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Abstract—Many techniques have been developed for spectral
analysis and reconstruction of an analog signal based on a
nonuniform set of samples. But, to the best of our knowledge,
none is specifically adapted to Level-Crossing Analog-to-Digital
Converters (LC-ADC). We propose in this article a reconstruction
algorithm that takes advantage of the intrinsic quantification
of the LC-ADC samples amplitudes to dramatically minimize
the stability requirements of the analog levels and improve the
converter global accuracy and resolution. We show in particular
that spectral analysis is possible even if the levels amplitudes are
unknown: they can be blindly estimated, jointly with the signal
spectrum, up to harmless indeterminations of scale and offset.
Simulations on synthetic signals demonstrate that the proposed
algorithm outperforms the existing techniques.

Index Terms—Level-Crossing Analog-to-Digital Conversion,
Spectral Analysis, Nonuniform Sampling, Reconstruction, Cat-
egorical and Mixed Data, Subspaces Intersection, Principal
Angles, Singular Value Decomposition.

I. INTRODUCTION

A. Nonuniform Sampling and Reconstruction

Let us denote x(t) the analog signal of interest whose
spectral support is assumed limited to the frequency band
[B1, B2], B1 > 0 (resp. B1 = 0) if x is bandpass-limited
(resp. low-pass). Any nonuniform sampling technique provides
a set x(τ1), x(τ2), . . . , x(τK) of samples of x(t) recorded on
the nonuniform time grid τ1, τ2, . . . , τK , which means that
τk − τk−1 depends on k with 1 < k ≤ K. Without loss
of generality, we assume that 0 ≤ τ1 < τ2 < . . . < τK ≤ T
where T is the length of the observation interval of time [0, T ].

In many applications nonuniform samples sets cannot be
directly used and must be digitally post-processed, or re-
constructed. The reconstruction consists in two steps: first
estimating the signal spectrum and, second computing a new
uniformly sampled set { x(lTs) | 0 ≤ l ≤ bT/Tsc }, 1/Ts
being the new reconstruction sampling frequency. This article
is mainly devoted to the spectral estimation of nonuniformly
sampled band-limited analog signals. The new samples com-
putation step is straightforward (and optional in some applica-
tions) and it will only be used here to illustrate the algorithms
performance.

The author thanks Marine Depecker-Quéchon for fruitful discussion on
mixed data that has triggered this research.

B. Spectral Analysis on a finite interval of time

The signal x(t) being observed only in the interval [0, T ],
we consider its T -periodic version denoted xp(t) and defined
by xp(t)

def
= x (t− bt/T c × T ). The xp(t) has a discrete

spectrum and can be represented by its corresponding Fourier
series. But it must be noted that xp(t) and x(t) spectra
are not exactly equal. As a matter of fact, the periodization
yields a discrete spectrum at the price of a convolution by a
sinc function of width 1/T which widens the band-limited
spectrum of x(t).

Nevertheless, this distortion can be reduced by choosing T
large enough so that 1/T is small compared to B1 (if B1 > 0)
and B2. In addition, the spectrum widening can be partially
taken into account by increasing B2 by a small multiple of 1/T
and decreasing B1, when B1 > 0, by the same quantity. The
difference between x and xp spectra will be neglected in the
rest of this article like in [2], [5] for instance, and the notation
xp will not be used any further. To summarize, the analog
signal of interest x(t) is considered accurately approximated
by a truncated Fourier series (see below Eq. 2) that is to be
used to reconstruct any sample x(t) with t ∈ [0, T ].

C. Level-Crossing Analog-to-Digital Conversion

Standard Analog-to-Digital Conversion (ADC) consists in
measuring the signal amplitude at given sampling instants
which generally constitute a uniform time grid. In Level-
Crossing ADC (LC-ADC) time and amplitude are inter-
changed: time moments are measured when the signal crosses
given levels or thresholds which constitute a fixed amplitude
grid. The fixed time grid of standard ADC is replaced by an
fixed amplitude grid, as illustrated in Fig. 1.

The main advantage of LC-ADC is that it is easier to
measure accurately a time instant than an analog amplitude. In
practice, the LC-ADC analog electronics reduces to a reference
voltage and a comparator for each threshold combined to a fast
clock and a device to count and record the numbers of clock
ticks between every pairs of successive threshold crossings.
In comparison, the analog architecture of standard ADCs, e.g.
flash, successive approximation or even Sigma-Delta, is much
more complex. In addition, LC-ADC necessitate very few
thresholds: in this article we only consider ADC with less
than ten thresholds, even when converting large bandwidth



signals. Several authors investigated LC-ADC with only one
zero-threshold – i.e. zero-crossings systems – see for instance
[1] or the bibliography in [6].

Besides, the (few) thresholds amplitudes can be optimized
in different ways: a nonuniform distribution increases the ADC
dynamic range and equalizes the signal-to-noise ratio [5],
or no thresholds in a range of amplitudes where the signal
is considered as noninformative (close to zero for instance)
prevents many useless conversions (and the corresponding
consumption). Of course, the LC-ADC clock speed must be
much larger than the signal of interest highest frequency but
this does not limit LC-ADC to very low frequency signals
as demonstrated for instance in [5] which investigates an
application to 10 megahertz ultrasound signals with a 100
gigahertz clock. All these advantages allow to build very
low consumption converters particularly relevant for embed-
ded systems [5]. In summary, LC-ADC reduces the analog
electronics requirements in comparison to standard ADCs at
the price of the additional digital reconstruction step, which
allows to use the advantages of digital systems like on-the-fly
reconfigurations of the frequency band among others.

D. Spectral Analysis with a Level-Crossing ADC

As said above, any (analog) nonuniform sampling device
provides the samples moments τk and the amplitudes x(τk)
that are processed in the (digital) spectral analysis step, see
[2] or the bibliography in [5]. However the LC-ADC samples
amplitudes are by construction equal to the (few) thresholds
amplitudes i.e. several analog reference voltages that cannot be
expected to be perfectly stable over time. Calibrations could
allow to follow the thresholds drifts but they are costly or even
impossible in embedded systems. Therefore, the thresholds
(and the samples) amplitudes cannot be known exactly in prac-
tice, which strongly decreases the LC-ADC global accuracy
as it will be illustrated below.

Nevertheless, it is reasonable to assume that the thresh-
olds amplitudes deviations are as slow as the dynamic of
physical phenomenons at stake, like temperature drift and/or
components aging for instance. The proposed reconstruction
algorithm for LC-ADC is based on the realistic assumption
that the thresholds levels are unknown but constant during
short observation intervals of time [0, T ] (only contexts with
T shorter than 1 minute are considered here for instance).

In the next section, we show how the few thresholds ampli-
tudes AND the signal spectrum (the Fourier coefficients) can
be jointly estimated up to some unavoidable indeterminations
(scale and possibly offset). But these indeterminations can be
later reduced using the available information about thresholds
amplitudes when it is required by the application in view,
see section II-F. This is a blind reconstruction technique
because some uncertain a priori information (the thresholds
amplitudes here) is ignored when estimating the analog signal
spectrum. In the third section we compare the accuracy of
the proposed technique with the standard Adaptive-weigths
Conjugate-gradients Toeplitz (ACT) algorithm [2] on synthetic
signals. We show in particular the sensitiveness of existing

methods to thresholds amplitudes uncertainty. This article
generalizes previous results in [7], [8] to low-pass signals and
to multidimensional intersection modes.

II. BLIND SPECTRAL ESTIMATION ALGORITHM

A. The Thresholds Crossings Information

Let us denote M the number of thresholds and y
def
=

(y1, y2, . . . , ym, . . . , yM )T the vector of the thresholds am-
plitudes. As already said, the signal of interest x(t) crosses
the M thresholds at the K times τ1, τ2, . . . , τK in the ob-
servation interval of time [0, T ]. We define the function µ
from {1, 2, . . . ,K} to {1, 2, . . . ,M} such that µ(k) = m if
x(τk) = ym: in other words µ maps each crossing time index k
to the index m of the threshold ym actually crossed at time τk.
The vector of signal amplitudes (x(τ1), x(τ2), . . . , x(τK))T is
denoted x and

x
def
=



x(τ1)
x(τ2)

...
x(τk)

...
x(τK)


=



yµ(1)
yµ(2)

...
yµ(k)

...
yµ(K)


= C


y1
y2
...
yM

 def
= Cy (1)

where C is a K ×M binary matrix such that C(k,m) = 1
if m = µ(k) and C(k,m) = 0 otherwise. Note that C is
the binary matrix classically associated by one-hot coding to
any categorical data like µ(k). C has exactly one 1 on each
row, its columns are orthogonal and non-zero when discarding
uncrossed thresholds.

In practice, the duration of the observation interval T is
chosen long enough so that there are much more thresholds
crossings than thresholds (K >> M ) i.e. C has more rows
than columns. The M -dimensional linear subspace generated
by the M columns of C is denoted Span(C), and, y being
unknown, (1) simply means x ∈ Span(C). Note that the
loss of all information about the thresholds amplitudes y
induces a remarkable reduction of information about x: in
the blind context we do not know exactly x but only that
x belongs to a M -dimensional subspace. Nevertheless this
remaining subspace information allows surprisingly accurate
reconstructions.

B. The Spectral Information

As mentioned in I-B, the band-limited signal x(t) is repre-
sented by a truncated Fourier series

x(t) =

n=N∑
n=1

pn cos(2πfnt) + qn sin(2πfnt) (2)

where a possible choice of the frequencies is fn = B1 + (n−
1)/T and N = d(B2 − B1)T e. (In the case of a low-pass
signal of interest x(t), i.e. when B1 = 0 and f1 = 0, (2) is
to be understood without the q1 term.) The discrete and finite
spectrum X of the analog signal x(t) is defined as the vector
of its Fourier coefficients X def

= (. . . pn . . . , . . . qn . . .)
T .



If we denote F the K × 2N matrix (K × (2N − 1) in the
low-pass context)

F
def
=


. . . cos(2πfnτ1) . . . sin(2πfnτ1) . . .

...
...

. . . cos(2πfnτk) . . . sin(2πfnτk) . . .
...

...
. . . cos(2πfnτK) . . . sin(2πfnτK) . . .


(3)

and apply (2) to the K crossing moments τ1, τ2, . . . , τK then
the vector of samples x, the matrix F and the spectrum X of
the signal x(t) are related by the linear relation x = FX .

As illustrated in the next section, the duration T of the
observation interval and the number M of thresholds can
be chosen large enough so that the number of crossings K
is larger than the number of Fourier coefficients 2N (or
2N − 1 in the low-pass case). The matrix F has more
rows than columns and its columns span a 2N -dimensional
linear subspace denoted Span(F ) and, X being unknown,
x = FX can be interpreted as x ∈ Span(F ). Note that this
argumentation is not as straightforward as in II-A because the
number of frequencies N grows linearly with T .

C. Standard Reconstruction

The standard reconstruction techniques compute the un-
known spectrum X via a least squares minimization of the
error term FX − x i.e. solving a linear system equivalent to
FTFX = FTx. In practice the matrix F , and a fortiori FTF ,
are generally large and extremely ill-conditioned and solving
such a system is numerically difficult. The ACT algorithm [2]
uses a weighted conjugate gradient algorithm to deal with large
systems involving hundreds of frequencies (N ) and thousands
of crossing (K). In the case of the LC-ADC such an approach
is not accurate because the thresholds amplitudes y, i.e. the
entries of x, are not known exactly in practice, and – even
small – errors on x are strongly amplified.

D. The Proposed Algorithm

If we ignore any a priori information about the thresh-
olds amplitudes then the LC-ADC only provides the indices
µ(1), µ(2), . . . , µ(K) of the crossed thresholds (categorical
data) and the crossing moments τ1, τ2, . . . , τK (numerical
data). The indices allow to compute the matrix C and the
crossing moments combined with the set of frequencies
f1, f2, . . . fN allow to compute the matrix F . As seen previ-
ously, x belongs to Span(C) and Span(F ) therefore it belongs
to their intersection

x ∈ Span(C) ∩ Span(F ) (4)

Of course this characterization of x, and consequently of y
and X , is of interest only if the dimension of Span(C) ∩
Span(F ) is very small. Conditions are given in the next section
to guarantee that the intersection dimension p is equal to 1 or 2
(p = 1 corresponds to a scale indetermination, p = 2 to offset
and scale indeterminations). This algorithm is called TSSIRA
for Two SubSpaces Intersection Reconstruction Algorithm.

The practical computation of the intersection of two linear
subspaces is standard, see for instance the algorithm 12.4.3,
page 604 in [3]. First orthonormal bases of the two subspaces
are to be computed via (“economy size”) QR decompositions
of C and F (an SVD could also be used)

C = QCRC and F = QFRF (5)

Second the (“economy size”) singular value decomposition of
the 2N ×M matrix QTFQC is computed and denoted UΣV T .
The singular values in Σ are the cosines of the principal angles
between the two subspaces: if the p largest singular values
σ1, . . . , σp are equal to 1 and σp+1 < 1 then the intersection
is p-dimensional. If we denote U1 (resp. V1) the 2N × p
matrix of left (resp. the M×p matrix of right) singular vectors
corresponding to the singular value 1 then we have

x = QFRFX ∈ Span(QFU1) and (6)
x = QCRCy ∈ Span(QCV1) (7)

and the solution to the blind reconstruction problem is

X ∈ Span(R−1
F U1) and y ∈ Span(R−1

C V1) (8)

E. Practical Remarks

One must first note that the scale indetermination is intrinsic
to any subspace intersection method; it corresponds to the
invariance of the crossing moments when scaling both the
signal and the thresholds. The question is: how to choose the
duration T of observation and the number M of thresholds in
function of the signal frequency band [B1, B2] to guarantee an
intersection of dimension 1 or 2, and thus limit the indetermi-
nations to scale and offset. This theoretical problem is difficult
because they are no closed form expression of the singular
values of QTFQC , or the principal angles between Span(C)
and Span(F ), as functions of B1, B2, T , etc. Therefore we
only provide here rules based on empirically observations.

In the bandpass case, we noticed that T ≈ 10/B1 is a
convenient minimal duration of observation (the intuition is
to observe at least 10 of the longest period present in x(t)).
With that value of T , the number of thresholds can be tuned
with respect to β

def
= B2/B1: in the simulations we used

typically (M,β) = (2, 4), (4, 30), (8, 100) and (10, 300). In
these conditions the blind problem solution is 1-dimensional
and there is only a scale indetermination. When T is shorter,
e.g. T ≈ 1/B1, the blind solution is 2-dimensional because the
constant vector (1, 1, . . . , 1)T , that belongs by construction to
Span(C), also belongs to Span(F ) and consequently to their
intersection. This vector generates an offset indetermination
on top of the scale one.

In the more difficult low-pass context, the first column of
F is by definition equal to the constant vector: the minimal
dimension of the blind problem solution is necessarily 2 and
the corresponding scale and offset indeterminations are un-
avoidable. The T lower bound cannot obviously be a function
of B1 = 0 and depends on the actual spectrum of x(t). In
our simulations, the spectrum is approximately flat (sinewaves
frequencies are uniformly distributed on [0, B2]) and the



conditions T ≈ 10/B2 and M = 10 seems to guarantee
enough thresholds crossings for accurate reconstruction.

The TSSIRA algorithm has many additional practical ad-
vantages for monitoring the LC-ADC. The largest singular
value σ1 – in [0, 1] by construction – is generally very close
to 1. A value of σ1 too far from 1 allows the online detection
of a model error like an erroneous frequency band or a
circuit nonlinearity. The TSSIRA algorithm also provides the
thresholds amplitudes whose drifts can be monitored (up to
the indeterminations) during long periods of time. Parameters
can be tuned e.g. the distance between successive frequencies
fn can be slightly lower than 1/T as done in the simulations
below.

F. Treatment of the Indeterminations

In many applications like communications, the scale and
offset indeterminations do not alter the information carried by
the signal, nevertheless a rough estimation of the actual signal
range may be of practical use. The goal is only to fix the p = 1
or p = 2 degrees of freedom that remain free after solving
the blind reconstruction problem. In practice, the thresholds
amplitudes y are always known approximately (at least their
order of magnitude) and that available a priori information is
sufficient to select one solution in the p-dimensional subspace
Span(R−1

C V1).
Concretely, one can choose a vector y in Span(R−1

C V1) that
is as close as possible to the ADC thresholds nominal values
y0, or the y vector such that p specific thresholds have the
expected amplitude (e.g. the maximal threshold if p = 1,
and the minimal and maximal thresholds if p = 2). Blind
LC-ADC can address metrology applications if (only) 1 or 2
thresholds have very accurate and stable amplitudes, which
reduces dramatically the usual constraints on the whole set of
M thresholds. Whatever the selection procedure may be, the
selected vector ys is finally characterized by a p-dimensional
vector α such that ys = R−1

C V1α that, after some simple
algebra, gives also the selected spectrum Xs = R−1

F U1α and
finally any desired sample x(t) of the signal of interest when
t ∈ [0, T ] by using (2).

III. EVALUATION OF PERFORMANCE

A. Generation of the Input Synthetic Data

The band-limited analog signal is generated as the sum of
many sinewaves (much more than 2N ) of random frequencies
in the band [B1 = 1 hz, B2] and random amplitudes and
phases. Thus, any sample of the signal or its time derivative
can be computed exactly. The thresholds amplitudes are expo-
nentially distributed in the analog signal range like in Fig. 1.
This context is of course favorable: the thresholds numbers
used here are to be understood as the minimal ones. When the
signal range is unknown, it is necessary to use larger numbers
of thresholds and select the most informative (crossed) ones
to reduce the size of C and F and the reconstruction numer-
ical complexity. In our simulations, the thresholds crossings
moments are efficiently computed using few tens of Newton
iterations with an accuracy better than 10−11 second even with

more than 104 crossings. This maximal initial accuracy is then
digitally reduced to larger values like 10−9 or 10−6 second to
model high but limited clock frequencies FCLK = 1/TCLK .

B. Low-pass Signal

Fig. 1 illustrates the principle of LC-ADC reconstruction of
a low-pass signal with an observation of 50 seconds: initial
(blue) and reconstructed (red) signals are not discernible.

Fig. 1. [0, 1] hertz low-pass signal, N = 59 frequencies, M = 10 thresholds,
K = 462 crossings, σ1,2,3 = 1, 1, 0.71.

The reconstruction accuracy of the TSIRRA blind algorithm
is shown on Fig. 2 as a function of time: the error is below
10−4 except in the first and last seconds of observation.

Fig. 2. [0, 1] hertz low-pass signal, N = 59 frequencies, M = 10 thresholds,
K = 462 crossings, σ1,2,3 = 1, 1, 0.71.

C. Bandpass Signal

The impact of the LC-ADC clock is evaluated on analog
signals in [1, 100] hertz observed during T = 2 seconds (2D
intersection) and T = 10 seconds (1D intersection). In the
first context Fig. 3 (resp. second context Fig. 4) the crossing
moments are rounded with the three clock periods: TCLK =
10−5, 10−6, 10−7 seconds (resp. TCLK = 10−4, 10−6, 10−8

seconds). The scale and offset indeterminations (resp. scale
only) are reduced using the exact knowledge of the maximum
and minimum thresholds amplitudes (resp. the maximum
threshold amplitude). The clock frequency i.e. the crossing
moments measurement accuracy is clearly the key parameter.

To assess the improvement of the proposed algorithm, we
show in Fig. 5 the accuracy obtained using the ACT algorithm



Fig. 3. [1, 100] hertz bandpass signal, N = 238 frequencies, M = 10
thresholds, K = 1100 crossings, σ1,2,3 = 1, 1, 0.896.

Fig. 4. [1, 100] hertz bandpass signal, N = 1188 frequencies, M = 10
thresholds, K = 5550 crossings, σ1,2,3 = 1, 0.98, 0.88.

when the M = 10 thresholds amplitudes are modified by
a zeromean Gaussian noise of very small standard deviation
∆y = 10−4. The reconstruction accuracy that is similar to the
TSSIRA one (Fig. 4) when the thresholds are known exactly
(∆y = 0) is now dramatically reduced to roughly the level of
the uncertainty of the thresholds. A test (not shown here due to
lack of space) with a more realistic ∆y = 10−2 uncertainty on
the thresholds amplitudes yields a reconstruction error larger
than 10−2.

IV. CONCLUSION

Existing reconstruction algorithms after LC-ADC nonuni-
form sampling are extremely sensitive to an uncertainty on
the thresholds amplitudes that is unavoidable in practice. The
proposed algorithm solves the blind problem exploiting as
much as possible the accurate data, i.e. the crossed thresholds

Fig. 5. [1, 100] hertz bandpass signal, N = 1188 frequencies, M = 10
thresholds, K = 5550 crossings, ∆y = 10−4.

indices and crossings moments, and selects in the blind
problem set of solutions a spectrum compatible with the
available information about inaccurate data (thresholds ampli-
tudes). Empirical conditions on the duration of the sampling
interval, the number of thresholds and the signal bandwidth
are given for very accurate reconstruction up to harmless
indeterminations of scale and possibly of offset. This study has
to be completed by a theoretical investigation of the subspaces
intersection dimension, a correction method of the analog
comparators timing imperfections, an optimal weighting of
each level crossing like in ACT, an online extension of the
batch reconstruction algorithm described here, and finally a
validation with a hardware implementation.
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