

Jean-Baptiste Quélène, Rudy Desmarcheliers, Romain Cotillard, Stéphane Rougeault, Guillaume Laffont Université Paris Saclay CEA, List, F-91120 Palaiseau, France

Nassim Salhi, Minh-Chau Phan Huy, Didier Pohl Safran Tech, Safran Sensing Systems Applications and Research, Rue des Jeunes Bois, Châteaufort, 78114 Magny-Les-Hameaux, France

FIBER BRAGG GRATING TEMPERATURE MONITORING OF HELICOPTER **ENGINE MECHANICAL PARTS ON AN ENGINE TEST BENCH**

Abstract: Fiber Bragg Grating temperature monitoring results of two mechanical parts located in the exhaust system of a helicopter engine test bench are reported and compared to thermocouple and SWIR camera measurements.

MONITORED PIECES OF THE EXHAUST SYSTEM

18 FBG temperature sensors disposed on two mechanical parts

Schematic of monitored piece 1 front and back and disposal Schematic of monitored piece 2, disposal of of temperature sensors (a and b resp.). (c) photograph of temperature sensors (a) and photograph of piece 1 front (c). piece 2 (b).

Temperature measured during a test cycle vs time for different temperature sensors and different mechanical pieces.

MEASURED TEMPERATURE COMPARED WITH SWIR PROFILES AND ANALYSIS OF 5-KHZ SIGNAL OF SINGLE FBG SENSOR

freq (Hz)

Distance (mm) Distance (mm) Distance (mm)

Temperature at different instants on piece 1 front. **Red** dots: FBG sensors. Blue and green lines: profiles extracted from SWIR images on the glue and a few millimeters aside respectively.

FBG signal acquired at 5 kHz during a test cycle. (a) Temperature of sensor, (b) FBG peak signal AC component obtained from difference between signal and signal convoluted by rectangular window (in pm), (c) short-time Fourier transform of this signal.

Conclusion:

- Temperature measurement as high as 600°C and calculation of temperature gradients.
- Comparison of results obtained with FBGs, TC sensors and SWIR camera.
- Analysis of 5-kHz signal.

