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Abstract. Currently, biomedical document processing is mostly human
work. Software solutions which attempt to alleviate this burden exist
but generally do not perform well enough to be helpful in many appli-
cations. Concurrently, there exist projects which organize concepts in
the biomedical field. Therefore, we seek to leverage existing structured
knowledge resources to improve biomedical language modeling. In this
paper, we provide an implementation integrating the UMLS knowledge-
base into a BERT-based language model, aiming to improve its per-
formance in biomedical Named Entity Recognition. To achieve this, we
extend KnowBert, a recently developed technique for integrating knowl-
edge into language models. Preliminary results reveal the challenges of
applying KnowBert to the biomedical domain given the number and
subtlety of different concepts in UMLS. Going forward, addressing these
challenges and combining this with other approaches such as BioBERT
may help expand the range of usefully automatable biomedical language
processing tasks.

Keywords: Artificial neural networks, Knowledge based systems, Knowl-
edge representation, Machine learning, Biomedical informatics, Informa-
tion Extraction

1 Introduction

With over a million articles published every year in the biomedical field and the
large number of patient records generated by hospitals, it is increasingly difficult
for healthcare professionals to keep up to date on research, carry out systematic
reviews, or search for patient information. There is thus a demand for language
processing tools able to identify and extract meaningful information from these
texts.

For this reason, multiple knowledge bases such as the Unified Medical Lan-
guage System (UMLS) and the OpenTargets LIterature coNcept Knowledge base
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(LINK) have been created to make information more searchable. Our objective is
to enable the recently developed Transformer-based pretrained neural Language
Models (LMs) [1] to make explicit use of this knowledge, in order to improve
their performance and interpretability.

We follow the method described by Peters et al. [2] known as KnowBert to
integrate knowledge derived from the UMLS Knowledge Base into a BERT-based
language model. We thus call this model KnowBert-UMLS.

Other projects such as BioBERT [3] and ClinicalBert [4] have successfully
specialized language models to the biomedical domain. However, their approach
has typically not explicitly leveraged structured knowledge sources such as UMLS.
A notable exception is UmIsBERT [5], which leverages UMLS as a thesaurus to
explicitly teach BERT synonymy and enriches biomedical word representations
with rough clustering.

Our approach using KnowBert differs significantly in that it makes use of the
full vocabulary of UMLS to enrich word representations, and jointly performs
entity linking. It is also fairly indifferent to the pretrained LM used as a base,
and can be combined with another specialized model such as BioBERT.

In the context of large and specialized knowledge bases such as UMLS, we
find the approach proposed by Peters et al. [2] to be computationally unrealistic
with current tools for most organizations. Preliminary biomedical Named Entity
Recognition evaluations of our model trained on a small subset of our training
corpus demonstrate a decrease in performance with respect to models with non-
enriched word representations. We investigate the reasons for this, and propose
ways to alleviate this computational burden.

The remainder of the paper is organized as follows. We contextualize our
approach and motivations by discussing related work in Section 2. In Section
3, we overview the architecture of KnowBert and discuss the specifics of our
extension of it to the UMLS Knowledge Base. The preliminary experimental
results are reported and discussed in Section 4. Finally, we present in Section 5
our conclusions and future work.

2 Related Work

In the wake of the advent of the Transformer architecture introduced by Vaswani
et al. [1], language processing tasks have increasingly been handled by neural
language models based upon this architecture such as BERT [6]. Due to the dif-
ferences between the language used in the biomedical field and the types of text
typically used to train these models, many projects have sought to leverage the
Transformer architecture in the more specific and rigorous biomedical context.
The typical approach has been to pre-train language models on specialized text
as has been done with BioBERT [3], BioMed-RoBERTa [7], SCIBERT [8], and
Clinical BERT [4], which all incorporate various amounts and proportions of
biomedical text in the pre-training phase of their models.

However, not only does this type of pre-training usually lead models to un-
derperform on general-domain text as demonstrated by Arumae and Bhatia
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[9], large models with attention mechanisms such as BERT are also notoriously
computationally expensive to pre-train. Furthermore, the ability for a model to
associate concepts (e.g. “COVID-19” and “respiratory failure”) is predicated on
these concepts appearing in the pre-training corpus, leading to difficulty adapt-
ing to some forms of distributional shift. These limitations have lead to interest
in different methods of adapting these models to specific domains.

One such method is integrating information derived from existing Knowledge
Bases (KBs) into these models. There have been multiple methods proposed to
achieve this. E-BERT [10], for instance, projects entity embeddings derived from
the KB to the input word embedding space. UmIsBERT [5], on the other hand,
explicitly adds semantic group embeddings to words found in UMLS. ERNIE [11]
and BERT-MK [12] learn a fused representation of contextualized word and
entity representations. K-Adapters [13] are a cheaper alternative to the ERNIE
process which can’t suffer from catastrophic forgetting by using Adapters [14].
One drawback of these methods, particularly in the biomedical context, is that
they all require a separate upstream Entity Linking (EL) step to be made at
inference.

While Entity Linkers are known not to be perfectly reliable, Biomedical En-
tity Linking is a particularly difficult task. Some of the best performing models
include RysannMD [15], which achieves 0.436 F1 on the CRAFT corpus, and
the dual encoder architecture proposed by Bhowmik, Stratos, and Melo [16]
which achieves 0.564 F1 on the MedMentions corpus [17]. The effectiveness of
the knowledge integration step being inherently limited by the Entity Linking
step, the possibility of performing knowledge enrichment without or jointly with
Entity Linking becomes attractive.

KEPLER [18] is one such model which introduces a knowledge embedding
loss as an objective for language model pre-training, aligning contextual word
representations with entity description representations. As such, it does not re-
quire an EL step at inference. The KnowBert model developed by Peters et
al. [2], on the other hand, grafts a KB-specific entity linking module into a
transformer-based pretrained LM such as BERT, in order to jointly perform En-
tity Linking and contextualized word representation enrichment, making it also
a standalone method requiring no upstream EL with the additional benefit of
explicitly identifying the entities present in the text.

Our approach to biomedical Language Modeling thus differentiates itself from
existing methods by leveraging the ability of KnowBert to jointly perform Entity
Linking and Language Modeling, and applying it in a biomedical context in order
to improve word representations and generate metadata which can be used for
a variety of downstream tasks. Additionally, relying on structured knowledge
enables KnowBert-based models to recognize new concepts without additional
training and to perform similarly to non-specialized models on general domain
text.
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3 KnowBert-UMLS

As shown in Fig. 1, the KnowBert architecture is composed of three main compo-
nents: a pretrained Language Model backbone, a Knowledge Attention and Re-
contextualization Module (or KAR) which performs Entity Linking and knowl-
edge enrichment of word representations, and a candidate mention generator.

Output embeddings

BERT

Transformer
Layer

Candidate I > |
[ Generator AR ]

A

Inputs

Fig. 1. Abstraction of the KnowBert architecture. KnowBert extends BERT by adding
a Knowledge Attention and Recontextualization module (KAR) between two trans-
former layers; in this case between layers 10 and 11.

3.1 Pretrained BERT

While the KnowBert method can apply to most Transformer-based pretrained
language models, we focus on BERT as it was used by Peters et al. [2]. BERT
models comprise L Transformer layers. For a sequence of NV tokens, each layer 4
takes as input an N x H-dimensional sequence representation H; 1 and outputs
a representation H; which integrates more contextual information by applying
a multi-headed attention mechanism to H;_; followed by a Multi Layer Percep-
tron. In the case of BERTgasE, we have L = 12 and H = 768. The final output
of each token is thus a contextualized representation in R¥ .

3.2 Ontology and Candidate Generator

The KnowBert method ties a pretrained language model to an Ontology, specif-
ically a Knowledge Base. For our purposes, we define a Knowledge Base K as a
set of Jx entities e;, each with a vectorial representation e; € RE. We use the



KnowBert-UMLS 5

UMLS Knowledge Base, with each entity corresponding to a Concept Unique
Identifier. The entity embeddings we use are computed according to the ad-
versarial method provided by Maldonado, Yetisgen, and Harabagiu [19] with
K =50.

To perform the Entity Linking step, the KAR requires a candidate generator
to create a list C of candidate mentions. Specifically, each sequence is associated
to a set S of S candidate spans, which may or may not contain an entity mention.
FEach candidate span is then assigned a corresponding list of candidate entities,
including a null entity representing the lack of an entity mention within the
candidate span. Formally, we have:

C={(s,{es,1,---,€s5..})|s €S} (1)

with each candidate span s being associated to a set of J; candidate entities,
and each entity e; having a corresponding vector e; € RX.

These candidates are produced by a candidate generator which follows rules
specific to the KB being used. KnowBert as specified by Peters et al. [2] imple-
ments compatibility with two KBs, namely WordNet and Wikipedia.

The challenge in crafting a mention generator for the biomedical domain, and
specifically UMLS, is the variability of formulations for each concept. In the case
of UMLS, each concept is associated to a list of common strings (called “atoms”)
that may represent it. For instance, the concept for lung cancer is associated to
97 different forms, including “pulmonary carcinoma”.

To leverage these atoms, we have attempted several methods based on string
similarity and cosine similarity of vectorial word representations. We have found
the most effective option for our purpose to be the QuickUMLS python li-
brary [20] which, given some text, identifies candidates in the form (span_start,
span_end, concept_ID). We then aggregate candidate entities by candidate
span, derive an empirical estimate of the prior probabilities for each entity from
MedMentions, and find the relevant entity embeddings as described in Fig. 2.
Finally, we feed the output of this candidate generation process to the KAR.

In practice, matching each of the approximately 180M (million) sequences
in our training corpus to the 16M atoms in UMLS on-demand is prohibitively
computationally expensive. In order to achieve this, we precompute the candi-
dates for each of our sequences ahead of time and create a lookup table for each
file in our corpus. This needs to be done only once and is parallelizable, but
nonetheless 3.5% of our corpus took six days to process across seven nodes of
a computing cluster, each equipped with two Xeon 36-thread processors with a
clock speed of 3GHz, and required us to favor speed over recall and precision
when considering QuickUMLS settings.

Depending on which similarity measure and threshold are chosen, Quick-
UMLS trades off between recall and execution time. We settled on Jaccard sim-
ilarity, with a threshold of 0.7 as the best compromise we could find.

In our experience, the computational impact at inference is fairly low for
on-demand low-volume applications, as the candidate generator typically takes
fractions of a second to process a sequence.
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é\ndidate Generato\r Output
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“Cystic fibrosis (CF) patients ..."

Fig. 2. Detailed structure and output of the UMLS candidate generator.

3.3 KAR

The KnowBert approach adds a KB-specific “Knowledge Attention and Recon-
textualization module”, or KAR, between two transformer layers in a pretrained
BERT model. This module is a relatively inexpensive addition to the pretrained
model, with in our case only approximately 0.3% as many trainable parameters
as BERTBASE.

Multiple KBs can be used in tandem: theoretically, a KAR can be inserted
between every pair of layers in the transformer. In practice, the insertion of a
KAR too close to the input layer causes too much perturbation to the flow of in-
formation and prevents the model from recovering during training. As suggested
by Peters et al. [2], in order to minimize the language model’s perplexity!, we
insert the KAR between the tenth and eleventh layers of BERTgasE as per Fig.
1.

This module performs entity linking on the intermediate contextualized word
representations and pools them with the relevant entity embeddings. This results
in contextualized word representations which are enriched with information ex-
tracted from a KB. Specifically, the KAR takes as input a sequence represen-
tation H; and a list C of S candidate mentions as generated by the Candidate
Generator (see (1)).

As described by Peters et al. [2] and illustrated in Fig. 3, the KAR first
linearly projects the output of the previous transformer layer H; to the entity
embedding space:

Hfro] _ Hiwproj 4 bproj (2)

! Perplexity is computed as the exponential of the cross-entropy loss, and is a standard
measure of how well the language model predicts samples.
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Fig. 3. Detailed structure of the Knowledge Attention and Recontextualization module
KAR).

—~

Where WP and bP"%7 are learned.

Then, the projected embeddings for the words in each span are pooled into
a matrix S € RS*K of span embeddings. Each span embedding is computed
following “End-to-end neural coreference resolution” by Lee et al. [21], who de-
scribe a way to compute text span vectors: each token in each span is associated
to a weight computed from the contextualized embeddings fed through a trained
FFNN. These weights are softmaxed with respect to each span of text, and serve
as the weights for a weighted-sum pooling of the non-contextualized token em-
beddings, resulting in non-contextualized text span embeddings.

These span embeddings are then contextualized with a standard transformer
layer to allow the entity linker to identify relationships between entity mentions,
resulting in the contextualized span embedding matrix S€.

S°® = MLP(MultiHeadAttn(S, S, S)) (3)

Where MLP and MultiHead Attn designate a position-wise Multi-Layer Percep-
tron and a Multi-Headed Attention layer respectively.

The contextualized span embedding s® of every candidate span s is then used
to pool the corresponding matrix of candidate entity embeddings E, from the
KB, resulting in a predicted entity representation:

Uy = Softmax(MLP(ps, s - Ey))
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&, =y - E, (4)

where ps € R”7¢ is the vector of prior probabilities for the candidate entities as-
sociated with span s, and JS € R”’s is an estimate of their posterior probabilities.
The predicted entity representation embeddings €, of each span s are packed
and added to contextualized span embeddings S€, forming the knowledge-enriched
span embedding matrix S’e: _
S®*=S°+E (5)

H' "7 is computed with word-to-enriched-entity-span attention, similarly to
applying a regular transformer layer to S’ but substituting the query in the
attention mechanism for projected word embeddings HY":

H' "%/ = MLP(MultiHeadAttn(H?" | S'°, S'°)) (6)

Finally, the knowledge enriched contextual word representation output of the
KAR is a projection of H' " back to BERT contextualized word representation
space with an added skip connection:

H ,=H in"ojwlpmj + b/proj + H;;)roj (7)

where W'P™7 and b’?"% are learned.
The linked entity for span s is simply e

s,argmax(d;;) .

3.4 Training

There are three training steps for KnowBert models. First, once the mention
generator is written, the KAR is trained on the Entity Linking task on spans
given by the corpus, minimizing a log-likelihood loss for the predicted probability
distribution over candidate entities:

Lgr = —ZZOQ< " (8)

exp(¢Ysg) >
s > exp(Psk)
k=1
with 1,4 the score for the ground truth entity in Js.
The second training phase involves continuing the pre-training of BERT using
both a Masked Language Model and a Next Sentence Prediction objective. This
phase corrects the disruptions incurred by the Language Model when grafting
the KAR between the Transformer Layers in BERT. This step also adjusts the
weights of the KAR for Entity Linking, minimizing:

LinowBert = LBERT + LEL 9)

We call this phase the “re-training” step to differentiate it from the BERT pre-
training step and the fine-tuning step.

The final step, as with most pretrained LMs, is to fine-tune it to the target
task.
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4 Preliminary Experiments

We present the preliminary results of our experiments, which intend to high-
light the challenges that must be overcome to successfully apply the KnowBert
method to the biomedical domain with the UMLS Knowledge Base. We use the
same pretrained backbone for our KnowBert-UMLS model as Peters et al. [2]
in their original paper on KnowBert, i.e. English BERTpasE uncased.

4.1 Masked LM and Next Sentence Prediction

For a large source of raw biomedical text, we scraped the PubMed Central
database of Open Access articles and processed them for next sentence pre-
diction using the tool provided with the source code for “Knowledge Enhanced
Contextual Word Representations” by Peters et al. [2]. At the end of this training
phase, KnowBert can be used as a typical pretrained BERT model.

Due to time constraints, we were unable to generate candidates for the ap-
proximately 180M sequences in the corpus, and had to limit our re-training
corpus to approximately 6M sequences. As shown in Table 1, this lack of re-
training data has prevented the language model from successfully integrating
the KAR, with a masked LM perplexity several orders of magnitude larger than
BERTgAsE, BERTLARGE, and the KnowBert models produced by Peters et al.

[2].

Table 1. Masked Language Model perplexity for both BERT models, the KnowBert
variants produced by Peters et al. [2], and KnowBert-UMLS.

Model Perplexity
BERTBAsE 5.5
BERTLARGE 4.5
KnowBert-Wiki 4.3
KnowBert-Wordnet 4.1
KnowBert-W+W 3.5

KnowBert-UMLS 10387.7

4.2 NER

We choose to fine-tune KnowBert-UMLS on the Biomedical Named Entity Recog-
nition task on the n2¢2 corpus, previously known as i2b2 2010 [22], with an 80%
- 20% split between training and validation sets using cross-entropy loss. In Ta-
ble 2, we compare our performance versus four BERT-based models, namely
BioBERT [3], clinicalBERT [4], BlueBERT [23] and BERTgasE, all fully fine-
tuned on the NER task with the same linear classifier architecture. The perfor-
mance of our various baselines were taken from Fraser et al. [24].
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Examples of correct and incorrect predictions made by KnowBert-UMLS,
formatted according to the IOB2 standard, can be found in tables 3 and 4
respectively. The example in table 4 is a quite typical incorrect prediction, as it
consists of a span that overlaps with the correct span and has a correct label.
This type of error is the most common, constituting 32% of the model’s mistakes.
Many of these mistakes are ambiguous even to humans — for instance, the matter
of having to include the token “Estimated” in the “blood loss” entity is not self-
evident. We perform a complete breakdown of error types as specified by Fraser
et al. [24] in table 5.

Table 2. Performance of BERT-based language models on the n2¢2 NER task, mea-
sured as Micro-averaged strict Precision, Recall and F1. Results for BioBERT, clini-
calBERT and BlueBert from Fraser et al. [24].

Model P R F1
BERTBAsSE 0.85 0.87 0.86
BioBERT 0.86 0.88 0.87
clinical BERT 0.87 0.88 0.88
BlueBERT 0.88 0.90 0.89

KnowBert-UMLS 0.80 0.81 0.80

Table 3. Example of correct NER predictions by KnowBert-UMLS pulled from the
n2c2 evaluation set.

Sequence ‘status post total abdominal hysterectomy and bilateral salpingo-oophorectomy .
True O O B-treatment I-treatment I-treatment O B-treatment I-treatment O
Predicted| O O B-treatment I-treatment I-treatment O B-treatment I-treatment O

Table 4. Example of incorrect NER prediction by KnowBert-UMLS pulled from the
n2c2 evaluation set.

Sequence ‘Estimated blood loss  was 100 cc

True B-problem I-problem I-problem O O O
Predicted 0] B-problem I-problem O O O

While the contextualized word representations contain enough information
for the classification model to perform significantly better than chance, our re-
sults reveal a decrease in performance with respect to a non-modified BERTgASE.
This is further demonstration of the fact that the re-training procedure is the
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Table 5. Breakdown of types of mistakes made by KnowBert-UMLS in proportion of
total prediction mistakes made.

Error type Proportion (%)
Correct label

Overlapping span 32.0
Incorrect label

Overlapping span 10.2

Correct span 15.1
False positive 29.1
False negative 13.6

performance bottleneck and requires more text than our candidate generator
can realistically process in a reasonable time frame.

Our evaluation is performed with SeqEval [25] in strict mode. Like the results
from Fraser et al. [24], its metrics are on an entity-level rather than at token-
level, meaning that a true positive is a fully matching mention span. A predicted
mention that overlaps with a true mention but is not identical counts as a false
positive and a false negative.

5 Conclusions

Successfully integrating UMLS knowledge into a pretrained LM using the Know-
Bert method presents a significant challenge due to the size of the knowledge
base and the difficulty of generating candidate mentions. Our candidate gen-
erator based on QuickUMLS was not able to generate candidates with enough
efficiency and precision to make re-training possible at the required scale. We are
currently working on generating candidates for larger chunks of the re-training
corpus in order to evaluate the progress made by Knowbert-UMLS as a function
of corpus size, and make projections on its performance when trained on the full
dataset.

In order to successfully re-train KnowBert-UMLS, the candidate generator
must be improved significantly. Its main source of false negatives is the intro-
duction of abbreviations of long terms in the beginning of the text which are
subsequently re-used. These abbreviations are often absent from the UMLS and
cannot be identified by the generator. Solving this issue would likely increase
recall significantly when identifying candidate spans. This may allow a different
recall/time compromise to be found within QuickUMLS settings.

Regardless of possible improvements to recall however, deploying this at scale,
whether for re-training or practical text processing purposes, is likely to remain
prohibitively slow for most individuals and organizations. Future work will in-
volve finding a more effective and computationally efficient approach to tackle
candidate generation, for instance as a machine learning problem or with a fast
NER-based span pre-selection step.
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Furthermore, whilst we chose to evaluate the performance of KnowBert-
UMLS using BERTgase as a backbone to isolate the effect of the KAR, the
KnowBert method has the advantage of being compatible with other approaches
such as BioBERT, clinical BERT, BlueBERT, or SciBert. In addition to the po-
tential performance improvements on biomedical tasks, these pretrained models
may be less expensive to re-train due to the potentially smaller distributional
shift between pre-training, KAR training, and re-training corpora.

In addition to the improvements that need to be made to make KnowBert-
UMLS competitive, there are a number of potential ways to enhance it and
expand its range of applicability.

Multiple Knowledge Bases As shown by Peters et al. [2], KnowBert is capa-
ble of accommodating multiple KARs for multiple KBs simultaneously. Depend-
ing on the practical application, it could be useful to develop a KnowBert model
combining UMLS with WordNet, Wikipedia, YAGO [26], or other specialized
KBs. It would also be interesting to assess the performance of one such model
in order to understand to what extent multi-specialization is possible.

Re-training with Adapters Adapters, as proposed by Houlsby et al. [14],
have seen some success for efficiently fine-tuning pretrained LMs such as BERT.
It is conceivable that this approach may aid in the re-training process by reducing
the number of parameters to train, and may help reduce the memory footprint
of KnowBert in some practical applications. Specifically, in cases that involve
multiple knowledge bases or sets of knowledge bases used independently from
each other, such an approach may allow one copy of a pretrained LM to be loaded
into memory whilst the relevant set of KARs and adapters can be applied as a
function of the token sequence being processed.
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