9] constructs 
the back-projection cone randomly according to the spatial and 
spectral resolutions of the detector. In this work, we consider 
only the spatial resolution: for each interaction, we pick up a 
position randomly around the estimated position of the event, 
uniformly in a size of one detector pixel, and we randomly 
select the interaction depth, uniformly in the detector volume. 
The measured energy is kept as measured, without any 
modification. 

Finally, all the events are processed  at once, by parallelizing 
the computation in order to accelerate the calculation as many 
iteration are needed to converge, typically 20 000). 

C. Bayesian algorithm

We propose a new application of a Bayesian algorithm [19] 
to Compton reconstruction. The idea of this algorithm is to draw 
each cone by accumulating the information thanks to the 
previous events and by applying Bayes’ theorem. 

On a pixelated reconstructed image, we attribute a counter 
𝑘𝑘(𝑗𝑗) to each pixel 𝑗𝑗, firstly initialized to 0. We also attribute a 
prior probability 𝑝𝑝(𝑗𝑗) of the origin of the photons, which could 
be either uniformly initialized or initialized with a prior 
knowledge depending on the geometry of the detector. For 
instance, in the case of Caliste and its direct environment, we 
use a uniform prior in the field of view of the detector. 

For each event 𝑖𝑖, we compute the following posterior 
probability for each pixel 𝑗𝑗 to be the origin of this measurement 
𝑖𝑖 thanks to Bayes’ theorem: 

𝑝𝑝(𝑗𝑗|𝑖𝑖) =
𝑝𝑝(𝑗𝑗)𝑝𝑝(𝑖𝑖|𝑗𝑗)

𝑝𝑝(𝑖𝑖)
  (eq. 7) 

Where 𝑝𝑝(𝑗𝑗) is the current prior probability of observing an 
event originated from the pixel 𝑗𝑗. 

 𝑝𝑝(𝑖𝑖|𝑗𝑗) is the probability to observe the event 𝑖𝑖 among all of 
the observable Compton events originated from the pixel 𝑗𝑗. The 
rigorous computation of this probability requires a heavy 

simulation of the detector response in terms of Compton events 
for each position of the reconstructed image. With this 
approach, a histogram of all recorded events is made, 
considering the positions of the first and the second interaction 
and the energy deposited in the second interaction. The bin is 
defined according to the detector configuration. For instance, a 
bin of one pixel for the two interaction positions and 1 keV in 
energy can be used. 

However, this simulation is very long to compute to get a 
sufficient number of examples. For 𝐸𝐸� = 662  keV, 𝐸𝐸� − 𝐸𝐸� =
478  𝑘𝑘𝑘𝑘𝑘𝑘 and considering that neighbouring interactions are 
excluded, the number of bins required is: 

256 × (256 − 9) × 478 = 30 224 896 
This is the order of magnitude of the number of events to 

simulate in order to get a fair approximation of 𝑝𝑝(𝑖𝑖|𝑗𝑗). 
Moreover, this simulation must be performed for every pixel 𝑗𝑗, 
i.e., 2025 times for a pixelization of 4°×4° in a field of view of
180°×180°.
 Consequently, we chose to approximate 𝑝𝑝(𝑖𝑖|𝑗𝑗) by 
considering the function 𝑓𝑓(𝑖𝑖|𝑗𝑗), which is chosen equal to 1 in 
the pixels 𝑗𝑗 belonging to the cone defined by 𝑖𝑖 and equal to 0 
for the other pixels. This approach is similar to the 
approximation made in some implementations of LM-MLEM 
[10]. 

In eq. 7, 𝑝𝑝(𝑖𝑖) is the probability to observe the event 𝑖𝑖. Its 
computation is not necessary by using the rule that ∑ 𝑝𝑝(𝑗𝑗|𝑖𝑖)� =
1. 

A normalization constant 𝐶𝐶 is computed as: 

𝐶𝐶 = �𝑝𝑝(𝑗𝑗)𝑓𝑓(𝑖𝑖|𝑗𝑗)
�

     (eq. 8) 

Consequently, 𝑝𝑝(𝑗𝑗|𝑖𝑖) is computed as: 

𝑝𝑝(𝑗𝑗|𝑖𝑖) =
𝑝𝑝(𝑗𝑗)𝑓𝑓(𝑖𝑖|𝑗𝑗)

𝐶𝐶
  (eq. 9) 

Then, the counter 𝑘𝑘 is updated as: 𝑘𝑘(𝑗𝑗) ≔ 𝑘𝑘(𝑗𝑗) + 𝑝𝑝(𝑗𝑗|𝑖𝑖). 

We update the prior probability with: 

𝑝𝑝(𝑗𝑗) =
𝑘𝑘(𝑗𝑗)

∑ 𝑘𝑘(𝑗𝑗�)��
  (eq. 10) 

This update is made after accumulating some events to avoid 
that the first events put a probability of 0 to some pixels. We 
empirically chose to update 𝑝𝑝(𝑗𝑗) after processing 10 % of the 
total number of events. 

After processing all events, 𝑝𝑝(𝑗𝑗) gives a proportion map of the 
presence of radioactive sources. 

Reference [19] gives more details on possible variations of 
this Bayesian based algorithm.  
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D. Compton inversion

The last algorithm we propose is a Compton inversion 
algorithm of the image initially computed by a Direct Back-
Projection method. 

A passing matrix 𝑀𝑀 is obtained by simulating the presence 
of a source in each pixel of the source space image, and 
applying the DBP to these simulated data, so that we derive, at 
each possible position in space, the expected DBP pixelated 
with the same resolution as the source space image.  

The line 𝑗𝑗 of 𝑀𝑀 contains the simulated DBP, in flattened data, 
of a source placed in the pixel 𝑗𝑗 of the source space image. 

If we note 𝑌𝑌, the DBP of a real acquisition and 𝑋𝑋, the 
expected intensities of the source in each pixel of the source 
space image, the equation to be solved is written as: 

𝑌𝑌 = 𝑀𝑀𝑋𝑋     (eq. 11) 

𝑀𝑀 is a matrix with high dimensions, of a typical size of 81002 
for a field of view of 180°×180° with a discretization of 2°×2°. 
Its inversion is not feasible; therefore, we may approach an 
optimal solution of this inverse problem minimizing instead: 

𝐿𝐿(𝑋𝑋) = ‖𝑌𝑌 − 𝑀𝑀𝑋𝑋‖��   (eq. 12) 

The minimization process is constrained to positive elements 
of 𝑋𝑋. A gradient descent algorithm computes this minimization, 
since this is a convex problem. 

Once the optimal solution 𝑋𝑋 is found, we apply a TV-
regularization [20], which is used in Compton imaging with 
other algorithms [21], in order to denoise the source space 
image by minimizing ‖∇𝑋𝑋‖�.

V. TESTS AND PERFORMANCES

A. Test configuration

We take real data with Caliste-HD to apply and test the 
algorithms. A 1.7 MBq 137Cs source is placed in a distance of 
30 cm from the detector at different longitudes and latitudes. 
The corresponding dose rate is ~1.4 μSv/h at the detector level. 

Two separate measurements are acquired: one measurement 
with a source directly placed on axis, at longitude 𝜑𝜑 = 0° and 
latitude 𝜃𝜃 = 0° for a total exposure time of 35 h. The 
corresponding count rate at Caliste level is 50 counts/s/cm2.  A 
second measurement with the source moved to the right at 
longitude 𝜑𝜑 = 10° and 𝜃𝜃 = 0° for a total exposure time of 57 
h. Count rate is the same. The coordinates system is explained
on Figure 6.

Figure 6: Spherical coordinates system - The square represents the detector 

From these data, we can build a third augmented data set 
combining randomly all events from the two independent 
measurements into a single list.  

The count rate being low, (50 counts/s at 30 cm), the chance 
of spurious double events from the two sources - that we cannot 
record combining the two event lists - is considered to be 
negligible (<< 1 count/s). This way, we obtain a representative 
data set that we would have recorded with two 137Cs sources 
simultaneously installed in the field of view the detector. 
Choosing the number of events in the two lists, allows to 
virtually modulate the sources relative intensities. It also allows 
to test our methods with an arbitrary number of sources in the 
field of view even having only one source available in the lab. 

 In the results section, we study the Compton reconstruction 
processed on the measurement with the source at coordinates 
(10°,0°) and the   “augmented   data   set” with two sources at 
coordinates (0°,0°) and (10°,0°). Other configurations have 
been successfully tested with similar performance of the 
algorithms. 

The algorithms are applied with a field of view of 
180°×180°. To help the reader to see the results, the images of 
Figure 7A-D are zoomed in the region of interest, between -30° 
and 30° for the longitude and between -15° and 15° for the 
latitude. Based on experience, we apply a discretization of 
2°×2° for DBP and Compton inversion, 4°×4° for the Bayesian 
algorithm and 5°×5° for SOE-RR. We apply a spline 
interpolation for the representation on the reconstructed image. 
SOE-RR is performed with 20 000 iterations. 

B. Results

The total number of detected events with the acquisition at 
(10°,0°) is 5 423 829.  Applying the energy selection according 
to the method described in section III, 8119 Compton events are 
extracted, corresponding to 0.15 % of the total number of 
recorded events. 

With the two sources mix augmented data set, the total 
number of events is 8 614 247 and 13 076 Compton events are 
extracted, also corresponding to 0.15 % of the events. 

Figure 7A: Results with DBP 

Figure 7B: Results with SOE-RR 

Figure 7C: Results with Bayesian algorithm 

Figure 7D: Results with Compton inversion 

Table II: Algorithms performance: computation time, 
angular resolution FWHM for one source at (10°,0°) and 
separating power for two sources separated by 10°. 

 TABLE II 
PERFORMANCES OF THE ALGORITHMS 

PARAMETER DBP SOE-
RR 

BAYESIAN 
ALGORITHM 

COMPTON 
INVERSION 

FWHM one source 
(10°,0°) 37° 7,9° 8,6° 14,5° 

Separation of two 
sources (10°) No Yes Yes No 

Computation time 
(4500 events) 

12 s ± 
1 s 

110 s ± 
2 s 12 s ± 1 s 

65 s ± 2 s (12 s 
DBP + 53 s 

gradient descent) 
Complexity 

according the 
number of events 

Linear Linear Linear 
Linear (DBP) + 

Constant (gradient 
descent) 

Computation time is evaluated with the following hardware 
setup: Intel® Xeon® Silver 4114, CPU @ 2,20 GHz. The 
algorithms are implemented in Python using NumPy library. 

C. Comments

The Direct Back-Projection algorithm shows the worst 
performances in terms of angular resolution. However, it shows 
the fastest computation time, 12 s to process 4500 events. 

SOE-RR shows a way better localization performance, 
especially with the power to separate two sources 10° apart. 
However, the main limitation is related to the computation time, 
nine to ten times slower than DBP. Moreover, as the number of 
iterations to compute is not pre-determined, the computation 
time depends on the number of iterations. Nevertheless, this 

algorithm considers the uncertainties in the measurement 
thanks to the Resolution Recovery version, which is important 
to get a more robust result.  

The Bayesian algorithm shows intermediate performances in 
terms of localization. On Figure 7C right, the left source is not 
localized at the exact position: this is a discretization effect in 
the 4°×4° pixelization reconstructed image. In fact, the 
probability of presence is higher in the neighbouring pixel of 
the real position of the source. The two sources are however 
well separated, with a quick computation time similar to the 
Direct Back-Projection algorithm. Actually, the number of 
operations is the same as in DBP, since the list of events is 
scanned only once. 

We conclude here that SOE-RR is the most promising 
algorithm to solve our Compton reconstruction problem with a 
single layer Compton imager as long as computation time is not 
an issue. Our Bayesian algorithm gives a fast and relatively 
accurate result, possibly used in other methods as a better prior 
than the Direct Back-Projection reconstruction. 

Compton inversion algorithm is less convincing than SOE-
RR and the Bayesian algorithm for the detection of point 
sources. However, a preliminary study based on simulations 
shows that this algorithm will reach better performances in the 
case of extended sources. 

VI. CONCLUSION AND OUTLOOKS

Compton imaging can be performed with a single plane 
miniature pixelated detector with fine pitch and high energy 
resolution. It requires a particular attention on the selection of 
the Compton events, given the configuration and the 
characteristics of the Caliste-HD detector, followed by a 
reconstruction algorithm. We tested four algorithms on real data 
and demonstrated that SOE-RR and a new Bayesian algorithm, 
are able to separate two sources of 137Cs separated by only10° 
which a classical Direct Back Projection cannot do. 

In forthcoming studies, we envision to further develop the 
advanced SOE-RR algorithms, noticeably including the energy 
resolution and iterative event selection. As computation time 
might be a severe limitation for use in real time applications, 
we will cascade several algorithms using one as a prior for the 
next. An evaluation of the sensitivity of the system must be 
carried out, since we use here the whole statistics of acquired 
photons leading to more than 8000 Compton events, but it is 
important to evaluate the necessary number of measured 
Compton events to perform the reconstruction algorithms. In 
addition, the case of extended sources will be studied, with real 
data acquisition, in order to evaluate the capability of our 
system and algorithms to image extended sources. 
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D. Compton inversion

The last algorithm we propose is a Compton inversion 
algorithm of the image initially computed by a Direct Back-
Projection method. 

A passing matrix 𝑀𝑀 is obtained by simulating the presence 
of a source in each pixel of the source space image, and 
applying the DBP to these simulated data, so that we derive, at 
each possible position in space, the expected DBP pixelated 
with the same resolution as the source space image.  

The line 𝑗𝑗 of 𝑀𝑀 contains the simulated DBP, in flattened data, 
of a source placed in the pixel 𝑗𝑗 of the source space image. 

If we note 𝑌𝑌, the DBP of a real acquisition and 𝑋𝑋, the 
expected intensities of the source in each pixel of the source 
space image, the equation to be solved is written as: 

𝑌𝑌 = 𝑀𝑀𝑋𝑋     (eq. 11) 

𝑀𝑀 is a matrix with high dimensions, of a typical size of 81002 
for a field of view of 180°×180° with a discretization of 2°×2°. 
Its inversion is not feasible; therefore, we may approach an 
optimal solution of this inverse problem minimizing instead: 

𝐿𝐿(𝑋𝑋) = ‖𝑌𝑌 − 𝑀𝑀𝑋𝑋‖��   (eq. 12) 

The minimization process is constrained to positive elements 
of 𝑋𝑋. A gradient descent algorithm computes this minimization, 
since this is a convex problem. 

Once the optimal solution 𝑋𝑋 is found, we apply a TV-
regularization [20], which is used in Compton imaging with 
other algorithms [21], in order to denoise the source space 
image by minimizing ‖∇𝑋𝑋‖�.

V. TESTS AND PERFORMANCES

A. Test configuration

We take real data with Caliste-HD to apply and test the 
algorithms. A 1.7 MBq 137Cs source is placed in a distance of 
30 cm from the detector at different longitudes and latitudes. 
The corresponding dose rate is ~1.4 μSv/h at the detector level. 

Two separate measurements are acquired: one measurement 
with a source directly placed on axis, at longitude 𝜑𝜑 = 0° and 
latitude 𝜃𝜃 = 0° for a total exposure time of 35 h. The 
corresponding count rate at Caliste level is 50 counts/s/cm2.  A 
second measurement with the source moved to the right at 
longitude 𝜑𝜑 = 10° and 𝜃𝜃 = 0° for a total exposure time of 57 
h. Count rate is the same. The coordinates system is explained
on Figure 6.

Figure 6: Spherical coordinates system - The square represents the detector 

From these data, we can build a third augmented data set 
combining randomly all events from the two independent 
measurements into a single list.  

The count rate being low, (50 counts/s at 30 cm), the chance 
of spurious double events from the two sources - that we cannot 
record combining the two event lists - is considered to be 
negligible (<< 1 count/s). This way, we obtain a representative 
data set that we would have recorded with two 137Cs sources 
simultaneously installed in the field of view the detector. 
Choosing the number of events in the two lists, allows to 
virtually modulate the sources relative intensities. It also allows 
to test our methods with an arbitrary number of sources in the 
field of view even having only one source available in the lab. 

 In the results section, we study the Compton reconstruction 
processed on the measurement with the source at coordinates 
(10°,0°) and the   “augmented   data   set” with two sources at 
coordinates (0°,0°) and (10°,0°). Other configurations have 
been successfully tested with similar performance of the 
algorithms. 

The algorithms are applied with a field of view of 
180°×180°. To help the reader to see the results, the images of 
Figure 7A-D are zoomed in the region of interest, between -30° 
and 30° for the longitude and between -15° and 15° for the 
latitude. Based on experience, we apply a discretization of 
2°×2° for DBP and Compton inversion, 4°×4° for the Bayesian 
algorithm and 5°×5° for SOE-RR. We apply a spline 
interpolation for the representation on the reconstructed image. 
SOE-RR is performed with 20 000 iterations. 

B. Results

The total number of detected events with the acquisition at 
(10°,0°) is 5 423 829.  Applying the energy selection according 
to the method described in section III, 8119 Compton events are 
extracted, corresponding to 0.15 % of the total number of 
recorded events. 

With the two sources mix augmented data set, the total 
number of events is 8 614 247 and 13 076 Compton events are 
extracted, also corresponding to 0.15 % of the events. 

Figure 7A: Results with DBP 

Figure 7B: Results with SOE-RR 

Figure 7C: Results with Bayesian algorithm 

Figure 7D: Results with Compton inversion 

Table II: Algorithms performance: computation time, 
angular resolution FWHM for one source at (10°,0°) and 
separating power for two sources separated by 10°. 

 TABLE II 
PERFORMANCES OF THE ALGORITHMS 

PARAMETER DBP SOE-
RR 

BAYESIAN 
ALGORITHM 

COMPTON 
INVERSION 

FWHM one source 
(10°,0°) 37° 7,9° 8,6° 14,5° 

Separation of two 
sources (10°) No Yes Yes No 

Computation time 
(4500 events) 

12 s ± 
1 s 

110 s ± 
2 s 12 s ± 1 s 

65 s ± 2 s (12 s 
DBP + 53 s 

gradient descent) 
Complexity 

according the 
number of events 

Linear Linear Linear 
Linear (DBP) + 

Constant (gradient 
descent) 

Computation time is evaluated with the following hardware 
setup: Intel® Xeon® Silver 4114, CPU @ 2,20 GHz. The 
algorithms are implemented in Python using NumPy library. 

C. Comments

The Direct Back-Projection algorithm shows the worst 
performances in terms of angular resolution. However, it shows 
the fastest computation time, 12 s to process 4500 events. 

SOE-RR shows a way better localization performance, 
especially with the power to separate two sources 10° apart. 
However, the main limitation is related to the computation time, 
nine to ten times slower than DBP. Moreover, as the number of 
iterations to compute is not pre-determined, the computation 
time depends on the number of iterations. Nevertheless, this 

algorithm considers the uncertainties in the measurement 
thanks to the Resolution Recovery version, which is important 
to get a more robust result.  

The Bayesian algorithm shows intermediate performances in 
terms of localization. On Figure 7C right, the left source is not 
localized at the exact position: this is a discretization effect in 
the 4°×4° pixelization reconstructed image. In fact, the 
probability of presence is higher in the neighbouring pixel of 
the real position of the source. The two sources are however 
well separated, with a quick computation time similar to the 
Direct Back-Projection algorithm. Actually, the number of 
operations is the same as in DBP, since the list of events is 
scanned only once. 

We conclude here that SOE-RR is the most promising 
algorithm to solve our Compton reconstruction problem with a 
single layer Compton imager as long as computation time is not 
an issue. Our Bayesian algorithm gives a fast and relatively 
accurate result, possibly used in other methods as a better prior 
than the Direct Back-Projection reconstruction. 

Compton inversion algorithm is less convincing than SOE-
RR and the Bayesian algorithm for the detection of point 
sources. However, a preliminary study based on simulations 
shows that this algorithm will reach better performances in the 
case of extended sources. 

VI. CONCLUSION AND OUTLOOKS

Compton imaging can be performed with a single plane 
miniature pixelated detector with fine pitch and high energy 
resolution. It requires a particular attention on the selection of 
the Compton events, given the configuration and the 
characteristics of the Caliste-HD detector, followed by a 
reconstruction algorithm. We tested four algorithms on real data 
and demonstrated that SOE-RR and a new Bayesian algorithm, 
are able to separate two sources of 137Cs separated by only10° 
which a classical Direct Back Projection cannot do. 

In forthcoming studies, we envision to further develop the 
advanced SOE-RR algorithms, noticeably including the energy 
resolution and iterative event selection. As computation time 
might be a severe limitation for use in real time applications, 
we will cascade several algorithms using one as a prior for the 
next. An evaluation of the sensitivity of the system must be 
carried out, since we use here the whole statistics of acquired 
photons leading to more than 8000 Compton events, but it is 
important to evaluate the necessary number of measured 
Compton events to perform the reconstruction algorithms. In 
addition, the case of extended sources will be studied, with real 
data acquisition, in order to evaluate the capability of our 
system and algorithms to image extended sources. 
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