
HAL Id: cea-04564475
https://cea.hal.science/cea-04564475

Submitted on 30 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interpretable Machine Learning with Bitonic
Generalized Additive Models and Automatic Feature

Construction
Noëlie Cherrier, Michael Mayo, Jean-Philippe Poli, Maxime Defurne, Franck

Sabatié

To cite this version:
Noëlie Cherrier, Michael Mayo, Jean-Philippe Poli, Maxime Defurne, Franck Sabatié. Interpretable
Machine Learning with Bitonic Generalized Additive Models and Automatic Feature Construction.
23rd International Conference, Discovery Science 2020, Oct 2020, Thessaloniki, Greece. pp.386-402,
�10.1007/978-3-030-61527-7_26�. �cea-04564475�

https://cea.hal.science/cea-04564475
https://hal.archives-ouvertes.fr

Interpretable Machine Learning with Bitonic
Generalized Additive Models and Automatic

Feature Construction

Noëlie Cherrier12, Michael Mayo3, Jean-Philippe Poli1,
Maxime Defurne2 and Franck Sabatié2

1 CEA, LIST, 91191, Gif-sur-Yvette cedex, France.
2 Irfu, CEA, Université Paris-Saclay, 91191, Gif-sur-Yvette cedex, France.
3 Department of Computer Science, University of Waikato, New Zealand.

April 22, 2024

Abstract

In many machine learning applications, interpretable models are necessary for
the sake of trust or for further understanding the patterns in the data. In particular,
scientists often want models that elucidate knowledge and therefore may lead to
new discoveries. Currently, Generalized Additive Models (GAM) are gaining in-
terest in other application domains because of their ability to fit the data well while
at the same time being intelligible. Moreover, prior domain-specific knowledge is
often valuable to guide the learning. In this work, extensions and generalizations
of GAM are proposed to incorporate prior knowledge during the learning phase.
Specifically, the fitting method for GAM is modified so that it can fit the data with
bitonic functions. In physics for instance, the most discriminative variables often
present specific distributions with respect to the target variable, especially peaking
(i.e. bitonic) distributions. An algorithm is also described to build automatically
bitonic high-level features to be used in the GAM terms. Experiments on three
physics datasets are used to validate these ideas in conjunction with physics scien-
tists.

Keywords: Bitonicity, Generalized Additive Models, Experimental physics.

1 Introduction
A common obstacle in machine learning (ML) comes from a tradeoff between perfor-
mance and interpretability. Several application domains require interpretability to be
able to use ML models, for instance in healthcare [1]. In scientific domains in par-
ticular, interpretable models are needed for validation on real data and hopefully for
knowledge discovery. Arrieta et al. [2] notably provide a definition for interpretabil-
ity as “the ability to explain or to provide the meaning in understandable terms to a
human”. This work focuses on producing models interpretable by an expert.

1

0.000 0.005 0.010 0.015 0.020 0.025
invariant mass

0

100

200

300

400

500

600

Data histogram
Pi0 (background)
DVCS (signal)

0.000 0.005 0.010 0.015 0.020 0.025
invariant mass

0.0

0.1

0.2

0.3

0.4

0.5

Averaged target

Figure 1: Invariant mass γγ, a high-level variable often used to recognize π0 production
events. On the left, the unnormalized distributions of the two classes with respect to
the invariant mass γγ. On the right, the averaged target (corresponding to the ratio
between numbers of signal and background instances per bin).

Generalized Additive Models [3] (GAM) are often considered as both intelligible
and well performing models [4]. The predicted variable in a GAM is a sum of smooth
functions of the input variables. The final model is interpreted by observing the inferred
smoothed functions of each input variable independently. However, GAM must meet
a few requirements to remain interpretable, as they may still be overly complex [2].
According to Arrieta et al., the variables and smooth functions of the GAM must be
constrained “within human capabilities for understanding”. To fulfill this need, prior
knowledge should be incorporated about the problem.

For illustrative purposes, this work focuses on high-energy physics (HEP) prob-
lems. Generally, a preprocessing step of feature engineering is performed manually
based on domain expertise. In HEP, quantities related to energy, mass or momentum
balances which are dependent on the process of interest are derived from base vari-
ables. Although understandable and analyzable by construction, nothing guarantees
that these quantities are optimized for the analysis of the process of interest. The field
of feature construction (FC) aims at automating the feature engineering step. In this
way, interpretable FC is performed in this work to determine the discriminative vari-
ables of interest to be used in GAM.

In addition, prior knowledge on the expected distributions of the features can be in-
tegrated during the inference of GAM terms. A monotonicity assumption is often made
in the literature [5, 6, 7, 8]: one or several input variables are assumed to be monotonic
with respect to the target variable. The ML model is then constrained to respect this as-
sumption such that the predicted value of the model should be monotonic with respect
to the input variable(s). However, we observe that in the HEP field in particular, the
most frequently used high-level variables often present a local extremum (see Figure 1
for instance). Other applications can also benefit from bitonicity constraints, such as
dose–response analysis [9]. Bitonicity is introduced in this work as an extension to
monotonicity and enforced in GAM terms in the context of HEP applications.

The contributions of this work can be summarized as follows: firstly, a definition
of bitonicity and an algorithm to verify the bitonicity of a distribution is presented
(section 2); secondly, a method to constrain GAM terms to be bitonic is described

2

0.0 0.2 0.4 0.6 0.8 1.0

2.0

1.8

1.6

1.4

1.2

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.2

0.4

0.6

0.8

1.0

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.08

0.04

0.00

0.04

0.08

Figure 2: First two plots: two bitonic univariate functions. Third plot: bivariate bitonic
function (i.e. bitonic w.r.t its two variables). Fourth plot: non bitonic bivariate function,
since the y variable is increasing then decreasing for low x and the opposite for high x.

in section 3, including a bitonic FC algorithm. Several experiments are performed in
section 4 to validate the method. The overall interpretability of the generated models
is discussed in section 5.

2 Definition and verification of bitonicity
A function f of one real variable is commonly said to be monotonic if and only if
f(y) ≥ f(x) (resp. f(y) ≤ f(x) for the decreasing case) for any (x, y) in R such
that y ≥ x. Canini et al. [5] define a multi-variable function to be monotonic with
respect to feature d if and only if f(y) ≥ f(x) (resp. f(y) ≤ f(x)) for any two
feature vectors x, y in RD such that y[d] ≥ x[d] and y[m] = x[m] for m 6= d with
m, d ∈ {1, 2, ..., D}.

Definition 1 f is positively (resp. negatively) bitonic w.r.t. feature d if and only if for
each set of values [xm]m 6=d (setting all values of input X except feature d), it exists at
most one x∗d in the domain of feature d such that these two conditions are satisfied:

• f(X) ≥ f(X ′) (resp. f(X) ≤ f(X ′)) with X = (x1, ..., xd, ..., xD) and
X ′ = (x1, ..., x

′
d, ..., xD) for each xd and x′d such that xd ≤ x′d < x∗d,

• f(X) ≤ f(X ′) (resp. f(X) ≥ f(X ′)) with X = (x1, ..., xd, ..., xD) and
X ′ = (x1, ..., x

′
d, ..., xD) for each xd and x′d such that x∗d < xd ≤ x′d.

In contrast to the usual definition of bitonicity in the context of bitonic sorters, the cir-
cular shifts are here not taken into account. In addition, this definition includes fully
monotonic functions, e.g. if the value of x∗d is beyond the range of feature d. Quasi-
convex and quasi-concave functions are also bitonic functions (the reciprocal is false
for D > 1). Unimodality is a similar term mostly used for distributions. Figure 2 dis-
plays two examples of univariate bitonic functions, one example of a bivariate bitonic
function and one bivariate non bitonic function.

The bitonicity of a function is often hard to prove with an analytical method, ex-
cept for simple functions [10]. To numerically quantify the non-bitonicity degree of a
function, it is sampled into an ordered vector (sequence noted s), then compared to a
close bitonic sequence. Monotonicity can be assessed by comparing the sequence to its
cumulative maximum (for a non-decreasing sequence) or to its cumulative minimum
(non-increasing). The ith-component of the cumulative maximum is the maximum

3

value taken by the sequence between components 0 and i. A bitonic sequence is thus
equal to its cumulative maximum in its increasing part and to its cumulative minimum
in its decreasing part. Other techniques could be considered such as unimodal regres-
sion [11], but the previously described method using cumulatives is preferred because
it is simpler to implement and since the objective is to rank the features with respect to
each other, not to get the closest bitonic approximation. To summarize, the procedure
is as follows:

1. Find the point in the sequence leading to the best bitonic approximation using
cumulative minimum and maximum on each side of the point;

2. Compute the integral of the absolute difference between the sequence and its
bitonic approximation and normalize it by the length and amplitude of the se-
quence.

The bitonicity penalty of a sequence varies consequently from 0 to 0.5, the worst
case being a sequence of alternating zeros and ones. In practice, the maximum is not
reached in the experiments since a prior smoothing of the sequences is performed. The
bitonicity of a data feature is checked by looking at the variation of the target values
along this feature. However, applying directly the procedure detailed above to evaluate
bitonicity can be troublesome: first, data are often noisy; second, the target values take
a finite number of values in a classification task. To ensure robustness, the data feature
is preprocessed as follows (numbers have been determined empirically):

1. Take the target vector r = (r1, ..., rn) sorted along the evaluated feature
f = (f1, ..., fn). Average the values of r where f takes the same values.

2. A moving average box of size n
10 is propagated through the r vector.

3. If n > 1000, a median filter of size n
100 is applied to r.

4. Then if n > 10000, a median filter of size n
1000 is applied to r.

Finally, the bitonicity is evaluated on the smoothed r sequence. Figure 6 in subsec-
tion 3.5 illustrates examples of this procedure.

3 Bitonic functions and features for GAM
This section recalls the background on GAM and details the method to enforce bitonic-
ity before presenting a summary of the overall approach and describing bitonic FC.

3.1 Enforcing bitonicity of shape functions in GAM
Generalized Additive Models (GAM) [12] are of the form: g(ŷ) = c0 +

∑
i∈S fi(xi),

where g is the link function and S the set of features. The shape functions f can be
modeled in different ways, for instance using splines [13] fitted with backfitting [3] or
penalized iteratively reweighted least squares [14]. Other approaches fit tree ensembles
with gradient boosting [4, 15].

4

A method is proposed hereafter to enforce bitonicity for two types of shape func-
tions without loss of generality: splines and functions learnt by a neural network. The
idea in both cases is based on the exploitation of the regularization parameter.

Splines as commonly used in GAM are written f(x) =
∑
k βkbk(x) with bk basis

functions (B-splines) and βk the parameters to fit. The fitting of f is done by min-
imizing the penalized sum of squares: minβ

{∥∥y −BTβ∥∥2 + λβTPβ
}

with B the

vector of bk(x) and λβTPβ a penalty term. P can for instance penalize the differences
between adjacent βk, or the second derivative of the shape function. The larger the λ
parameter, the smoother the final function. This smoothing parameter is usually opti-
mized (with respect to a performance metric) by generalized cross-validation (GCV)
or restricted maximum likelihood (REML).

minW {L (y, fW (X)) + λR(W)}
The following procedure permits to obtain a bitonic shape function:

1. Fit the shape function f with GCV or REML and retrieve smoothing parameter
λ0.

2. Check the bitonicity of f by applying it to a regular test sequence s spanning the
range of x and assess bitonicity of f(s) using the procedure detailed in section 2.

3. If f(s) is bitonic, then accept function f as bitonic. Else set λ = λµ with µ > 1,
refit f with imposed λ and go back to step 2.

As long as the test sequence s is large enough to account for the complexity of f , the
proposed procedure permits to obtain a bitonic function at the cost of multiple refits.
Moreover, this procedure will always converge since an infinite λ leads to a linear
function. The choice of µ balances between speed and performance: the performance
tends to decrease as λ increases and moves off the optimum found by GCV or REML.

The procedure is similar for shape functions learnt by a neural network. The
weights of the network must minimize a cost function plus a regularization term ex-
pressed as λR(W), with R for instance a L1 or L2 regularization of the weights. The
intuition behind λ is the same as for spline fitting: the larger the λ, the smoother the
resulting function. To enforce bitonicity of the learnt function, the same procedure
than for splines is applied but setting the first parameter λ0 as a hyperparameter (small
enough).

An experimental validation of this approach is conducted in the next subsection.

3.1.1 Related work on unimodal regression with splines

Some previous works constrain the shape of splines by adding linear constraints to
the optimization problem, producing functions that are increasing, decreasing, convex,
concave among others [16]. In [9], data are fitted by unimodal B-splines, namely a
function with a single local maximum. However, it requires knowing beforehand the
location of the maximum to formulate the linear constraint. One must either try all
possible locations of the maximum (because of possible noise, the global maximum
may not be the proper one for unimodal regression), or perform a more computation-
ally intensive Bayesian approach. Moreover, the authors do not consider other forms

5

of bitonicity including monotonic functions and decreasing-increasing functions. In
contrast, our approach does not require prior knowledge on the type of bitonicity nor
on the optimum location. Taking their approach is more time-consuming because of
multiple REML computations: two for each monotonicity type, and twice the num-
ber of knots for the two other bitonicity types (the knots correspond to the possible
locations of the optimum). Our approach computes REML once and then only solves
consecutive penalized least squares problems by increasing λ while the function is not
bitonic. Moreover, it can be used with any shape function that supports penalization.

3.2 Validation of the principle to enforce bitonicity of shape func-
tions

The previously presented method is tested on a toy dataset of 1000 instances displayed
on Figure 3 (data generated with the make classification function of scikit-
learn [17]). Experiments are conducted by fitting a bivariate GAM term, either with
splines or with a multilayer perceptron (MLP), while trying different values for the
regularization parameter λ. The evolution of the F1 score and the bitonicity penalty
obtained by the fitted function is plotted on Figure 4. Figure 5 depicts the fitted terms
at small, large, and optimal λ (for which the bitonicity penalty is 0).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 0
1

Figure 3: Toy dataset

10 4 10 3 10 2 10 1 100 101 102 103

0.86

0.88

0.90

0.92

0.94

F1
 s

co
re

Neural network

F1 score
Bitonicity

10 4 10 3 10 2 10 1 100 101 102 103

0.86

0.87

0.88

0.89

0.90

0.91

F1
 s

co
re

Splines

F1 score
Bitonicity

0.1

0.0

0.1

0.2

0.3

0.4

0.5

B
it
o
n
ic

it
y

p
en

al
ty

0.00

0.05

0.10

0.15

0.20

B
it
o
n
ic

it
y

p
en

al
ty

Figure 4: Evolution of F1 score and function bitonicity
against regularization parameter λ.

These plots show an experimental validation of the proposed method, as the bitonic-
ity decreases until reaching 0 definitively as λ increases. Moreover, these plots give an
interesting comparison between spline and neural network fitting methods: while the
spline terms never obtain a score below 0.8, the score of the neural network fitted terms
finally drops to 0 (outside the scope of the plot) shortly after reaching bitonicity.

3.3 Building a complete model with gradient boosting
The following algorithm builds a complete GAM with bitonic shape functions. For a
binary classification task, a list of inputs X and a target vector y are considered. A
standard GAM can be modeled by a sigmoid of the sum F (x) of the GAM terms.
In the proposed method, the GAM is built iteratively, building a feature at each step.
A first prediction model predicts p0 for each x in X , p0 being the proportion of the
majority class. The objective is to minimize the cross-entropy between the target y and

6

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

λ = 0.0001 λ = 2.683 λ = 10

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.2

0.4

0.6

0.8

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.500089

0.500092

0.500095

0.500098

0.500101

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0
0

0
.1
0

0
.2
0

0
.3
0

0
.4
0

0
.5
0

0
.6
0

0
.7
0

0
.8
0

0
.9
0

1
.0
0

λ = 0.0001 λ = 1 λ = 10

Figure 5: Top: spline models fitted on toy dataset. λ = 2.683 corresponds to the
minimal λ value for which the bitonicity equals 0. Bottom: MLP models fitted on toy
dataset. λ = 1 corresponds to the minimal λ value for which the bitonicity equals 0.

the prediction p(x), noted p:

L(F (x)) = − (y log(p) + (1− y) log(1− p)) , p(x) =
1

1 + e−F (x)
. (1)

A gradient boosting method is applied to iteratively improve this convex loss function.
At the n-th step, a term hn(x) is added to the current GAM: it is fitted to the current
objective while enforcing its bitonicity using the set {(xi, ri,n)}.

ri,n = −∂Li(Fn−1(x))
∂Fn−1(x)

= yi − pi,n−1, Fn(x) = Fn−1(x) + αnhn(x). (2)

A gradient descent with its own learning rate β determines the learning rate αn to
minimize the averaged cross-entropy. αn is directly linked to the importance of the
new term in the global result.

The remaining concern is to carefully select the involved variable x in each term hn.
In HEP, relevant variables are often high-level combinations of some base variables, as
stated in the introduction. At each step of the boosting algorithm, one feature is built
adapted to the ongoing regression problem with the FC algorithm presented in next
subsection. The overall process is summarized in Algorithm 1.

3.4 Automatic construction of bitonic features
This subsection proposes an adapted bitonic feature construction (BFC) algorithm. The
literature in automatic FC is very abundant and a survey can be found in [18] or [19]. A
constrained genetic programming algorithm is proposed in [20] to build interpretable

7

Algorithm 1: FCGAM algorithm
Input: data used to build the features, of size (m, d), y target vector of

length m
n the number of GAM terms to learn

Initialization:
p← p0 proportion of the majority class in y, F ← log

(
p

1−p

)
, r ← y− p

for i← 0 to n // one iteration builds one term of the
GAM

do
(1) Build one single feature z using FC algorithm with r as the target for the

fitness function. Bitonicity may or may not be enforced at this step.
(2) Train a single GAM term on the built feature z with target r. Bitonicity

may or may not be enforced at this step.
h← predict(z), g ← +∞, α← random(0,100)
while |g| > ε do

∼
F ← F +αh,

∼
p ← 1

1+e−
∼
F

, g ← 1
D

∑
k h(

∼
p− y), α← α−βg

F ← F + αh, p← 1
1+e−F , r ← y − p

features for HEP applications. One of the contributions is to use a grammar to enforce
the respect of physical units during the construction of a new feature.

The constrained FC method of [20] is reused to build features for GAM terms. At
a given step n, a single GAM term that fits the target rn = y − pn−1 is added to
the model. The fitness function for FC is adapted to better suit the tackled problem
of this work. A shallow decision tree with maximum four leafs is trained on the set
{(zi, ri,n)}, zi being the candidate feature. Thus, the decision tree can only perform
cuts on the candidate feature and observe its discriminating power. The fitness of the
candidate feature is minus the RMS (Root Mean Squared) error between the prediction
of the shallow tree and the target rn. To enforce bitonicity, a bitonicity penalty term is
added to the fitness of zi. This penalty term b is the result of applying the procedure
of section 2 on the sequence of residuals rn, sorted along zi. In the end, the fitness of
the candidate feature zi is f = −(RMS + b), to be maximized during the evolution
process.

3.5 Algorithm variants and bitonicity threshold
We consider four variants of Algorithm 1 regarding the bitonicity constraints (summa-
rized in Table 1). Bitonicity can be enforced or not during FC (label (1) in Algo-
rithm 1) or for shape functions (label (2)).

To activate the bitonicity constraint for shape functions, a parameter bmax is set:
if the bitonicity of a built feature is below bmax, the associated shape function will be
forced to be bitonic. Looking at various features from the three datasets used in the
experiments, a near-optimal bitonicity threshold bmax can be set at 0.04 (see Figure 6).

8

Table 1: Four variants of Algorithm 1. FCGAM bmax makes the shape functions
bitonic if and only if the feature is itself bitonic, i.e. if and only if the bitonicity b
of the feature is below bmax.

Name Bitonicity enforced in FC Bitonicity enforced in shape func-
tions

FCGAM ∅ No No
FCGAM bmax No Yes if b ≤ bmax
FCGAM ∞ No Yes
BFCGAM Yes Yes

b �
0.04

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2500 5000 7500 10000 12500 15000 17500

0.2

0.4

0.6

Smoothed output probability
0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8
Output probability

0 20000 40000 60000 80000

0.2

0.4

0.6

Smoothed output probability

MAGIC: fAlpha (b = 0.000157) Higgs: DER mass MMC (b = 0.000200)

b ≤ 0.04

0 2000 4000 6000 8000 10000 12000

0.55

0.60

0.65

0.70

0.75
Smoothed output probability, isotonic regression, b=0.0092

0 2000 4000 6000 8000 10000 12000

0.55

0.60

0.65

0.70

0.75
Smoothed output probability

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2500 5000 7500 10000 12500 15000 17500

0.30

0.35

0.40

0.45

0.50
Smoothed output probability

DVCS: pT p (b = 0.0130) MAGIC: fConc1 (b = 0.0383)

b ≥ 0.04

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

Output probability

0 20000 40000 60000 80000

0.2

0.3

0.4

0.5

Smoothed output probability
0 200 400 600 800 1000

0.0

0.2

0.4

0.6

Output probability

0 20000 40000 60000 80000

0.32

0.33

0.34

0.35

0.36

Smoothed output probability

Higgs: DER met phi centrality (b = 0.0491) Higgs: DER pt tot (b = 0.0847)

b �
0.04

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2500 5000 7500 10000 12500 15000
0.25

0.30

0.35

0.40

0.45
Smoothed output probability

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0
Output probability

0 2000 4000 6000 8000 10000 12000

0.59

0.60

0.61

0.62

0.63
Smoothed output probability

MAGIC: fM3Trans (b = 0.206) DVCS: phi g1 (b = 0.284)

Figure 6: Feature bitonicity examples on all three datasets, from smaller to higher
bitonicity penalties. On the graph is plotted the output probability after smoothing
(i.e. the vector used for the computation of the bitonicity penalty). In dotted black
is the cumulative minimum/maximum that is the reference to compute the difference
and get the bitonicity penalty corresponding to the area between the dotted line and the
orange feature data. The red vertical line marks the hypothesis of the algorithm for the
extremum.

4 Experiments

4.1 Experimental setup
4.1.1 Datasets

Three HEP binary classification problems are considered in this study, with very differ-
ent experimental setups and studied processes. However the objective is the same: to

9

isolate signal instances from one or several background sources. Our focus on HEP
problems with information about the input variables complicates experiments on a
larger number of datasets. The DVCS dataset comprises 30 raw features for 14730 in-
stances, the Higgs dataset [21] 17 raw features for 100000 used instances, the MAGIC
dataset [22] 10 raw features for 19020 instances. Detailed descriptions of the DVCS
and Higgs datasets are provided in section 5 along with an interpretability discussion.

4.1.2 Shape functions parameters

The GAM version with neural network as shape function uses a MLP regressor with
two hidden layers of size 100 each, Adam optimizer with a constant learning rate of
0.001 and rectified linear unit as activation function. The shape (100,100) of the net-
work is not fine-tuned since the objective is to have sufficient degrees of freedom to
handle the dimensionality of the problem, while letting the optimization of the regu-
larization parameter (through bitonicity requirement) compensate the potential overfit-
ting. These parameters were found by quick testing on the datasets.

As for the terms modeled with splines, penalized B-splines are used with 14 knots
spaced along the quantiles of the feature.

4.1.3 Other hyperparameters

In the FC algorithm, we set the population size to 500 and the number of generations
to 70. The multiplying factor µ to increase the regularization λ if the resulting shape
function is not bitonic is arbitrarily set to µ =

√
10. The β parameter for the gradient

descent of the learning rates αn is set to 30 and the demanded maximum ε for the
gradient is set to 10−5. These parameters have been experimentally proven to lead
to convergence in almost all cases for the experimental datasets. In the case an αn
rate was not found, the current iteration n of the FCGAM algorithm is dropped and
recomputed (a new FC and shape function fit are done). 10 independent runs for each
configuration are performed because of the stochastic nature of genetic programming in
FC. The mean and standard deviation of the F1 score are presented for each dataset and
algorithm configuration, averaged over the 10 runs and doing 5-fold cross-validation
(50 runs in total for each numerical result).

4.2 Performance comparison
Table 2 presents the results obtained while applying the four variants detailed in sub-
section 3.5 on the three datasets using either splines or MLP as GAM shape functions,
along with three baselines. A first observation is that the FCGAM algorithm gives bet-
ter results than the baselines on DVCS and MAGIC datasets. One could have expected
the opposite, since more complex and less interpretable algorithms such as a neural
network or XGBoost are supposed to perform better on complex problems, which is
the case for the Higgs dataset.

Apart from the baselines comparison, the fourth version (BFCGAM) always gives
worse scores than the no bitonicity FCGAM ∅ version, in a significant manner for the
Higgs dataset in particular. In all cases, letting the FC free and enforcing bitonicity

10

Table 2: F1 score (mean and standard deviation over 10 runs for each fold in a 5-
fold cross-validation) of the proposed methods on three datasets, compared with a few
baselines. The best score for each dataset is in bold font, while the best variant for
splines and for MLP is underlined.

DVCS Higgs MAGIC

Baselines
(100,100) MLP 0.751 ± 0.007 0.673 ± 0.022 0.795 ± 0.012
XGBoost 0.772 ± 0.005 0.587 ± 0.002 0.797 ± 0.009
GAM with boosted DT 0.748 ± 0.004 0.539 ± 0.002 0.781 ± 0.008

FCGAM with splines
FCGAM ∅ 0.792 ± 0.012 0.626 ± 0.015 0.806 ± 0.011
FCGAM bmax 0.793 ± 0.006 0.625 ± 0.013 0.806 ± 0.011
FCGAM ∞ 0.788 ± 0.007 0.609 ± 0.025 0.804 ± 0.012
BFCGAM 0.789 ± 0.007 0.545 ± 0.031 0.792 ± 0.012

FCGAM with (100,100) MLP
FCGAM ∅ 0.792 ± 0.009 0.627 ± 0.013 0.808 ± 0.012
FCGAM bmax 0.792 ± 0.008 0.628 ± 0.013 0.807 ± 0.011
FCGAM ∞ 0.792 ± 0.006 0.625 ± 0.013 0.807 ± 0.012
BFCGAM 0.788 ± 0.005 0.529 ± 0.057 0.785 ± 0.012

only on relevant shape functions (i.e. those for which the feature is actually bitonic) in
the FCGAM bmax variant improves the score at the level of the FCGAM ∅ version.
Even if not significantly, the FCGAM bmax version with bmax = 0.004 threshold
sometimes gets better results than the FCGAM ∅. One conclusion for this is that
forcing bitonicity may be good for interpretability (this will be discussed in section 5),
but can be too restrictive: some really discriminative features are not bitonic and are
indispensable to get a good score. Next subsection discusses the bitonicity potential
of the datasets and why some datasets behave well under bitonicity constraint while
others do not.

4.3 Bitonicity potential of the different datasets
Enforcing bitonicity on built features or shape functions will only be beneficial if there
exist a discriminative set of bitonic features for a given dataset. Figure 7 displays the
boxplots of the features bitonicities: those already present in the dataset (raw features)
and those which have been found to be discriminative through the FC process (built
features) without the bitonicity constraint. Therefore, the built features boxplots repre-
sent well the distribution of the most discriminative features for a given dataset. These
plots have been made with all the features built in the FCGAM ∅ configuration, so
around 1000 built features and around 10 raw features for each dataset.

The bitonicity of the raw features seems not to influence the bitonicity of the built
high-level features nor the potential of a dataset to get good results while enforcing

11

DVCS raw DVCS built Higgs raw Higgs built MAGIC raw MAGIC built
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Fe

at
ur

e
bi

to
ni

cit
y

pe
na

lti
es

Figure 7: Boxplots of features bitonicities. The box indicates the first and third quan-
tiles with an orange line at the median, while the whiskers extend to the farthest data
point within 1.5 IQR (interquartile range) after the box. The horizontal dotted red line
represents the bitonicity threshold bmax set to 0.04 to trigger the bitonicity constraint
on the shape function.

bitonicity. Indeed, the Higgs dataset presents mainly bitonic raw features whereas the
scores are impaired under bitonicity constraints, when it is the opposite for DVCS.

The large majority of the features built for the MAGIC dataset are bitonic, without
the need to add a bitonicity penalty term during the FC process. It is then logical that
the scores of the MAGIC dataset are not penalized when adding this constraint which
is already satisfied. However, the most discriminative features found for the Higgs
dataset (i.e. the built features) are often not bitonic, hence the decrease in score when
trying to force the bitonicity. Not all the features built for the DVCS dataset are bitonic,
however the bitonicity penalty does not impair the performance on this dataset. Some
redundancy may indeed be present between the built features, hence all the required
information to perform a proper classification can be contained in the subsample of
bitonic features.

5 Discussion on interpretability
The goal here is to assess the interpretability of the trained models from the point of
view of experts in the field. Notably, an explicit textual explanation of the model is not
needed. Indeed, expert physicists are able to interpret high-level built features (physical
formulas) and shape functions (can be viewed as function curves).

The global GAM consists of 20 terms, namely 20 shape functions each associated
to a built feature. Figure 8 displays the evolution of the classification score for each
dataset against the number of GAM terms. Interpretability decreases with increasing
number of GAM terms hence increasing number of features. This is a trade-off that
experts must consider depending on their own criteria.

The focus now is on the DVCS and Higgs datasets only since we are not experts in
the MAGIC classification problem. An analysis of one feature and the associated fitted
shape function for each of the DVCS and Higgs datasets is performed hereafter. Figures
9 and 10 are presented in the same way: the left plot is the target vector binned along

12

0 5 10 15 20
Iterations

0.68

0.70

0.72

0.74

0.76

0.78

0.80
F1

 sc
or

e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.68

0.70

0.72

0.74

0.76

0.78

0.80

F1
 sc

or
e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
 sc

or
e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F1
 sc

or
e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

Splines

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

0 5 10 15 20
Iterations

0.0

0.2

0.4

0.6

0.8

F1
 sc

or
e

Neural network

FCGAM_
FCGAM_bmax

FCGAM_
BFCGAM

DVCS dataset Higgs dataset MAGIC dataset

Figure 8: Convergence curves for all three datasets with splines (on the top) or neural
network (on the bottom) as shape function. The evolution of the F1 score is plotted
against the number of iterations in the boosting algorithm (Algorithm 1).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.4

0.5

0.6

0.7

0.8

0.9

Output probability

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
1.0

0.5

0.0

0.5

1.0

1.5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.5

0.0

0.5

1.0

1.5

Non bitonic term Bitonic term

Figure 9: DVCS: ∠(pγ2 , pγ1 + pγ2). Lower value means higher probability to have a
signal event.

the built feature (so the y value on the plot is the averaged target for a bin), the central
plot is a GAM term learnt for this feature using splines without bitonicity enforcement,
the right plot is a GAM term learnt using splines and with bitonicity enforcement. For
the DVCS and Higgs datasets, the physical problem is first explained followed by an
interpretation of a frequent GAM term.

5.0.1 DVCS dataset

At Jefferson Laboratory, an electron beam scatters off protons. The objective is to
discriminate between the γDV CS-events whose final state is composed of an electron,
a proton and a photon noted γ, and the γγπ

0

-events which have a similar final state,
except that two correlated γ photons are produced. The three-dimensional momentum
(i.e. mass times speed) and angles are available for each identified particle.

Figure 9 illustrates a DVCS built feature: the angle between γ2 the lowest energetic

13

-300 -200 -100 0 100 200 300

0.2

0.3

0.4

0.5

0.6

Output probability

300 200 100 0 100 200 300

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Non bitonic term

300 200 100 0 100 200 300

1.0

0.5

0.0

0.5

1.0

Bitonic term

Figure 10: Higgs dataset: φlep − φmissingtE . Higher value means higher probability
to have a signal event.

H
lep
ν
ν ν

h

lep

missing
angle = 0°

Wlep
ν
h

lep missing
angle = 180°

Figure 11: Illustration of signal events on the left and one type of background events
on the right.

photon and the sum of two detected photons γ1 + γ2. A signal γDV CS-event involves
a single γ photon. But an uncorrelated photon from background may be simultane-
ously detected. It then resembles the major background being γγπ

0

-events. The two γ
photons of a γγπ

0

-event are correlated since produced by the decay of a same particle.
Therefore, the distribution of this angle is not random and presents a peak around 5
degrees. However, the oscillations in the non bitonic term are probably learnt from the
noise present in the data. The bitonic term permits to solve this irregularity: experts
can visually tell that it generalizes better and is more consistent with their expectations.

5.0.2 Higgs dataset [21]

At CERN, Higgs particles are notably produced out of the collisions of two protons.
The objective of the dataset is to detect Higgs bosons decaying into two τ -particles.
Geometrical features are available for each detected particle.

The angle between the lepton and a hypothetical missing particle illustrated by
Figure 10 is one of the most common feature built by a FCGAM for the Higgs dataset.
Indeed this missing momentum actually relates to undetectable particles called neu-
trinos. In signal events, the neutrinos are in majority emitted in the same direction
than the lepton. However, in several background processes, only one neutrino is emit-
ted in the opposite direction of the lepton (see Figure 11). Therefore, the probability
to have a signal event is higher at 0 degrees and at its lowest at ±180 degrees. This
feature is highly discriminative but not bitonic. Enforcing bitonicity on this feature is
counterproductive.

14

6 Conclusion
GAM are widely considered as intelligible models, suitable for applications where
transparency and expert interpretation is needed. In this work, bitonicity is introduced
to take into account prior knowledge about HEP applications. A method is proposed
to test the bitonicity of a feature and to enforce it when fitting shape functions. Feature
construction is also incorporated in the process since raw variables in HEP are often
not the most relevant for classification purposes and since interpretable models often
lack of sufficiently complex internal representation of data.

Experiments on three HEP datasets show that enforcing bitonicity on terms asso-
ciated with bitonic features increases the interpretability potential and generalization
power of the global model, with a performance classification score comparable to the
score obtained without constraint, if not greater. However, some datasets have shown
to be more adapted to the bitonicity approach, depending on the bitonicity degree of
the most discriminative features for the classification problem.

In future work, we plan to deepen our studies on the reasons why bitonicity is
working better on some datasets than on others. In addition, we started conducting
experiments including 2D terms that involve pairwise interactions between features to
complete our existing studies on univariate GAM terms.

Acknowledgments
We would like to thank the CLAS12 collaboration for the simulation software.

References
[1] Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining

explanations: An overview of interpretability of machine learning. In: 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA). pp.
80–89. IEEE (2018)

[2] Arrieta, A.B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garcı́a, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Explainable
artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges
toward responsible ai. Information Fusion 58, 82–115 (2020)

[3] Hastie, T., Tibshirani, R.: Generalized additive models. Statist. Sci. 1(3), 297–310
(08 1986)

[4] Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and re-
gression. In: Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 150–158 (2012)

[5] Fard, M.M., Canini, K., Cotter, A., Pfeifer, J., Gupta, M.: Fast and flexible mono-
tonic functions with ensembles of lattices. In: Advances in Neural Information
Processing Systems. pp. 2919–2927 (2016)

15

[6] Fard, M.M., Canini, K., Cotter, A., Pfeifer, J., Gupta, M.: Fast and flexible mono-
tonic functions with ensembles of lattices. In: Advances in Neural Information
Processing Systems. pp. 2919–2927 (2016)

[7] Gupta, M., Cotter, A., Pfeifer, J., Voevodski, K., Canini, K., Mangylov, A.,
Moczydlowski, W., Van Esbroeck, A.: Monotonic calibrated interpolated look-
up tables. The Journal of Machine Learning Research 17(1), 3790–3836 (2016)

[8] Nguyen, A.p., Martı́nez, M.R.: Mononet: Towards interpretable models by learn-
ing monotonic features. arXiv preprint arXiv:1909.13611 (2019)

[9] Köllmann, C., Bornkamp, B., Ickstadt, K.: Unimodal regression using bernstein–
schoenberg splines and penalties. Biometrics 70(4), 783–793 (2014)

[10] Barthelemy, T.: On the unimodality of METRIC Approximation subject to nor-
mally distributed demands (2015)

[11] Stout, Q.F.: Unimodal regression via prefix isotonic regression. Computational
Statistics & Data Analysis 53(2), 289–297 (2008)

[12] Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with
pairwise interactions. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 623–631 (2013)

[13] Wood, S.N.: Thin-plate regression splines. Journal of the Royal Statistical Society
(B) 65(1), 95–114 (2003)

[14] Wood, S.: Generalized Additive Models: An Introduction with R. Chapman and
Hall/CRC, 2 edn. (2017)

[15] Friedman, J.H.: Greedy function approximation: A gradient boosting machine.
Ann. Statist. 29(5), 1189–1232 (10 2001)

[16] Pya, N., Wood, S.N.: Shape constrained additive models. Statistics and comput-
ing 25(3), 543–559 (2015)

[17] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

[18] Sondhi, P.: Feature construction methods: a survey. sifaka. cs. uiuc. edu 69, 70–
71 (2009)

[19] Swesi, I.M.A.O., Bakar, A.A.: Recent developments on evolutionary computation
techniques to feature construction. In: Asian Conference on Intelligent Informa-
tion and Database Systems. pp. 109–122. Springer (2019)

[20] Cherrier, N., Poli, J.P., Defurne, M., Sabatié, F.: Consistent feature construction
with constrained genetic programming for experimental physics. In: 2019 IEEE
Congress on Evolutionary Computation (CEC). pp. 1650–1658. IEEE (2019)

16

[21] Adam-Bourdarios, C., Cowan, G., Germain, C., Guyon, I., Kegl, B., Rousseau,
D.: Learning to discover: the Higgs boson machine learning challenge - Docu-
mentation (2014)

[22] Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

17

