N

N

Embedded Feature Construction in Fuzzy Decision Tree
Induction for High Energy Physics Classification
Noelie Cherrier, Jean-Philippe Poli, Maxime Defurne, Franck Sabatie

» To cite this version:

Noelie Cherrier, Jean-Philippe Poli, Maxime Defurne, Franck Sabatie. Embedded Feature Construc-
tion in Fuzzy Decision Tree Induction for High Energy Physics Classification. 2020 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), Oct 2020, Toronto, Canada. pp.615-622,
10.1109/SMC42975.2020.9283103 . cea-04564515

HAL 1d: cea-04564515
https://cea.hal.science/cea-04564515
Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://cea.hal.science/cea-04564515
https://hal.archives-ouvertes.fr

Embedded Feature Construction in Fuzzy
Decision Tree Induction for High Energy Physics
Classification

Noélie Cherrier!?, Jean-Philippe Poli!, Maxime Defurne?
and Franck Sabatié?
L' CEA, LIST, 91191, Gif-sur-Yvette cedex, France.
2 Irfu, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette cedex, France.

April 22, 2024

Abstract

Fuzzy decision trees have been successfully applied in numerous do-
mains. The popularity of these models comes notably from their inter-
pretability, namely the ability of humans to understand them. However,
on the contrary to neural networks, the induction of such models does not
include a generation of their own feature space. In this work, the embed-
ding of feature construction in fuzzy decision tree induction algorithms is
studied, so that they can create new input features, without affecting the
overall interpretability of the model. This method is successfully applied
to a classification problem in high-energy physics to study the benefits
of having constructed features in fuzzy decision tree on the classification
scores, allowing them to have their own interpretable representation of
the data.

Keywords: Fuzzy decision trees, genetic programming, feature con-
struction, interpretability.

1 Introduction

Decision trees have been applied to many problems since the early works that
allowed automatic induction [1,2]. Today, they are still studied despite the
hegemony of deep neural networks that lead to unprecedented classification
scores. However, for some applications, it is necessary to be able to interpret
the model, and even to provide an explanation [3]. One can think of human-
centered applications, such as medicine and security [4], but it is also true for
scientific applications, such as physics. In particular, this desire is met in High
Energy Physics (HEP), which aims at studying the elementary constituents
of matter and the fundamental forces that govern them. It is crucial for the

fundamental sciences to be able to interpret automatically generated models
and compare them with standard analysis methods for validation.

Neural networks do not offer this transparency, hence a renewed interest for
decision trees, even if “boosted” versions or forests are also hardly interpretable.
However, decision trees have several drawbacks with respect to neural networks:
crisp decision boundaries parallel to the axes, absence of an automatic data
representation, etc.

Fuzzy decision trees [5-7] correct the boundary issues but do not allow a
better representation of the data. This work addresses this problem. It is
important to create a representation of the data that remains interpretable so
as not to affect the quality of the fuzzy decision tree. The field of feature
construction aims at automating the feature engineering step. In particular,
embedded feature construction permits to better adjust the built features to a
local data discrimination problem during the model induction. We therefore
propose to automatically create features during the induction of the tree and
test our approach on a dataset from a HEP experiment.

Indeed, HEP, as other experimental sciences, has everything to gain from
interpretable models which can provide new avenues of research after studying
the model and its inference process.

The article is composed as follows: the following section presents the previ-
ous work about fuzzy decision trees and feature construction. The third section
describes our work on integrating the feature construction within the C4.5 algo-
rithm and two fuzzy versions of this algorithm. The next section describes the
experiments carried out to validate our approach, showing a gain in classifica-
tion performance on our dataset. Finally, we draw conclusions and perspectives
for this work.

2 Background

2.1 Fuzzy Decision Trees

Decisions trees are efficient models to classify data, which became popular with
the apparition of induction algorithms like Classification And Regression Trees
(CART [1]), Iterative Dichotomiser 8 (ID3 [2]) and C4.5 [8]. They are par-
ticularly appreciated for both their interpretability and their efficiency. Fuzzy
decision trees [9] have then been introduced, taking advantage of fuzzy logic
to deal with uncertainty of knowledge and the possibility to belong to several
classes at the same time [5].

Most of the techniques to build fuzzy decision trees rely on a top-down
approach [7]:

1. an attribute A is selected regarding a measure of discrimination H [10]
2. according to this attribute A, the dataset is split into several subsets

3. if a subset meets a stop criterion, a leaf is created, otherwise, the algorithm
resumes from the first step.

The different algorithms differ from each other regarding the function H that
they use, for instance the entropy star measure [11], and the way they create
modalities for each variable [6,12].

In particular, some techniques create modalities by fuzzifying the thresholds
involved in the nodes [13,14]. Thus, instead of sharply dividing the data into
two distinct branches like crisp decision trees, the separation boundary is now a
fuzzy transition between the left and right child nodes. For instance, in the fuzzy
version of the SLIQ algorithm [13], the separation function of the two branches
depends on the standard deviation of the attribute. In [14], the authors do
a Fibonacci search to optimize the slope of a linear transition, after having
determined the optimal threshold with a CART-like algorithm.

To the best of our knowledge, even if we can find a lot of works concerning
the creation of modalities (i.e. terms of linguistic variables involved in the
decision process) or the fuzzification of the thresholds, the construction of new
attributes from original attributes themselves has not been studied in fuzzy
decision tree induction. In the remainder of the article, we will use indifferently
the terms “feature” and “attribute” (that designate the same concepts in the
different communities, respectively feature construction and fuzzy decision tree
induction).

2.2 Automatic Feature Construction

This section focuses on the explicit construction of new features. We assume that
we have a set of initial features and a list of construction functions applicable
to these features. These functions are related to the domain of application.

Feature construction algorithms usually split into two categories according
to the criterion used to evaluate the candidate features [15,16]: the “filter”
methods, which use statistical criteria such as the gain of information or the
Fisher criterion [17] on the one hand; and “wrapper” methods that use the
score obtained by a predictive model driven with the candidate feature [18]
on the other hand. The literature in the field of feature construction is very
abundant: a more complete review can be found in [19] or [16]. Evolution-
ary methods represent the vast majority of the proposed methods, including
genetic programming [18,20-22]. There are also papers using particle swarm
optimization algorithms [23] or grammatical evolution [24]. Besides evolution-
ary algorithms, tree-based search algorithms are also used in some works, for
example FICUS [25] and Cognito [26].

Most of the automatic feature construction algorithms are considered as pre-
processing: they allow to extract new features that are mathematical functions
of the original ones. Machine learning models are then trained with these new
features. However, certain methods allow building features during the train-
ing algorithms. These methods mainly use simple decision trees; for instance,
Yang et al. [27] propose a scheme to simplify parts of a decision tree with re-
current boolean patterns, Ittner and Schlosser [28] exhaustively build all the
additions and products of the original features, or Argyriou et al. [29] extract
linear features by solving a convex optimization problem. We can also cite Ekért

and Mdrkus [30], who are the first to use a genetic programming algorithm to
find the best feature on which to divide the current node. Finally, Maes et
al. [31] incorporate a Monte Carlo feature search into several tree-based induc-
tion methods, constructing one feature at each node of the tree. In [32] and
further in [33], the authors use genetic algorithms both for FC and model in-
duction. Related to this area is the domain of oblique decision trees [34]. The
principle is to find the optimal splitting variable as a linear combination of the
input features. Multivariate decision trees have also been developed [35]. How-
ever, Yildiz and Alpaydin [35] state that complex models of the input features
may lead to overfitting especially when used in the deep layers of the tree.

In [36], the authors propose an adaptation of the genetic programming al-
gorithm for feature construction that allows producing interpretable features,
in particular by respecting constraints related to the nature of the original fea-
tures. For example, in high energy physics, a feature is considered interpretable
by domain experts if it relates to some of the physical laws that govern the uni-
verse. These physical laws combine variables while respecting their dimensions:
for example, no physical formula will sum an angle and an energy. Thus, the
method proposed in [36] constrains the feature construction with a grammar
and a matrix of transition probabilities between operators to force the combina-
tion of compatible original features only. The features created by this method
are interpretable for the physics experts and allow improving the classification
score compared to the unconstrained version of the algorithm.

This method builds new features first and then drives an automatic learning
algorithm with them. The next section deals with the integration of the feature
construction during the induction of fuzzy decision trees.

3 Embedding feature construction in fuzzy de-
cision tree induction

The method proposed in [36] builds new features upstream of the induction
algorithm. In this case, it would be enough to replace the fitness function used
in [36] by the score obtained by the fuzzy decision tree induced by one of the
algorithms presented in the previous section, using the newly built features. This
results in a set of features specifically designed to obtain a good classification
score with this algorithm.

However, it may be wiser to integrate the feature construction process during
the creation of the nodes themselves. Indeed, each node of the tree must solve
a more specific problem than its parent, having a different distribution of the
data set. The feature optimizing the measure of discrimination H at this point
can therefore differ, hence the idea of using the feature construction algorithm
directly when choosing the feature in a node.

We first describe the construction of consistent features and we then describe
the modified fuzzy decision tree induction algorithm.

Figure 1: Example of a candidate feature represented by a tree:

N
p}Q + (,ﬁj}—ﬁw) , which could be a real feature constructed by a constrained

FC algorithm on the DVCS dataset further presented.

3.1 Constrained Genetic Programming for Feature Con-
struction

The genetic programming consists here in evolving a population of NV, tree-like
individuals through mutations and crossovers while selecting good individuals
for the next generation. An individual in this algorithm is an expression tree
representing a candidate feature, such as the one displayed on Figure 1. Any
internal node is a mathematical operator and leaves are original attributes. Such
algorithm is free to combine any base feature, making it less adapted regarding
any interpretability requirement.

Indeed, in sciences, and in particular in physics, variables are connected
according to their units. Therefore, to enforce the combination of compatible
attributes, we constrain the genetic programming algorithm with a grammar and
a transition matrix as described in [36]. The resulting features are interpretable
to physics experts and the classification score is improved compared to the
unconstrained version of the algorithm.

To summarize, the steps of the algorithm are as follows:

1. Initialization: Np,), trees are generated randomly using the ramped half-
and-half initialization [37], but still respecting the grammar and the tran-
sition matrix while choosing the operators.

2. Evolution during K generations:

(a) Perform mutation and crossover: the methods are inspired from

generic techniques in genetic programming [37], but altered to en-
sure the children trees still represent valid features with respect to
the grammar and transition matrix.

(b) Evaluation: the fitness function of a candidate feature becomes here
the optimal discrimination measure H computed regarding the modal-
ities of the new feature.

(c) Selection: a repeated tournament selection is performed among three
individuals each time to form the next generation.

3. End of the algorithm: return the individual with the highest fitness.

3.2 Modified Fuzzy Decision Tree Induction

We therefore modify the general fuzzy decision tree induction algorithm pre-
sented in section 2.1.

To maintain the readability of the tree, a parameter controls the maximum
number N,,q. of features that it is authorized to build.

The general algorithm for fuzzy decision tree induction with embedded fea-
ture construction is presented in Algorithm 1.

For instance, the constructionCondition can be the condition in Equa-
tion (1) below: if it is satisfied for a depth d in the tree and a number of features
built so far n, then the algorithm does not select an original attribute regarding
the H function but creates instead a new feature with the algorithm presented
in section 3.1. This feature construction algorithm can actually build features
represented by trees of depth 1, which are the “rebuilt” raw features. These
raw features might then have been feature candidates but discarded during the
construction process.

d <logy(1+ Npae) and n < Npaq. (1)

4 Experiments

This section analyzes the benefits of embedded feature construction to the scores
of fuzzy decision trees. The importance of the number of constructed features
in the tree is also studied. Next subsection presents the application.

4.1 Classification of CLAS12 Data

At Jefferson Laboratory, an electron beam scatters off protons. The objective
is to discriminate between two types of events: on the one hand, the yPVS-
events, whose final state is composed of an electron, a proton and a photon noted
0 . . .
v, and on the other hand the vy™ -events which have a similar final state, except
that two correlated v photons are produced. The three-dimensional momentum
(i.e. mass times speed) are available for each identified particle, for a total
of 15 basic features with no missing values. The training of the algorithms is

Algorithm 1: Generic induction of a decision tree with embedded
feature construction.

Input: data, subset of the dataset
n, number of built features so far in the tree
depth, depth of the current node
Npaz, maximum number of features to build
in the tree
Result: a tree and the number of constructed feature
Function createFDT (data, n, depth, Niaz)
r < create a new node
if constructionCondition (n, depth) then
A < build new feature
n+<n+1
else
‘ A < select the best original attribute regarding the

discrimination measure H
Affect to r a test on A

M < create a set of modalities mq, ..., m; for A
Split data into dy, ..., d; regarding M
foreach couple (m;,d;) do

if stoppingCriterion(m;,d;) then

| create a branch m; from r to a leaf built with statistics of d;
else
create a branch m; from r to createFDT (d;, n, depth+1,
Nmam)

return (r,n)

(a) DVCS interaction

(}f\\ﬂy

2

y

(b) 70 interaction

Figure 2: Schemas of two possible reactions.

done on simulation data. About 15000 events are used here, half of which are
yPVES_ events and the other half are *yfy”o—events.

Figure 2 presents the two kinds of events. It shows that the 70 leads to two
photons whereas the DVCS event leads to only one. The difficulty lays in the
fact that photons are not always detected.

Classically, physicists build mathematical functions of these input variables,
for example energy or momentum balances, or comparisons of theoretical and
experimental angles. The momenta themselves provide little information on the
nature of the reaction that took place, hence the need to construct new variables

that are more relevant.

4.2 Implementations

Without loss of generality, we had to choose a few fuzzy decision tree induction
algorithms to perform our experiments.

For tests convenience (availability of source code, efficiency of implementa-
tions), we used modified versions of existing fuzzification of C4.5 algorithm [38].
It builds nodes sequentially from the root to the leaves. In this case, the dis-

=

membership degree

|

B attribute domain
Figure 3: Illustration of the parameter 5 [14].

crimination measure H is the information gain. At each node, the problem is to
divide the data into two subsets in order to maximize information gain. Given
a parent node with a data set Xy and two children data nodes X; and X5, the
information gain for the parent node is written as follows:

IG = E(Xo) — E(X1) — E(X3) (2)
E(X) ==Y pr(X)log, pr(X) (3)
%

with E(X) the entropy of a set X and py(X) the frequency of the class & in the
set X.

In the fuzzy version of the induction algorithm, the separation of data in two
is not crisp. Each example z is actually assigned a membership degree d,,, (x)
to each of the children nodes n;. The frequency in the computation of entropy
of Equation (3) is thus replaced by a sum weighted by the membership degrees:

G = E(X,n0) — E(X,n1) — E(X, ns). (4)
k

The modalities are then computed by fuzzifying the thresholds obtained with
the C4.5 algorithm. For the sake of simplicity and efficiency, only piecewise
linear membership functions are considered, with a slope parameterized by a
real value [representing its width, as show in Figure 3.

Two different algorithms can determine the parameter 8. The first is in-
spired by [13]: the shape of the membership function depends on the standard

deviation o of the values that has been split, in a proportional way such that
all that remains is to set a free parameter a:

B = ao. (7)

The second algorithm was proposed in [14], which makes a Fibonacci search
of the value of 8 in order to optimize the criterion already used to choose the
feature and the threshold. This is a technique based on the principle of divide
and conquer by exploiting Fibonacci numbers. It assumes that the function to
be optimized is unimodal, that is, it is strictly increasing (or decreasing) up
to the maximum (or minimum) value of the function, then strictly decreasing
(or increasing). In practice, the number of evaluations with one parameter N
is limited in the algorithm. On the other hand, Olaru et al. show [14] that
looking for the width 8 only after setting the threshold does not deteriorate the
criterion that one seeks to optimize.

4.3 Experimental Protocole

We divide the data presented above into 80% for learning and 20% for per-
formance evaluation, with balanced classes. In these experiments, we did not
perform any cross validation for several reasons: the simulated data are numer-
ous enough to be sure of the representativeness of the learning and validation
data sets. Moreover, since the feature construction is stochastic, the tree induc-
tion is run several times with the same inputs to measure the stability of the
embedded feature construction, and it is obviously time consuming.

The adapted C4.5 algorithm uses the same parameters as recommended
in [8], namely a minimum number of instances per leaf equal to 2. However,
no pruning step is performed, to reduce the computation time and because the
goal of our study is to prove the contribution of embedded feature construction
to a specific learning algorithm, not to obtain the best possible results for each
data set.

For the “Fuzzy-std” version of C4.5, which uses the standard deviation of
the data, « is set to 0.1. For the “Fuzzy-fibo” version that uses a Fibonacci
search, the maximum number of evaluations of the parameter /3 is set to N =5
just as in [14].

The performance criterion used below to evaluate the different algorithms is
the classification accuracy, since the two classes used in our dataset are present
in equal quantities. Mean and standard deviation of accuracy are systematically
presented on at least 10 independent experiments.

4.4 Results

Table 1 compares the classification accuracies obtained by the simple C4.5 al-
gorithms, the Fuzzy-std version (F-std in the table), and the Fuzzy-fibo version
(F-fibo in the table) by building from 0 to 100 features. The scores in bold show
the best method according to N,q.. For each score, the mean value and the

10

standard deviation are shown. The choice of maximum 100 features is explained
by the observation that the generated trees have in average up to 100 nodes:
allowing 100 constructed features thus means creating a new feature at each
node (and thus not using the original attributes anymore in the nodes). The
actual number of built features can then be smaller if the induction stops before
building N4, nodes.

Table 1: Classification accuracies (in %) obtained by the non-Fuzzy C4.5, Fuzzy-
std and Fuzzy-fibo algorithms according to the number of built features.

Niaz 0 1 3

C4.5 67.29 4+ 0.54 68.7 £ 1.5 71.14 £+ 0.85

F-std 69.60 + 0.32 70.6 = 1.2 72.20 + 0.48

F-fibo 69.10 £ 0.32 70.5 £ 1.7 71.42 £+ 0.43

Niaz 5 10 15

C4.5 70.6 £ 1.0 71.95 + 0.89 72.11 + 0.51
F-std 72.40 £ 0.91 72.85 £ 0.51 73.32 £+ 0.62
F-fibo 71.56 £ 0.62 73.12 + 0.61 73.37 £ 0.80

Niaz 20 25 100

C4.5 72.48 + 0.56 72.28 £ 0.90 71.28 £ 0.73
F-std 73.31 + 0.64 73.31 + 0.64 73.20 £ 0.74
F-fibo 73.46 £ 0.90 73.40 £0.63 73.49 + 0.51

Table I shows the dominance of fuzzy algorithms compared to the classic
decision trees, with or without feature construction. An improved score of 0.3
to 2.3% is obtained with a fuzzy version compared to the crisp version.

There is a clear improvement in the classification score with the number of
built features, for the three models. On average, the accuracy is increased by
almost up to 4% by building features in tree nodes instead of using only the
original features. It is interesting to note that the Fuzzy-fibo algorithm seems
to benefit more from the feature construction than the Fuzzy-std algorithm.
In fact, the Fuzzy-std model obtains better performances when one builds a
small number of features, whereas the Fuzzy-fibo model exceeds it beyond 10
constructed features.

The score obtained by building features seems to reach a maximum, stagnat-
ing or even decreasing after a certain threshold of constructed features. Indeed,
the classification accuracy of the crisp C4.5 decision trees no longer improves
after about twenty built features, and even decreases afterwards. Similarly, for
Fuzzy-std, a plateau is reached around 73.32% for 15 built features. However,
one cannot say that this score decreases significantly when the number of fea-
tures increases. The same phenomenon is observed for Fuzzy-fibo whose score
does not increase significantly from 15 features.

Finally, Figure 4 depicts the evolution of the number of leaves in the tree (i.e.
number of rules when converted into a rule base) in function of the number of
built features. No correlation can be inferred between the size of the tree and the

11

300 T
Il Cc45
N Fuzzy-std
250 4 B Fuzzy-fibo
w 2004
[,
=S
I
L
M
S 150 A
1~
[
s
E
=
100 ~
50 A
0 -
[=] — m [fs} o T3] (= N o
— =l ™~ ™~ g

Nmax

Figure 4: Number of leaves of trees generated by C4.5, Fuzzy-std and Fuzzy-fibo
as a function of N,,qz-

number of built features. However, Fuzzy-std and Fuzzy-fibo are significantly
smaller than crisp C4.5: the p-value of a Welch’s t-test between Fuzzy-fibo and
(C4.5 is 0.0046 while the p-value of the same test between Fuzzy-std and C4.5 is
4.5 x 107°.

4.5 Interpretability

In this work, overall model interpretability relies on the inherent interpretability
of the base model (decision tree) on the one hand, and on the interpretability of
the attributes used at each node on the other hand, especially if these attributes
are high-level combinations of the raw ones, which is the case here. The goal
here is to assess the interpretability of the trained models from the point of view
of experts in the field. Expert physicists are able to interpret high-level built
features (physical formulas).

In 79% of the runs of the algorithm, the same feature is built: it is the sum
of the z component of the momentum (i.e. mass times speed) of three particles
resulting from a signal PV %-event, that can be written:

ps +plt +ph. (8)

12

According to momentum conservation, the total momentum of the output par-
ticles must be equal to the momentum of the input particles, here 10.6 GeV.
If the sum of the momenta of the output particles is inferior to 10.6 GeV, ad-
ditional particles have been produced from the collision and hence it is not a
signal event. Therefore, it is logical that this feature is relevant from the point
of view of physicists as well as for decision trees.

Another common feature consists of the angle between 7, the lowest energetic
photon and the sum of two detected photons 71 + s:

4(]972,?71 +p“/2)' (9)

A signal PV S_event involves a single v photon. However, an uncorrelated pho-

ton from background may be simultaneously detected: in this case, it resembles
the major background being 'y’y"o—events. The two ~ photons of a vwﬂo—event
are correlated since produced by the decay of a same particle. Therefore, this
angle is indeed a discriminative feature since it studies the correlation between
the two v photons to isolate background events.

4.6 Discussion

Overall, feature construction improves the classification score on CLAS12 data.
However, a plateau is observed or even a performance degradation for the C4.5
algorithm when a certain number of built features is exceeded. This can be
explained by over-fitting especially in the deepest nodes of the trees, in which
the amount of data is low. Building new features in these nodes seems useless
and even counterproductive.

The reason for the difference in scores between Fuzzy-std and Fuzzy-fibo re-
mains difficult to explain. Using the standard deviation of features may allow a
better generalization, while the Fibonacci search suffers from over-fitting. How-
ever, some of the built features can have a rather complex distribution, which
would disadvantage Fuzzy-std compared to Fuzzy-fibo. The latter can indeed
more easily optimize the width of the slope representing the fuzzy threshold.
Thus, the more features are built, the better Fuzzy-fibo can perform compared
to Fuzzy-std.

We chose not to fuzzify the threshold when evaluating candidate features
during feature construction. It is possible that the features found are therefore
not optimal for a given node. However, the computation time is shortened,
which is a weighty argument when one must carry out a large number of eval-
uations of candidate features during the evolution of a population, which is the
case in the used genetic programming algorithm. Moreover, obtaining the op-
timal feature is not necessary and could lead to over-fitting, as pointed out in
several works [31,35].

On the computational overhead, here is a worst-case approximation. The
experiments were conducted on several multicores machines (between 12 and
24 cores) with Intel CPUs (2.20 to 2.80 GHz). One feature construction takes
around thirty minutes, the longest part being the evaluation of the feature

13

candidates. This approximation is valid only at the root nodes as they use
the entire dataset. In the deeper nodes, the local data subsets are smaller
and then the feature search phase is shorter. The induction of the rest of the
tree is negligible when no feature is constructed. So for instance, building ten
feature in a fuzzy decision tree takes below five hours. The gain compared to
using feature construction as a preprocessing step comes mostly from the feature
fitness evaluation time: a single information gain is a lot faster to compute than
the induction of a whole decision tree. To give an order of magnitude, building
only one feature prior to model induction (hence inducing a model each time a
candidate feature is evaluated, which is done in [36]) takes about 24 hours on
the same machines.

Finally, the overall interpretability of the model can be discussed. The fea-
tures themselves can be interpreted by specialists in the field thanks to the
feature construction algorithm used [36]. On the other hand, the numerical re-
sults show that it is not necessary to build a feature at each node of the tree.
About fifteen or twenty features are sufficient to achieve an optimal classification
score. The feature space is therefore limited, which helps the overall readability
of the model.

5 Conclusion and perspectives

In machine learning, there usually exists a balance between performance and
interpretability of a model. In this work, we study the contribution of embedded
feature construction on the performances of fuzzy decision trees, while limiting
the overall dimensionality of the model, and producing only interpretable fea-
tures. The goal is to allow fuzzy decision tree induction algorithms to create
a more suitable data representation by creating new features that are correct
mathematical formulas of the original attributes.

This work proposes to integrate an algorithm for constructing interpretable
features in the general top-down algorithms for fuzzy decision trees induction.

In addition, this technique can be applied without loss of generality to other
learning algorithms including rule extraction algorithms. Although this study
focused on HEP applications for interpretability purposes, the proposed tech-
niques can be applied to any problem and more especially in the context of
other experimental sciences.

We plan to deepen the evaluation of this type of method by comparing the
built-in feature construction with the strategy of building one or more features
upstream of the induction of the tree. The results may indeed differ from the
point of view of performance but also of interpretability.

Acknowledgments

We thank all CLAS12 collaborators for the data simulation and reconstruction
software.

14

References

[1]

2]

[5]

(6]

L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Re-
gression Trees. Monterey, CA: Wadsworth and Brooks, 1984.

J. R. Quinlan, “Induction of decision trees,” MACH. LEARN, vol. 1, pp.
81-106, 1986.

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Ex-
plaining explanations: An overview of interpretability of machine learning,”
in 2018 IEEE 5th International Conference on Data Science and Advanced
Analytics (DSAA), Oct 2018, pp. 80-89.

D. Chen, G. Goyal, R. S. Go, S. A. Parikh, and C. G. Ngufor, “Improved
interpretability of machine learning model using unsupervised clustering:
Predicting time to first treatment in chronic lymphocytic leukemia,” JCO
Clinical Cancer Informatics, no. 3, pp. 1-11, 2019.

Y. Yuan and M. J. Shaw, “Induction of fuzzy decision trees,” Fuzzy Sets
and Systems, vol. 69, no. 2, pp. 125-139, Jan. 1995.

C. Marsala and B. Bouchon-Meunier, “Construction Methods of Fuzzy De-
cision Trees,” in JCIS’98, Durham, North Carolina, United States, Oct.
1998, pp. 17-20.

D. Dubois, H. M. Prade, and J. C. Bezdek, Fuzzy Sets in Approzimate Rea-
soning and Information Systems. Norwell, MA, USA: Kluwer Academic
Publishers, 1999.

J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993.

B. Bouchon-Meunier, C. Marsala, and M. Ramdani, “Learning from Im-
perfect Data,” in Fuzzy set methods in information engineering : a guided
tour of applications. John Wiley and Sons, 1997.

B. Bouchon-Meunier and C. Marsala, “Measures of Discrimination for the
Construction of Fuzzy Decision Trees,” in FIP’03 - International Confer-
ence on Fuzzy Information Processing, Beijing, China, Mar. 2003, pp. 709—
714.

H. Tanaka, T. Okuda, K. Asai et al., “Fuzzy information and decision in
statistical model,” Advances in Fuzzy Sets Theory and Applications, pp.
303-320, 1979.

C. Z. Janikow, “Fuzzy decision trees: issues and methods,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28,
no. 1, pp. 1-14, Feb 1998.

B. Chandra and P. Varghese, “Fuzzifying Gini Index based decision trees,”
Expert Systems with Applications, vol. 36, no. 4, pp. 8549-8559, 2009.

15

[14]

[15]

C. Olaru and L. Wehenkel, “A complete fuzzy decision tree technique,”
Fuzzy Sets and Systems, vol. 138, no. 2, pp. 221-254, Sep. 2003.

P. Espejo, S. Ventura, and F. Herrera, “A Survey on the Application of
Genetic Programming to Classification,” IFEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 40, no. 2,
pp. 121-144, Mar. 2010.

I. Swesi and A. Bakar, Recent Developments on Evolutionary Computation
Techniques to Feature Construction, 01 2020, pp. 109-122.

H. Guo, L. B. Jack, and A. K. Nandi, “Feature generation using genetic
programming with application to fault classification,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 35, no. 1,
pp- 89-99, Feb. 2005.

M. G. Smith and L. Bull, “Genetic Programming with a Genetic Algo-
rithm for Feature Construction and Selection,” Genetic Programming and

FEvolvable Machines, vol. 6, no. 3, pp. 265-281, Sep. 2005.
P. Sondhi, “Feature Construction Methods: A Survey,” p. 8, 2009.

K. Krawiec, “Genetic Programming-based Construction of Features for Ma-
chine Learning and Knowledge Discovery Tasks,” p. 15, 2002.

F. E. B. Otero, M. M. S. Silva, A. A. Freitas, and J. C. Nievola, “Genetic
Programming for Attribute Construction in Data Mining,” in Proceedings
of the 6th European Conference on Genetic Programming, ser. EuroGP’03.
Berlin, Heidelberg: Springer-Verlag, 2003, pp. 384-393.

K. Neshatian and M. Zhang, “Genetic Programming and Class-Wise Or-
thogonal Transformation for Dimension Reduction in Classification Prob-
lems,” in Genetic Programming, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2008, pp. 242-253.

B. Xue, M. Zhang, Y. Dai, and W. N. Browne, “PSO for feature construc-
tion and binary classification.” ACM Press, 2013, p. 137.

D. Gayrilis, I. G. Tsoulos, and E. Dermatas, “Selecting and constructing
features using grammatical evolution,” Pattern Recognition Letters, vol. 29,
no. 9, pp. 1358-1365, Jul. 2008.

S. Markovitch and D. Rosenstein, “Feature generation using general con-
structor functions,” Machine Learning, vol. 49, no. 1, pp. 59-98, Oct 2002.

U. Khurana, D. Turaga, H. Samulowitz, and S. Parthasrathy, “Cognito:
Automated feature engineering for supervised learning,” in 2016 IEEE 16th
International Conference on Data Mining Workshops (ICDMW), Dec 2016,
pp. 1304-1307.

16

[27]

[28]

[29]

[30]

[31]

D.-S. Yang, L. Rendell, and G. Blix, “A Scheme for Feature Construction
and a Comparison of Empirical Methods,” p. 6, 1991.

A. Tttner and M. Schlosser, “Discovery of Relevant New Features by Gen-
erating Non-Linear Decision Trees,” p. 6, 1996.

A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-Task Feature Learning,”
in Advances in Neural Information Processing Systems 19. MIT Press,
2007, pp. 41-48.

A. Ekart and A. Markus, “Using genetic programming and decision trees
for generating structural descriptions of four bar mechanisms,” Al EDAM,
vol. 17, no. 03, Aug. 2003.

F. Maes, P. Geurts, and L. Wehenkel, “Embedding Monte Carlo Search
of Features in Tree-Based Ensemble Methods,” in Machine Learning and
Knowledge Discovery in Databases. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, vol. 7523, pp. 191-206.

D. Garcia, A. Gonzélez, and R. Pérez, “A feature construction approach for
genetic iterative rule learning algorithm,” Journal of Computer and System
Sciences, vol. 80, no. 1, pp. 101-117, Feb. 2014.

D. Garcia, D. Stavrakoudis, A. Gonzalez, R. Perez, and J. B. Theocharis,
“A Fuzzy Rule-Based Feature Construction Approach Applied to Remotely
Sensed Imagery,” in Proceedings of the 2015 Conference of the International
Fuzzy Systems Association and the FEuropean Society for Fuzzy Logic and
Technology. Gijon, Spain.: Atlantis Press, 2015.

S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of oblique
decision trees,” J. Artif. Int. Res., vol. 2, no. 1, pp. 1-32, Aug. 1994.

C. T. Yildiz and E. Alpaydin, “Omnivariate decision trees,” IFEE Trans-
actions on Neural Networks, vol. 12, no. 6, pp. 1539-1546, Nov 2001.

N. Cherrier, J. Poli, M. Defurne, and F. Sabatié, “Consistent Feature
Construction with Constrained Genetic Programming for Experimental
Physics,” in 2019 IEEE Congress on Evolutionary Computation (CEC),
2019, pp. 1651-1659.

J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection, ser. Complex adaptive systems. Cambridge,
Mass: MIT Press, 1992.

M. Cintra, M.-C. Monard, and H. Camargo, “Fuzzydt- a fuzzy decision tree
algorithm based on c4.5,” in Proceedings of the 2nd Brazilian Congress on
Fuzzy Systems (CBSF), 01 2012, pp. 199-211.

17

