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Abstract

A good feature representation is a determinant factor to achieve high
performance for many machine learning algorithms in terms of classifi-
cation. This is especially true for techniques that do not build complex
internal representations of data (e.g. decision trees, in contrast to deep
neural networks). To transform the feature space, feature construction
techniques build new high-level features from the original ones. Among
these techniques, Genetic Programming is a good candidate to provide
interpretable features required for data analysis in high energy physics.
Classically, original features or higher-level features based on physics first
principles are used as inputs for training. However, physicists would ben-
efit from an automatic and interpretable feature construction for the clas-
sification of particle collision events.

Our main contribution consists in combining different aspects of Ge-
netic Programming and applying them to feature construction for exper-
imental physics. In particular, to be applicable to physics, dimensional
consistency is enforced using grammars.

Results of experiments on three physics datasets show that the con-
structed features can bring a significant gain to the classification accuracy.
To the best of our knowledge, it is the first time a method is proposed for
interpretable feature construction with units of measurement, and that
experts in high-energy physics validate the overall approach as well as the
interpretability of the built features.

Keywords: feature construction, grammar-guided genetic program-
ming, high-energy physics, interpretability

1 Introduction

The performance of many supervised machine learning (ML) algorithms de-
pends on the feature set provided with the training examples. Inappropriate



representation of data may indeed lead to limited performance, while carefully
selected features may improve the performance of the subsequent learning al-
gorithm [1]. This is especially true for algorithms that have a limited ability
to build an optimal internal representation of data. For instance, classifiers
such as decision trees or some rule extraction algorithms represent the data as
hyper-rectangles, which is not optimal in many applications but has the advan-
tage of producing explainable outputs. In contrast, “black box” algorithms such
as deep neural networks build a much more complex internal representation of
data, which is often more efficient but discards any explanation for the final
output [2]. Yet the readability of features is a requirement in several applica-
tions. A full transparency of the model is for instance essential to its acceptance
in sensitive applications such as national security, medical diagnoses or bank-
ing activities. Additionally, the readability of features enables supervision and
re-usability by experts of the field, which is needed in particular in the case of
high-energy physics (HEP) experiments.

Run with different accelerator facilities across the world, such experiments
consist in colliding particles with each other to probe their internal structure
and/or search for physics beyond the Standard Model. Detectors are placed
around the collision site for the reconstruction of the final state of the collision,
i.e. the determination of the charge, mass and momentum of all particles after
collision.

We focus here on distinguishing signal events from background in several
HEP experiments. The algorithms must be trained on labeled Monte-Carlo
simulated data, to be later applied to unlabeled real data from the experiments.
Although the simulation programs are very sophisticated, they may not ex-
actly reflect the reality (background processes may not be all included, modeled
physics are not exactly the same, etc.). An interpretable classification model
is therefore preferable to better analyze the predictions on real data. Derived
from physics first principles such as energy/momentum conservation, high-level
variables are added by physicists to the initial set of input features to improve
the classification, whether it is based or not on machine learning algorithms.

We develop an algorithm derived from Genetic Programming (GP) to build
automatically high-level features that are consistent with physics laws and that
help the classification task. Next section reviews existing techniques for feature
construction, and then details methods to constrain GP. The section afterwards
presents our derived GP method adapted to experimental physics applications.
Experiments and comparisons are conducted then. We finally conclude the
paper and give perspectives.

2 Related work

2.1 Feature construction

Feature engineering is the general processing step that transforms the feature
space to make it better suited to the learning task. Several methods perform



feature engineering indirectly, like Support Vector Machines (SVM) [3] or Deep
Neural Networks [4]. Dimensionality reduction algorithms such as Principal
Component Analysis or Linear Discriminant Analysis also build new features
which are often complex non-linear combinations of the primary ones and are
not interpretable.

Both feature selection and feature construction methods split into three cate-
gories. Firstly, filters rank the features independently of any classifier. Secondly,
wrappers use the score obtained by a classification algorithm. Finally, embed-
ded methods gather algorithms that perform feature construction at the same
time as the optimization, such as SVM. We are interested only in the first two
categories.

A review of several feature construction methods can be found in [5]. The
methods detailed in the rest of this section construct new numerical features
according to a list of allowed transformations on the dataset. The new features
are combinations of operators applied on the original features, and can con-
sequently be represented by trees in which the nodes are the transformations
and the leaves are the original features. These numerical feature construction
methods received increased attention in the past years.

A number of methods use tree-based algorithms to explore the search space.
For instance, FICUS [6] is a general framework for feature construction, gener-
alizing several previous works in the field. It searches new numerical features
using information gain in a decision tree, given an input dataset and a list of
allowed transformations. Likewise, Cognito [7] is based on a transformation
tree aiming at recommending a series of transformations. The tree is explored
depending on the current performances obtained within the branches. In [§],
the authors continue this work using reinforcement learning to learn the opti-
mal exploration strategy. However, this last method requires training on several
datasets before application of the optimal strategy on the desired dataset.

Another class of feature construction methods gathers evolutionary methods.
Although Particle Swarm Optimization (PSO) is already widely used in feature
selection, few works use PSO for feature construction. Reference [9] associates
one particle with one constructed feature, the dimensionality being the number
of original features. However, this method does not include the choice of op-
erators to combine the features. Reference [10] expands the dimensionality to
include the selection of operators. They propose two representations: pair and
array representation, to enable the evolution to optimize the operators as well as
the features used. However, the space of features that can be constructed with
these methods is limited, since only binary operators can be included. More-
over, the algorithm combines the features in a way that one cannot represent a
constructed feature by a balanced binary tree.

Genetic Programming (GP) is a popular method among the feature con-
struction methods. A survey on applications of GP to classification can be
found in [11]. GP is an evolutionary computation technique that evolves tree
representations of computer programs [12]. In the context of feature construc-
tion, this refers to a combination of several features thanks to a list of allowed
operators (e.g. +, —, X, +). The main steps are as follows:



1. Start from a random initial population
2. Evaluate its individuals with some fitness function
3. Loop until termination criterion:

(a) Perform selection

(b) Perform mutation and crossover to get to the next generation of
individuals

(c¢) Evaluate new individuals
4. Return the individual with the highest fitness

In wrapper methods, the fitness of the individual representing an evolved feature
set is the score of a predictive model using these features [13]. In filter methods,
the fitness measure can be for instance the information gain [14,15], entropy [16],
or the Fisher criterion [17]. A comparison of wrapper and filter approaches in
the case of genetic programming is drawn in [18]. GP based feature construction
methods can construct one feature to add to the original feature set [14,19], or
several at a time [13,20], etc.

Finally, Grammatical Evolution (GE), very similar to GP, has been success-
fully applied to feature construction [21].

We choose to adapt GP algorithm to our problem. Its main asset is its flex-
ibility: one can build one or several features at a time, choose the maximum
complexity of the features, etc. Furthermore, there is abundant literature about
techniques to add constraints to GP such as the respect of dimensional consis-
tency (of physical units and of the feature dimensions). Several techniques have
been developed to incorporate domain knowledge to constrain the evolution
phase.

2.2 Constrained Genetic Programming

Our goal is to come up with high-level features that respect physics laws, in
order to be interpretable and reusable by the experts. A review underlines the
difficulty to incorporate domain knowledge in feature construction methods [5].

In his early work in GP, Koza [12] uses syntactic constraints to enforce the
production of valid individuals. He imposes a root operator, or restrict the
crossover operation according to the operator types for instance. Standard GP
actually requires closure, namely that any individual tree can be considered as
a subtree of another tree. To keep valid individuals during the entire evolu-
tion when constraining the construction process, one must modify the evolution
functions. In Strongly Typed GP (STGP) [22,23], the crossover and mutation
operators are restricted according to the constraints put on the construction
process. The author of [22] defines type labels and associates one to each origi-
nal feature. Every operator has then a list of accepted data types (e.g. vectors,
matrices, angles, etc.) and a return type.



Constraints in GP can also be expressed by grammars: the technique is
called Grammar-Guided Genetic Programming (GGGP) [24]. In GGGP, an
individual is a tree derived from the grammar, called a derivation tree, from
which one can infer a GP-regular expression tree. The evolution uses the same
operators than in standard GP, but applies on the derivation trees instead of the
expression tree. However, the crossover and mutation operators are constrained
so that the offspring respects the grammar.

Reference [25] states that Context-Free Grammar (CFG) reduce the search
space by expressing syntactic constraints on admissible individuals. Industrial
applications begin to appear at this point. In [26], the authors perform a multi-
objective evolution to favor dimensionally consistent solutions, but non-valid
individuals are still present in the population. In [27], a CFG constrains the
evolution to produce only individuals representing dimensionally valid expres-
sions, to discover empirical physics laws from numerical experiments. Both ap-
plications modify the initialization procedure, which can raise an error if there
is not a terminal (i.e., a leaf of the tree, which can be either an original feature
or a constant) for each type.

Another way of using grammars in the evolution is linear GGGP. The in-
dividuals are represented as strings of integers, which encode a derivation se-
quence from the grammar. The derivation leads to a derivation tree and then
to a syntax tree. The evolution is performed on the string of integers with a
genetic algorithm. The most widely used linear GGGP is Grammatical Evo-
lution (GE) [28]. Several articles use GE for feature construction [21,29, 30].
They define a simple grammar including the operators (e.g. +, —, x, <) used
in the construction. However, they do not take advantage of the potential of
grammars to enforce constraints on the shape of the tree or on the validity of the
use of certain operators on some variables. Their grammar is called a universal
grammar.

For physics applications, the domain knowledge involves in particular di-
mensionality analysis, to ensure that the constructed features are dimensionally
consistent. For this purpose, dimensional analysis can be expressed as a CFG,
as proven in [27]. The authors of [31] use symbolic regression, containing a GP
algorithm, to extract physics laws from experimental data. However, they en-
sure the dimensional consistency of the built expressions the well-chosen scalar
parameters without the use of grammars.

Finally, a number of methods use Probabilistic Model-Building Algorithms
(PMBA) [32]. The idea is to maintain a distribution estimation over the search
space. An initial probability distribution is defined on the grammar, and then
the fitnesses of the individuals are used to update these probabilities [33]. Their
objective is to guide the search.

To deal with HEP applications, we propose to adapt the grammar of [27] to
handle dimensional consistency.



3 Genetic Programming adapted to experimen-
tal physics

In this section, we detail how to take advantage of the methods listed in the
previous part to come up with a feature construction algorithm adapted to
HEP applications. Firstly, we focus on the definition of a grammar suitable
for dimensional consistency of physical quantities, and the coupled probability
distribution. Then we detail the evolution methods for our Probabilistic GGGP
algorithm.

3.1 Grammar definition

In experimental physics, particle detectors measure numerical values that are
then reconstructed into variables such as momenta (MeV/c), energies (MeV),
angles (rad), durations (ns), lengths (e¢m), etc. Features constructed by a GP
algorithm should be dimensionally consistent to be independent of the system
of measurement of the base features, and to ensure their interpretability. For
instance, combinations such as adding or subtracting energies and lengths are
forbidden.

We define a CFG similar to the one in [27], while adding additional restric-
tions on the types that can be mixed. For instance, we do not allow the creation
of any combination of energies and lengths, or angles and durations, etc., since
these combinations are less common in the HEP domain. Figure 1 shows an
example of the grammar used for one particular dataset in our study. For the
sake of comprehension, this grammar is a simplified version of the one used in
the experiments. The GGGP can be seen in our case as a STGP, the types being
the ones described in the grammar: a fixed number of types such as Energy,
Angle, Distance, Float, etc. In our study, the operations used are the same
between the different datasets, and are chosen among standard operators used
in HEP.

3.2 Transition matrix definition

We go further in the guidance of the evolution process to obtain physically
interpretable and consistent features. HEP theory indeed involves a number
of typical formulas. For instance, one can study the conservation of energy
and momentum in a collision of particles to infer the intermediate states, or
reconstruct the collision vertex with geometrical operations. An automated
classifier could benefit from such useful features. An idea is then to guide the
construction of the trees through the choice of a probability distribution over
the grammar, to favor the construction of formulas that are similar to those
used in HEP. We choose not to update the probabilities during the evolution
contrary to the strategy in [33], to avoid converging too quickly and to guide
the search to build physically sound features by following recurrent patterns in
physics formulas.



<start> :i= <BE> | <A> | <F>

<BE> = <E> 4+ <BE> | <B> - <BE> | <BE> x <F>
| <B> / <F> | Sqrt(<E2>) | <termE>

<A> = <A 4 <A | <A - <A | <A x <A
| Acos(<F>) | Asin(<F>) | Atan(<F>)
| <termA>

<F> = <F> 4 <F> | <F> - <F> | <F> o+ <F>
| <B> /) <B> | <A> / <A> | <F> /) <F>
| Cos(<A>) | Sin(<A>) | Tan(<A>)
| <termF>

<E2> = <E2> + <E2> | <BE2> — <E2>

| <E2> % <F> | <E2> / <F>
| Square(<E>) | <termE2>

Figure 1: Production rules of the grammar used for Higgs dataset (E: Energy;
E2: squared Energy; A: Angle; F: Float). <termX> means either a constant or
base feature of type X.

More specifically, we put constraints on the transitions between the opera-
tors. For instance, a square root in physics is very often followed by a sum of
squares. In this way, we also forbid a square operator followed by a square root
and conversely, to simplify the trees. This particular constraint could actually
appear in the grammar itself, but it would lead to a more complex and less
readable grammar. A probability transition matrix between a few operators is
shown in Table 1. To this matrix one must add the initial probability distribu-
tion P;,;; for the choice of the first operator. For instance, a square root of a
squared energy is much more likely to appear in HEP formulas than the divi-
sion of a time by a cosine. Domain knowledge is used to fix the probabilities:
they are determined from different HEP experts to emulate the frequencies of
operators in HEP formulas. In the experiments, we compare the chosen proba-
bilities to the uniform case where all operations can be selected with the same
probability.

3.3 Evolution methods

From the grammars and transition probabilities, one can derive a derivation
tree and then the standard GP expression tree. Examples of a derivation tree
and its associated expression tree for HEP are displayed on Figure 2.

We actually combine both techniques of GE and GP by taking advantage
of standard GP evolution methods applied to expression trees, while adding a
few methods replicating the effects of those in GE. For single feature construc-
tion, an individual is one expression tree. For multiple feature construction, an
individual is a fixed-length list of n > 1 expression trees.

An initial population is firstly evaluated, then evolved according to a (u +



Table 1: Snippet of the transition matrix: the probability to choose an operator
among the rows according to the previous operator in the columns.

Energy Energy”
+ - N + -
0.1 0.225 0.8
5 — | 01]0225 0.1
g x |01 025 0.07
m = ]01] 02 0.03
/|06 ] 01 0
o t 07 | 04 | 02
&% - 0.25 | 0.15 | 0.07
g x 0.05 | 0.05 | 0.03
M2 0 | 04| 07

Figure 2: (a) Example of derivation tree and (b) Example of expression tree.



A)-strategy. For each individual in the population, mutation can be applied
with a probability P,utation and crossover with a probability P.rossover- Lhe
offspring is then evaluated, and the selection is performed over the whole parent
population and the offspring, which differs from the standard (u + \)-strategy
but has the advantage of keeping in the population some efficient features.

In the following paragraphs, we detail the evolution methods used in our
work for both single and multiple feature construction. In the case of single
feature construction, an individual is a single tree. For multiple feature con-
struction, an individual is represented by a list of n trees.

3.3.1 Initialization

Whether for constructing one tree (i.e. one feature) or a fixed number n > 1
of trees (i.e. n features), the trees are built the same way: they are generated
using the ramped half and half initialization [12]. The process of choosing
the operators is however altered to respect the grammars. A type t and the
first operator (returning type t) are selected under the P;,;; distribution. Then,
while the condition on current depth is not satisfied, the tree keeps growing. The
possible operators are selected according to the grammar. The transition matrix
then defines a distribution probability among the remaining possible operators
according to the parent node. Finally, the leaves of the tree are randomly chosen
among the set of base features of the proper type and constants. After the
population is initialized, the evolution process begins with a series of mutations,
crossovers, evaluations and selections. However, the generation technique is still
used during the evolution each time a tree or a subtree needs to be created, to
keep observing the grammar rules and transition probabilities.

3.3.2 Mutation and crossover

Both crossover and mutation apply on the expression trees themselves, whether
several features are constructed at the same time or only one. Regardless of
the applied transformation, a node is picked in the tree following a probability
distribution that depends on the previous scores achieved by the node in its
tree. At each generation, a weight is indeed assigned to each node of every
tree in the population. Each node contains the information of its best gain on
accuracy obtained within the tree, even if other branches of the tree changed.
The list of the gains is then inversed and normalized to get the weights used
to select the node during mutation/crossover. In this way, the weights sum to
1, with a small shift to let a chance for the best nodes to be mutated anyway.
When mutating or mating trees, the weights are used to select the less efficient
nodes with higher probability.

The mutation method is randomly picked among three existing techniques.
Each of these techniques is modified to be compliant with the grammars:

e Uniform mutation: a node is selected in the tree, then the subtree is en-
tirely regenerated from that node while making sure that the dimensional
consistency is still respected in particular at the root.



e Node replacement: a node is selected and replaced with any dimensionally
compliant node.

e Insertion: from a selected node, a new subtree is inserted that have the
original subtree(s) of the mutated node as child nodes. The inserted sub-
tree is generated so that the grammar is also respected at the connections
with the original tree.

The transition matrix is used each time a new tree or subtree needs to be
generated to support the interpretability.

The crossover operation is the standard GP one-point crossover, assuming
that the exchange of the two subtrees is compatible with the grammar, i.e. that
the two roots of the subtrees are of the same type.

In multiple feature construction, mutation is applied on one or several fea-
tures of the selected individual. Crossover is the standard genetic algorithm
one-point crossover, with no modification of the trees themselves.

The individuals created through these operations must then be evaluated
and selected with the parent population to form the next generation.

3.3.3 Evaluation and selection

A repeated tournament selection among three individuals constitutes the next
generation population. The tournament size of three was chosen experimentally
as a good compromise between randomness and quick convergence.

To evaluate an individual, expression trees are converted to numerical fea-
tures, by computing the function they represent. In our implementation, a
division by zero would create a missing value. If the feature is not well con-
structed and the whole column is invalid, then the individual is given a fitness
score of zero. T'wo main approaches exist to evaluate individuals in feature con-
struction. Wrapper methods evaluate the score (e.g. the accuracy) of a classifier
trained on the set containing the constructed feature(s). In this case, the score
is obtained through a k-fold cross-validation on the training set. Filter methods
use ranking measures that are independent of any predictor.

In the experiments, we compare among others the performances obtained
with several classifiers and with one filter fitness measure.

4 Experiments

In this section, we present the datasets used for the experiments, the experi-
mental settings, and then several comparisons of methods and settings. Finally,
we discuss the results.

4.1 Datasets

We use three datasets taken from three different and unrelated experiments. The
Higgs dataset is unbalanced, while the two other datasets are more balanced.
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4.1.1 Higgs dataset

ATLAS is a particle physics experiment at CERN. In 2014, the collaboration
opened a Kaggle challenge! with the objective to automatically detect the Higgs
boson decaying into two 7-leptons in Monte-Carlo simulated data. The data
has then been publicly released on the Open Data platform of CERN2. The
dataset [34] consists of more than 800000 simulated events, including about
280000 signal (positive) instances, the rest being background. 17 primitive
features per event are available, including notably the transverse momentum pr
(in the xy-plane, orthogonal to the colliding beams), ¢ angle (between the x
and y-axes) and 6 angle (between the z-axis which is the direction of the beams,
and the xy-plane) of several particles. Besides, we remove 13 high-level features
also provided in the dataset since our objective is to automatically make new
features from the basic ones.

4.1.2 DVCS dataset

The experimental Hall B of the Jefferson Laboratory conducts experiments on
nuclear and particle physics. The CLAS12 collaboration notably studies Deeply
Virtual Compton Scattering (DVCS), to probe the internal structure of the
proton. The objective of this dataset is to discriminate between two event
types: DVCS and m%-production acting as background for the DVCS study.
The dataset consists of Monte-Carlo simulated data. We train on about 25000
examples including 15000 DVCS (signal) events, while the others are pion pro-
duction events. The events are selected so that exactly three particles have been
detected. Features of these three particles include their 3-momentum, vertex
position, charge, deposit energy, etc. A total of 36 features is available to train
the model.

4.1.3 T — p+ p+ p dataset (Tud)

The Large Hadron Collider beauty experiment (LHCb) searches for new physics
at CERN. A Kaggle challenge® took place in 2015 to design a model able to find
the decay 7= — ptu~p~ among background events. The particularity of this
dataset is that signal events are simulated data, since this decay is not supposed
to happen according to the Standard Model [35]. Observation of this decay
would mean a violation of the latter and consequently a sign of new physics.
Background events are taken from real experiments at LHCb. The total dataset
includes more than 67000 instances of which 40000 are signal events. 46 features
describe each event, including features on the three muons and the reconstructed
7-lepton. Features of the latter are therefore removed since they are derived from
the three muons. It should be noted that the dataset originally comes with an
agreement dataset and a correlation dataset, to ensure a few constraints are

Lwww.kaggle.com/c/higgs-boson

2http://opendata.cern.ch/record /328
3www.kaggle.com/c/flavours-of-physics
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respected for the further physics analysis. We do not use these side datasets in
our work.

4.2 Experimental settings

We systematically present the results of our experiments by showing the mean
and standard deviation over at least 20 independent runs for each method and
dataset. The settings are as follows: we evolve a population of 500 individuals
over 150 generations. The individual can consist of one or several trees, i.e.
features. We set the probability of mutation and crossover both to 0.6, which
means that individuals can undergo both mutation and crossover during the
same generation. Each dataset is divided into two sets: two thirds of the data
are dedicated to training and one third is used only for performance evaluation at
the end. For each dataset, the training is done through a 3-fold cross-validation
on the training set. The gains in accuracy are computed on the test set, i.e. one
third of the total dataset.

4.3 Performance comparisons
4.3.1 Comparison of methods

In this paragraph, the fitness function is the mean accuracy of a XGBoost clas-
sifier over a 3-fold cross-validation on the training sets. The accuracy measure
is not the most relevant one in case of imbalanced datasets, however the goal
is to improve the performance of the algorithm. Therefore, the objective is to
increase the accuracy, or any other performance measure.

We first compare the performances on the three datasets of three methods
constructing one feature: simple GP (without any added constraint), GGGP
with the grammar adapted to the dataset, and PGGGP with the same adapted
grammar and an empirically designed transition matrix. Table 2 shows the
gains in accuracy for the different methods and datasets, as well as the p-values
from a Welchs t-test to compare PGGGP to simple GP. The baseline accuracy
is obtained by training XGBoost on the base feature set. In addition, we also
present in Table 2 the results and statistical test of the PSO algorithm from [10]
(array representation) applied on the Higgs dataset.

The performances vary with the datasets used. For the DVCS dataset, the
PGGGP improves the score of the XGBoost classifier by 0.87%, which is compa-
rable to the method without probabilities and significantly better than the GP
with no constraints at all. For the 7u® dataset, the PGGGP algorithm achieves
performance similar to the unconstrained GP but slightly better than the GP
without probabilities, with a gain of 0.54%. However, for the Higgs dataset, the
PGGGP method is overcome by the GGGP without transition matrix but the
constrained methods are still significantly better than the simple GP. Moreover,
the three GP methods significantly outperform the PSO algorithm.

To go further in the study and try to understand the discrepancies in the
performances of the different methods on the Higgs dataset, we perform several
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Table 2: Gains in accuracy (in %) obtained on three test datasets constructing
one feature. First p-value compares the best of PGGGP and GGGP to simple
GP. Second p-value compares the best of PGGGP and GGGP to PSO when

applicable.

Higgs DVCS T
baseline 75.46 66.95 82.24
PSO 0.54 +0.15

simple GP | 1.92+0.11 0.52+0.27 | 0.58 - 0.36
GGGP 2.23+0.68 | 0.86+0.27 0.434+0.28
PGGGP 2.10+0.72 | 0.874+0.40 | 0.54+0.37
p-value 1 10717

p-value 2 0.010 10~4 0.661

Table 3: Gains obtained on the Higgs dataset constructing from one to six
features. The p-values are not significant here hence not shown.

1 feature 2 features 3 features
GGGP 2.23 + 0.68 2.24 +0.18 2.61 +0.16
PGGGP 210+£0.72 2.31+0.15 2.5340.25

4 features 5 features 6 features

GGGP 2.92 +0.28 3.16 = 0.29 3.24 +£0.31
PGGGP 2.92 +0.27 3.16 = 0.26 3.24 £0.25

experiments constructing n > 1 features. Table 3 shows the gains in accuracy
obtained on the Higgs dataset while constructing one to six features comparing
our GGGP algorithm with or without the use of the transition matrix. Although
the GGGP algorithm performs the best when constructing a low number of
features, the gap between the GGGP and the PGGGP algorithms reduces as
the number of features increases, and the PGGGP algorithm overcomes the
GGGP algorithm when constructing six features.

4.3.2 Comparison of fitness functions

In previous paragraphs, the experiments were conducted with the score of XG-
Boost as the fitness function. We assess the utility of our PGGGP also when
using other fitness functions. In the experiments, we compare the performances
obtained with different classifiers: a single decision tree (DT), the k-nearest
neighbors algorithm (KNN) and the naive bayes algorithm (NB) as wrapper
evaluators, and with the entropy of [18] as a filter fitness measure.

Table 4 compares the accuracies obtained with these different fitness mea-
sures and gives the p-values from a Welch’s t-test. In the case of the entropy
measure, the scores are computed with a XGBoost classifier trained on the
datasets created by the evolutionary algorithm. Using any fitness function, our
probability-aided GGGP algorithm improves the base score compared to the

13



Table 4: Gains on accuracies obtained on the Higgs dataset constructing one
feature with different fitness functions, with the associated p-values comparing
simple GP to PGGGP.

baseline  simple GP PGGGP p-value

DT 66.92 274+£0.19 2.964+0.58 | 0.035
KNN 71.18 1.09+0.35 1.52+0.66 | 0.001
NB 62.95 4.11+8.55 6.49+1.51 | 0.119

entropy 75.46 0.07+0.12 0.114+0.10 | 0.181

simple unconstrained GP algorithm. The improvement is significant for the DT
and the KNN. These results show the robustness of our algorithm to several
fitness functions.

4.3.3 Interpretability

In this work, a feature is interpretable if a domain expert is able to recognize all
or part of it, which implies that the feature is mathematically correct and that
its unit can be inferred from its formula. In practice, interpretability is hard to
measure objectively [36]. However, we try to provide comparative elements in
this paragraph.

The best feature built by the simple GP algorithm on Higgs dataset with
XGBoost as learner obtains a gain of +2.31%:

(el
- ptep —-pi+ .
| Yyt

pz + ¢'missz;gtE (1)

cos (Q/)lep _ ¢‘r)
sin (COS (sin (pieppfubleading _ piep)))

The built feature (1) contains several inconsistencies: series of trigonometric
operations that should be applied only on angles, subtraction of a product of
energies (the resulting unit being GeV?) and an energy in (GeV), etc. How-
ever, we notice for instance the cos (¢!°? — ¢7) which is perfectly valid. This
feature could be used in practice under the condition to fix the units of measure-
ment for the input variables, since using other units could completely change
the distribution of the feature due to the different orders of magnitude of the
variables.

The GGGP and PGGGP algorithms systematically build valid features,
since they were designed for this purpose (see equations (2) to (7) below).
Therefore, the features built by these algorithms are always interpretable, but
not necessarily efficient for the classification task. However, the interpretation
process can be complex. A further discussion on the comparison between GGGP

+
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and PGGGP for Higgs dataset in terms of interpretability is conducted in next
subsection.

4.4 Discussion

We observe in Table 2 that the method with probabilities reaches lower perfor-
mances than the GGGP for the Higgs dataset, in particular when constructing
one feature only. Actually, the GGGP comes up with a feature that achieves a
gain of +3.82%:

\/piep <missingtE' + piep + p;’) + \/mio + missingt E2 + p[Q
(2

(cos ((blep - ¢T) + 2)2 cos# (Olep - 97')

In HEP, physicists may perform cuts on hand-crafted high-level features to
isolate signal events from background events, thus building a rule of inference.
The feature (2) above is mathematically correct, but does not have an intuitive
meaning to the physicists. However, it is independent of the system of measure-
ment and can therefore be used to replace the usual features of the physicists.
Although the ratio is not familiar to the physicists, the elementary components
can be interpretable. The numerator indeed resembles a transverse energy /mo-
mentum balance. In the denominator, the elements are more interpretable. As
expected, the # and ¢ angles are not mixed since they are defined in orthog-
onal planes. From energy/momentun conservation, a strong correlation exists
between the direction of the lepton and the 7-lepton. Therefore, comparing the
two angles of the two particles makes completely sense. Because the angles are
defined within | — 7; 7], the comparison is much easier with the cosine function.

Figure 3 shows the histogram of the feature, visually proving its discriminat-
ing power. The physicists widely use the invariant mass as a high-level feature
to improve the classification. The invariant mass is a 4-momentum balance be-
tween two particles, here the tau and the lepton. Adding this invariant mass to
the original dataset increases the score by 2.91%. With the GGGP, we overcome
the invariant mass and provide a better performing feature which is independent
of the system of units, adding 3.82% to the accuracy.

However, the GGGP with transition matrix does not achieve this level of
performance, probably because the ratio between an energy and a series of
cosines is set to be very unlikely. When constructing several features at a time,
the performances of the two methods become in fact similar (see Table 3).
The GGGP without probabilities is then confronted to a bigger search space
without guidance, whereas the GGGP with transition matrix gets more space
to construct interpretable and performing features all at once. For instance,
the GGGP using the transition matrix builds five features achieving a gain of
+3.71% on the accuracy:

cos (¢! — ¢7) (3)
cos (GZCP — 97) (4)
coS (¢missing _ gblep) (5)
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Figure 3: Histogram of the feature constructed by the GGGP algorithm.

pl;ading Zp]j’fts N (E,;ﬂSSing + p,l;p)2 (6)

2
mo + (plﬁ” +p%) (7)

The first and second features (3) (4) are exact elementary components of the
single feature constructed by the GGGP. The third (5) is another geometrical
combination of the angles of the missing transverse energy (most likely cor-
responding to a neutrino) and the lepton, which both come from the same 7
lepton. It should be noted that the 8 and ¢ angles are almost never mixed in the
output features, proving that the GP algorithm inferred that these two angles
belong to two different planes. The two last features (6) (7) are energy balances
in the transverse space. These five constructed features are more interpretable
features than the one from the simple GGGP, and are also independent of the
system of measurement and therefore reusable in HEP analyses.

Finally, it seems that forcing the algorithm to build interpretable features
is not beneficial when constructing only one feature. Therefore, the GGGP
manages to compress the information of several interpretable features into one,
whereas the GGGP aided by the transition matrix is less efficient. Actually, the
best features built by the PGGGP in the context of single feature construction
are very complex and exploit the maximum allowed depth of the trees. However,
having big trees impairs the interpretability of the associated features. In this
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Figure 4: Learning curve for constructing 6 features on Higgs dataset. The
mean and standard deviation of the best fitness of the population are shown at
each generation.

context, the preference of PGGGP over GGGP for the interpretability of the
features is not obvious.

However, the transition matrix seems to help the GGGP algorithm to con-
verge faster (see Figure 4).

On the DVCS dataset, probabilities also seem to help the convergence and
performance of the GGGP algorithm. However, the statistical tests to prove the
difference between GGGP and PGGGP results are never significant regardless
of the dataset. PGGGP and GGGP algorithms are actually very similar in
their conception, and only differ by the choice of the probabilities to construct
the trees. It is therefore normal not to observe any significant variation in the
distributions of the results. Only slight improvements can be observed.

Finally, the performance gains on the 743 dataset are lower than those on the
other two datasets. This can be explained by the design of the dataset itself:
providing many high-level variables (we partly discarded) and missing basic
features such as the ¢-angle essential for our experiment, this dataset might
not be suited for our study. With the features provided in the dataset, more
complex non-linear and therefore non-interpretable combinations are probably
more efficient to increase the accuracy of a classifier. This can also explain the
better score of the simple GP, which is not constrained and then allowed to
apply complex operations such as trigonometric functions on all variables. The
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features built by our GGGP, with or without probabilities, are already quite
complex: the most performing individuals have a height & > 6. However, we
still manage to increase the accuracy score by 1.48% constructing one feature
with PGGGP.

Finally, one of our objectives being the interpretability of the built features,
it is difficult to provide an accurate comparison with other methods that do
not focus on interpretability or consistency of features, or that have different
structure for built features. Therefore, the comparison can be only on the
numerical scores. Within evolutionary methods other than GP, we tested a
PSO algorithm, which performs poorly on our datasets. We also considered
tree-based algorithms such as Cognito or FICUS, but the lack of open source
code and implementation details in the papers prevented us to draw a fair
comparison. Besides, the datasets used in other studies do not include units
of measurement. Few benchmarks with units of measurement exist, since the
data are often anonymized. However, our method is useful for many real-world
problems.

5 Conclusion and perspectives

In this paper, we have presented an adaptation of a new Grammar-Guided
Genetic Programming algorithm to dimensional consistency and physics laws,
aided with probability transition matrices. Compared to a simple Genetic Pro-
gramming algorithm without constraints, we have shown that this method sig-
nificantly improves the accuracy score of several classifiers for two high-energy
physics datasets from completely different experimental setups. The possibil-
ities to build new features for the third dataset are limited due to the lack
of base features. However, for the three datasets, our interpretable GGGP-
based feature construction algorithm brings a significant improvement on the
classification accuracy especially for datasets with a low baseline score. We dis-
cussed the trade-off dilemma between performances and interpretability raised
by the application of the transition matrix. The comparison between GGGP
and PGGGP in gain in accuracies mainly relies on the data on which the ex-
periment is conducted and on the number of features that are constructed. The
interpretability for physics experts is definitely better with PGGGP, but the
score can be better with GGGP (without probabilities) because of the need to
compress information into a small number of features. Therefore, we observe
that constructing several features enables the PGGGP to fill the gap with the
GGGP while being more interpretable.

In future work, we plan to automatically extract the probabilities of the
transition matrix from physics formulas taken from books or articles. Another
perspective would be to enforce the impact of probabilities as we go deeper
in the generation of the tree: this could help building consistent elementary
components while enabling more complex combinations at the root of the tree,
imitating the high performing feature obtained by the GGGP on the Higgs
dataset. Finally, other fitness functions will be used to assess the robustness of
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this approach to different evaluation metrics.
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