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ABSTRACT

In this paper, we address the problem of learning com-
pact similarity-preserving embeddings for massive high-
dimensional streams of data in order to perform efficient
similarity search. We present a new online method for com-
puting binary compressed representations -sketches- of high-
dimensional real feature vectors. Given an expected code
length c and high-dimensional input data points, our algo-
rithm provides a c-bits binary code for preserving the dis-
tance between the points from the original high-dimensional
space. Our algorithm does not require neither the storage of
the whole dataset nor a chunk, thus it is fully adaptable to
the streaming setting. It also provides low time complexity
and convergence guarantees. We demonstrate the quality of
our binary sketches through experiments on real data for the
nearest neighbors search task in the online setting.

Index Terms— Sketching, streaming, subspace tracking,
Givens rotations

1. INTRODUCTION

In large-scale machine learning applications such as com-
puter vision or metagenomics, learning similarity-preserving
binary codes is critical to perform efficient indexing of large-
scale high-dimensional data. Storage requirements can be
reduced and similarity search sped up by embedding high-
dimensional data into a compact binary code . A classical
method is Locality-Sensitive Hashing (LSH) [1] for nearest
neighbors search: 1) input data with high dimension d are
projected onto a lower c-dimensional space through a c × d
random projection with i.i.d. Gaussian entries, 2) then a hash-
ing function is applied to the resulting projected vectors to
obtain the final binary codes. Two examples for the hashing
function are cross-polytope LSH [2] which returns the closest
vector from the set {±1ei}1≤i≤c where {ei}1≤i≤c stands
for the canonical basis, and hyperplane LSH [3], the sign
function applied pointwise. To reduce the storage cost of the
projection matrix and the matrix-vector products computa-
tion times (O(c × d)), a structured pseudo-random matrix
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can be used instead [3, 4] with a reduced time complexity of
O(d log c) thanks to fast Hadamard and Fourier transforms.

In the context of nearest neighbors search or classifica-
tion, the accuracy of the data sketches can be improved by
learning this projection from data [5, 6, 7, 8, 9]. As Prin-
cipal Component Analysis (PCA) is a common tool for re-
ducing data dimensionality, data are often projected onto the
first c principal components. But PCA alone is not sufficient.
Indeed, the c first principal components are chosen with a
decreasing order of explained variance: principal directions
with higher variance carry more information. Thus, associ-
ating each of the c directions to one of the c bits is equiva-
lent to giving more weights to less informative directions and
will lead to poor performance of the obtained sketches. To
remedy this problem, after data have been projected on the
first principal components of the covariance matrix, a solution
consists in applying a suitable rotation on the projected data
before performing the hashing function: it balances variance
over the principal components. In work from [10], a random
rotation is used giving quite good results. In ITerative Quan-
tization (ITQ) [7] or in Isotropic Hashing (IsoHash) [8], the
rotation is rather learned. In ITQ, the rotation is iteratively
computed by solving an orthogonal Procustes problem: the
alternating minimization of the quantization error of mapping
data to the vertices of the 2c hypercube. This technique is cur-
rently the state-of-the-art for computing similarity-preserving
binary codes based on PCA. ITQ and IsoHash come with a
major drawback, though. They are completely offline since
the whole dataset needs to be stored for computing the c prin-
cipal components. This can be prohibitive when dealing with
lots of high-dimensional data.

Contributions: We introduce a streaming algorithm with
convergence guarantees where data is seen only once and
principal subspace plus the balancing rotation are updated as
new data is seen. To obtain the principal subspace and the ro-
tation, this requires additionally only the storage of two c× c
matrices, instead of the whole initial and projected datasets
as for ITQ or IsoHash. Our algorithm outperforms the known
state-of-the-art online unsupervised method Online Sketch-
ing Hashing (OSH) [11] while being far less computationally
demanding.



2. RELATED WORK

Two paradigms exist to build hash functions [12]: data-
independent [1, 13, 14] and data-dependent methods. The
latter ones learn the hash codes from a training set and per-
form better. The learning can be unsupervised [5, 15, 7, 8,
16, 17, 9, 18] aiming at preserving distances in the original
space or (semi-)supervised which also tries to preserve label
similarity [6, 19]. Some recent hashing functions involve
deep learning [20, 21]. When the dataset is too large to
be loaded into memory, distributed [22] and online hashing
techniques [23, 11, 24] have been developed. Online Hash-
ing (OKH) [23] learns the hash functions from a stream of
similarity-labeled pair of data with a ”Passive-Aggressive”
method. Recent approach from [24] relies on Mutual Infor-
mation. Although claimed to be unsupervised, it is supervised
as similarity labels are also needed between pairs of data. In
Online Sketching Hashing (OSH) [11], the binary embed-
dings are learned from a maintained sketch of the dataset
with a smaller size but preserving the property of interest.
The proposed algorithm belongs to this latter category of
online unsupervised hyperplanes-based hashing methods.

3. THE PROPOSED ONLINE UNSUPERVISED
MODEL FOR BINARY QUANTIZATION

3.1. Notations and problem statement

We have a stream of n data points {xt ∈ Rd}1≤t≤n supposed
to be zero-centered. The goal is to have bt = sign(W̃txt) ∈
{−1, 1}c for t = 1 . . . n where c denotes the code length,
c � d, s.t. for each bit k = 1 . . . c, the binary encoding
function is defined by hk(xt) = sign(w̃Tk,txt) where w̃k,t are
column vectors of hyperplane coefficients and sign(x) = 1
if x ≥ 0 and −1 otherwise which is applied component-wise
on coefficients of vectors. So w̃Tk,t is a row of W̃t for each k,
with W̃t ∈ Rc×d. bt is computed and returned before xt+1 is
seen by using xt and W̃t−1 solely. We consider in this paper
the family of hash functions W̃t s.t. W̃t = RtWt where Wt is
the linear dimension reduction embedding applied to data and
Rt is a suitable c × c orthogonal matrix. Here, we take Wt

as the matrix whose row vectors wTk,t are the c first principal
components of the covariance matrix ΣX,t = XtX

T
t where

Xt denotes the dataset seen until data t. So the challenge is
in tracking the principal subspace in an online fashion as new
data is seen and in defining an appropriate orthogonal matrix1

to rotate the projected data onto this principal subspace.
Works from [7, 10] argued that defining an orthogonal

transformation applied to the PCA-projected data which tends
to balance the variances over the PCA-directions improves the
quality of the hashing but R was first learned to uniformize
the variances for different directions only in work from [8]
with Isotropic Hashing (IsoHash). In the latter, the problem

1In the sequel, we use equally the term orthogonal matrix or rotation.

is explicitly described as learning a rotation which produces
isotropic variances of the PCA-projected dimensions. We
propose here a new simpler online method UnifDiag for learn-
ing a rotation to uniformize the diagonal of the covariance
of projected data after tracking the principal subspace Wt

from the data stream with Fast Orthonormal PAST (Projec-
tion Approximation and Subspace Tracking) [25], also named
OPAST. At each iteration t, OPAST guarantees the orthonor-
mality of Wt rows and costs only 4dc + O(c2) flops while
storing only Wt and a c × c matrix. The rotation learning is
completely independent from the principal subspace tracking.
Indeed, any other method for online PCA [26, 27] or subspace
tracking [25] can be plugged before UnifDiag.

3.2. UnifDiag: the proposed diagonal uniformization-
based method for learning a suitable rotation

Let the c × c symmetric matrix ΣV,t = VtV
T
t be the covari-

ance matrix of projected data seen until data t Vt = WtXt.
Rt is learned for each t to balance the variance over the c di-
rections given by the c principal components of ΣV,t. ΣV,t is
easy to update dynamically and we adapt OPAST algorithm
to perform this while computing Wt. In the sequel, for clar-
ity we drop the subscript t. Let us consider the c diagonal
coefficients of ΣV : σ2

1 , ..., σ
2
c s.t. σ2

1 ≥ ... ≥ σ2
c . As ΣV is

symmetric, Tr(ΣV ) =
∑c
i=1 σ

2
i =

∑c
i=1 λi where Tr stands

for the Trace application and λ1, ..., λc are the c first eigenval-
ues of ΣX s.t. λ1 ≥ ... ≥ λc

2. Balancing variance over the c
directions can be seen as equalizing the diagonal coefficients

of ΣV s.t. σ2
1 = ... = σ2

c
def
= τ . Since ΣV is symmetric,

Tr(R ΣVR
T ) = Tr(ΣV ). So in order to have R ΣVR

T with
equal diagonal coefficients, we should set τ = Tr(ΣV )/c. So,
similarly to IsoHash, we formulate the problem of finding R
as the problem of equalizing the diagonal coefficients of ΣV
to the value τ = Tr(ΣV )/c. Our proposed optimal orthog-
onal matrix R is built as a product of c − 1 Givens rotations
G(i, j, θ) described by Def. 3.1.

Definition 3.1 A Givens rotation G(i, j, θ) is a matrix of the
form:

G(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1


where c = cos(θ) and s = sin(θ) are at the intersections of
the i-th and j-th rows and columns. The nonzero elements
are consequently: ∀k 6= i, j, gk,k = 1, gi,i = gj,j = c,
gj,i = −s and gi,j = s for i > j.

2If W is exactly the c first eigenvectors of ΣX – for instance, if W is
obtained through PCA –, then ∀i ∈ {1, ..., c}, σ2

i = λi.



The computation of R follows the iterative Jacobi eigen-
value algorithm known as diagonalization process [28]:

ΣV ← G(i, j, θ) ΣV G(i, j, θ)T (1)

R← R G(i, j, θ)T . (2)

Note that left (resp. right) multiplication by G(i, j, θ) only
mixes i-th and j-th rows (resp. columns). The update from
Eq. 1 only modifies i-th and j-th rows and columns of ΣV .
The two updated diagonal coefficients (i, i) and (j, j) only
depend on ΣV,i,i, ΣV,j,j , ΣV,j,i and θ which reduces the op-
timization of θ to a 2-dimensional problem, a classical trick
when using Givens rotations [28]. Then we have Th. 3.1 by

defining: a
def
= ΣV,j,j , d

def
= ΣV,i,i, b

def
= ΣV,j,i = ΣV,i,j ,(

a′ b′

b′ d′

)
def
=

(
c −s
s c

)(
a b
b d

)(
c s
−s c

)
. (3)

Theorem 3.1 If min(a, d) ≤ τ ≤ max(a, d) (sufficient
condition)3 then there exists one θ ∈ [−π/2, π/2] s.t.

a′ = τ , d′ = a + d − τ and b′ = −s2
√(

a−d
2

)2
+ b2

with cos(θ) =
√

1+c1c2−s1s2
2 and sin(θ) = − c1s2+c2s12 cos θ ,

c1 =
(
a−d
2

)
/

√(
a−d
2

)2
+ b2, s1 = b/

√(
a−d
2

)2
+ b2,

c2 = (τ − a+d
2 )/

√(
a−d
2

)2
+ b2 and s2 =

√
1− c22 ∈ [0, 1].

Proof 3.1 With u(θ)
def
=

(
cos(2θ) − sin(2θ)

)T
, Eq. 3

gives: a′ = a+d
2 +

(
a−d
2 b

)
. u(θ)T , d′ = a+d

2 −
(
a−d
2 b

)
. u(θ)T

and

b′ =
(
a−d
2 b

)
.

(
sin(2θ)
cos(2θ)

)
. As the Givens angle θ should

be parameterized s.t. all diagonal coefficients are set to
τ ,
(
a−d
2 b

)
. u(θ)T = τ − a+d

2 . Previously defined c1,
c2, s1, s2 and the condition min(a, d) < τ < max(a, d)
gives |c2| ≤ 1 and s2 ∈ [0, 1]. Then the last equation
becomes:

(
c1 s1

)
. u(θ)T = c2. A clear solution is:

u(θ)T =

(
c1c2 − s1s2
c1s2 + c2s1

)
. Thus, one can take: cos(θ) =√

1+cos(2θ)
2 =

√
1+c1c2−s1s2

2 , sin(θ) = sin(2θ)
2 cos(θ) = − c1s2+c2s12 cos θ

and the associated Givens rotation gives: a′ = τ ,

d′ = a+ d− τ , b′ =
(
a−d
2 b

)(sin(2θ)
cos(2θ)

)
=

√(
a−d
2

)2
+ b2

(
c1 s1

)(−c1s2 − c2s1
c1c2 − s1s2

)
= −s2

√(
a−d
2

)2
+ b2.

Note that there is no need to compute explicitly θ, θ1 or
θ2. We now briefly describe the underlying diagonal uni-
formization algorithm. The mean of ΣV diagonal coeffi-
cients being equal to τ , these indices sets are not empty:

3Th. 3.1 uses only a sufficient condition. A weaker necessary and
sufficient one to guarantee |c2| ≤ 1 and s2 ∈ [0, 1] is a+d

2
−√(

a−d
2

)2
+ b2 ≤ τ ≤ a+d

2
+

√(
a−d
2

)2
+ b2.

iInf
def
= { l ∈ {1, ..., c} | ΣV,l,l < τ} and iSup

def
=

{ l ∈ {1, ..., c} | ΣV,l,l > τ}. Taking one index j from
iInf and the other one i from iSup guarantees the condition
of Th. 3.1, which allows to set ΣV,j,j to the value τ . The
index j can then be removed from iInf and as ΣV,i,i is set
to a + d − τ , the index i reassigned to iInf if τ > a+d

2 or
in iSup if τ < a+d

2 . The number of diagonal coefficients of
ΣV different from τ has been decreased by one. Finally, the
necessary number of iterations to completely empty iInf and
iSup, i.e. uniformizing ΣV diagonal, is bounded by c − 1.
The method is summarized in Algorithm 1 where pop(list)
and add(list, e) are subroutines to delete and return the first
element of list, resp. to add e in list.

Algorithm 1 Diagonal Uniformization algorithm (UnifDiag)
1: Inputs : ΣV (c× c, symmetric), tolerance: tol
2: R←Ic // c× c Identity matrix; τ←Tr(ΣV )/c ; it = 0
3: iInf = { l ∈ {1, ..., c} | ΣV,l,l < τ − tol}
4: iSup = { l ∈ {1, ..., c} | ΣV,l,l > τ + tol}
5: while it < c − 1 & not isEmpty(iInf) & not

isEmpty(iSup) do
6: // Givens rotation parameters computation:
7: j←pop(iInf); i←pop(iSup); a←ΣV [j, j];

b←ΣV [i, j]; d←ΣV [i, i]; c, s (Th. 3.1); it←it+ 1
8: // ΣV update:
9: rowj←ΣV [j, :]; rowi←ΣV [i, :]

10: ΣV [j, :] = c× rowj − s× rowi;
11: ΣV [i, :] = s× rowj + c× rowi
12: ΣV [:, j] = ΣV [j, :]; ΣV [:, i] = ΣV [i, :]
13: ΣV [j, j] = a′; ΣV [i, i] = d′ ; ΣV [j, i] = b′ (Th. 3.1)
14: // Rotation update:
15: colj←R[:, j]; coli←R[:, i]
16: R[:, j] = c× colj − s× coli
17: R[:, i] = s× colj + c× coli
18: // Indices list update:
19: if a+d

2 < τ − tol then
20: add(iInf, i)
21: if a+d

2 > τ + tol then
22: add(iSup, i)
23: return R

4. COMPLEXITY ANALYSIS OF EXISTING WORKS

Our algorithm requires the storage of two c × c matrices be-
sides Wt and Rt obviously: one with OPAST to obtain Wt

and ΣV,t for Rt. One update with OPAST for Wt and ΣV,t
costs 4dc+O(c2). Then, to computeRt, at most c−1 Givens
rotations are needed, each implying four column or row mul-
tiplications i.e. 4c flops. So the final time complexity of our
algorithm is 4dc+O(c2).

We compare here the spatial and time costs of our method
with, to the best of our knowledge, the only online unsuper-
vised method: Online Sketching Hashing (OSH) [11] which



is the most similar to ours, i.e. unsupervised, hyperplanes-
based and reading one data point at a time. Despite what is
announced, OSH is fundamentally mini-batch: the stream is
divided into chunks of data for which a matrix S ∈ Rd×l
as a sketch of the whole dataset X ∈ Rd×n is maintained.
Then the principal components are computed from the up-
dated sketch S. The projection of data followed by the ran-
dom rotation can be applied only after this step. Therefore
there are actually two passes over the data by reading twice
data of each chunk. Without counting the projection matrix
and the rotation, OSH needs spatially to maintain the sketch
S which costs O(d× l) with c� l� d. The SVD decompo-
sition then needs O(dl + l2) space. In comparison, we only
need O(c2). For each round, OSH takes O(dl2 + l3) time to
learn the principal components, i.e. O(dl + l2) for each new
data seen. We also compare with IsoHash [8]. Although it
counts as an offline method because no technique is proposed
to approximatively estimate the principal subspace, IsoHash
rotation can be applied after for instance OPAST. IsoHash
rotation computation involves an integration of a differen-
tial equation using Adams-Bashforth-Moulton PECE solver
which costs O(c3) time. Even if c is small in comparison to d
and the complexities do not either depend on n, our model has
the advantages to have a lower time cost and to be much more
simple than IsoHash. Thus, our method shows advantages in
terms of spatial and time complexities over OSH and IsoHash.
Moreover, binary hash codes can be directly computed as new
data is seen, while OSH, as a mini-batch method, has a delay.

5. EXPERIMENTS

Experiments are made on CIFAR-10 (http://www.cs.
toronto.edu/˜kriz/cifar.html) and GIST1M sets
(http://corpus-texmex.irisa.fr/). CIFAR-10
contains 60000 32 × 32 color images equally divided into
10 classes. 960-D GIST descriptors were extracted from
data. GIST1M contains 1 million 960-D GIST descrip-
tors, from which 60000 instances were randomly chosen
from the first half of the learning set. Quality of hashing
has been assessed on the nearest neighbor (NN) search task
performed on the binary codes instead of the initial descrip-
tors. A nominal threshold of the average distance to the
50th nearest neighbor is computed and determines the sets
of neighbors and non-neighbors called Euclidean ground
truth. 1000 queries were randomly sampled and the re-
maining data are used as training set. We compared our
method to three online baseline methods that follow the
basic hashing scheme Φ(xt) = sgn(W̃txt), where the pro-
jection matrix W̃t ∈ Rc×d is determined according to the
chosen method: 1) OSH 2) RandRot-OPAST: Wt is the
PCA matrix obtained with OPAST and Rt a constant ran-
dom rotation. 3) IsoHash-OPAST: Rt is obtained with
IsoHash. 4) UnifDiag-OPAST: Rt is obtained with Unif-
Diag. For OSH, the number of chunks is set to 200 and

l = 50. Fig. 1 and 2 (best viewed in color) show the
Mean Average Precision (mAP) [29] for both datasets for
c = 32 (similar results are obtained for c ∈ [8, 16, 64]) av-
eraged over 5 random training/test partitions. Our algorithm
outperforms all the compared methods. Code on GitHub:
annemorvan/UnifDiagStreamBinSketching/.

6. CONCLUSION

We introduced a novel method for learning distance-preserving
binary embeddings of high-dimensional data streams with
convergence guarantees. Unlike classical state-of-the-art
methods, our algorithm does not need to store the whole
dataset and enables to obtain without delay a binary code
as a new data point is seen. Our approach shows promising
results as evidenced by the experiments. It can achieve better
accuracy than state-of-the-art online unsupervised methods
while saving considerable computation time and spatial re-
quirements. Besides, the Givens rotations, that are a classical
tool for QR factorization, singular and eigendecomposition
or joint diagonalization, can also be used for uniformizing
the diagonal of a symmetric matrix via an original Givens
angle tuning technique. Further work would be to investigate
whether another rotation, not uniformizing the diagonal of
the covariance matrix of the projected data, could be more
optimal. Another interesting perspective is to evaluate the
performance of the compact binary codes in other machine
learning applications: instead of using the original data,
one could use directly these binary embeddings to perform
unsupervised or supervised learning while preserving the
accuracy.
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timizing affinity-based binary hashing using auxiliary
coordinates,” in NIPS, 2016, pp. 640–648.

[19] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang, “Super-
vised hashing with kernels,” in CVPR, 2012, pp. 2074–
2081.

[20] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous
feature learning and hash coding with deep neural net-
works,” in CVPR, 2015, pp. 3270–3278.

[21] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and
Y. Chen, “Compressing neural networks with the hash-
ing trick,” in ICML, 2015, pp. 2285–2294.

[22] C. Leng, J. Wu, J. Cheng, X. Zhang, and H. Lu, “Hash-
ing for distributed data,” in ICML, 2015, pp. 1642–1650.

[23] L. Huang, Q. Yang, and W. Zheng, “Online hashing,” in
IJCAI, 2013, pp. 1422–1428.
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