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Abstract—In this paper, we present the first Federated Learning
(FL) framework which is secure against both confidentiality and
integrity threats from the aggregation server, in the case where the
resulting model is not disclosed to the latter. We do so by combining
Homomorphic Encryption (HE) and Verifiable Computing (VC) tech-
niques in order to perform a Federated Averaging operator directly in
the encrypted domain (by means of HE) and produce formal proofs
that the operator was correctly applied (by means of VC). Due to
the simplicity of the aggregation function, we are able to ground our
approach in additive HE techniques which are highly mature in terms
of security and decently efficient. We also introduce a number of
optimizations which allows to reach practical execution performances
on the larger deep learning models end of the spectrum. The paper
also provides extensive experimental results on the FEMNIST dataset
demonstrating that the approach preserves the quality of the resulting
models at the cost of practically meaningful computing and communi-
cation overheads, at least in the cross-silo setting for which higher-end
machines can be involved on both the client and server sides.

Index Terms—Homomorphic Encryption, Verifiable Computation,
Federated Learning

I. INTRODUCTION

In recent years, machine learning solutions and in particular
deep learning ones are widely employed in different domains such
as healthcare, autonomous driving, finance and computer vision.
However, this raises several security and privacy issues since the
learning step requires access to massive amounts of heterogeneous
data, part of which may be sensitive or private information.

Federated Learning (FL), an emerging recent training setting,
allows to collaboratively train a model under the coordination of a
central server or service provider without data outsourcing. As such,
the data of each client remain stored locally without being shared and
only the successive models are disclosed [1]. This is interesting for
various reasons such as coping with the sensitive nature of training
data, privacy laws and data regulations (e.g. GDPR [2], HIPAA [3],
etc.) or business requirements. Even if this paradigm offers privacy
improvements over a traditional centralized training model, recent
research shows that attackers can indirectly retrieve private client data
(based on the shared model updates, see [4], [5], [6] for more details).
Moreover, there are cases in which the model itself is sensitive (e.g. due
to proprietary reasons) or subject to attacks from/on the coordination
server in order to alter it or modify the resulting inference capabilities.

In this context, there have been recent proposals to improve data
privacy and model confidentiality through emerging cryptographic
techniques such as Homomorphic Encryption [7], [8] or Multi-Party
Computation [9], [10]. However, none of these approaches address
integrity issues with respect to the computations performed to build the
global model or to the clients’ behavior. To the best of our knowledge,

VerifyNet [11] is the only work proposing a privacy-preserving
training for ”cross-device” FL (the clients are a very large number of
mobile or IoT devices) with guarantees of integrity of the global model,
using a double-masking protocol and a homomorphic hash function.

In this paper, we complete the picture by proposing a novel secure
approach for Federated Learning guaranteeing privacy protection for
the training data and integrity for the overall model, using Homomor-
phic Encryption and Verifiable Computation. Our solution, which
addresses threats coming from the server, is intended mainly for the
”cross-silo” FL setting [12] in which the training involves only a small
number of clients (that we suppose reliable), such as several organiza-
tions (e.g. medical, financial, insurance) collaborating to train a model.

In this work, we make the following main contributions:

• We present a secure framework for privacy-preserving and verifiable
FL relying on Homomorphic Encryption and Verifiable Computa-
tion. Besides the general architecture, we also give some examples
of practical use cases for our secure federated learning solution.

• We concretely instantiate our framework using the Paillier additive
homomorphic scheme associated to the LePCoV primitive [13]
which is a linearly homomorphic Authenticated Encryption with
Public Verifiability scheme derived from [14]. It allows us to
authenticate the computation of the global training model over the
homomorphically encrypted data, with the additional guarantee
that the correctness of the result can be publicly verified.

• In order to accelerate the performances of the system, we also
propose a batching approach for the homomorphically encrypted
data. We then give extensive performances results on the FEMNIST
dataset and we study the accuracy of the resulting models and
the overhead induced by using our homomorphic encryption and
authentication primitives. All these results have been obtained using
an efficient C/C++ prototype implementation of the framework
written as part of this work.

• We provide a security and threat analysis for our FL approach.
As such, under the security hypothesis we made, we ensure that
both the clients local data and the updates to the gradients remain
undisclosed to the server and that a malicious server cannot tamper
or misuse the model while training.

Paper organization. The reminder of this paper is organized as
follows. After presenting the related approaches in section II and
introducing the necessary background in section III, we present our
general framework, the associated threat analysis and the underlying
cryptographic tools in section IV. The experimental results and
related performances are shown in section V.978-1-7281-6937-8/20/$31.00 ©2020 IEEE



II. RELATED WORK

A. Secure Federated Learning and Homomorphic Encryption

Most of the work consisting in applying homomorphic encryption
to machine learning models concentrate on making the inference
on private encrypted data (e.g. CryptoNets [15], TAPAS [16], NED
[17]) and not so much on the training.

The first works addressing the problem of privacy-preserving
machine learning training concentrated on a centralized setting where
all the data are outsourced and the models are only linear [18], [19].
As for the few approaches proposing a complete centralized training
of neural networks on homomorphic encrypted data, they have quite
impractical performances or huge cryptographic parameters ( [20]).

Other works propose solutions in the case of multi-servers either
for clustering or regression. A lot of recent approaches employing
homomorphic encryption are proposed for a collaborative distributed
learning in which there is no central server mostly for linear models
[21], [22] and, more recently, for neural networks [23].

As for the case of cross-silo FL, there are only a few recent papers,
proposing the use of homomorphic encryption (usually additive) to
ensure the secure computation of the global model ( [7], [8], [24]).
The first two approaches are only theoretical and the third one uses
different datasets for the validation. Morever, all the above approaches
are under the classical hypothesis of an honest but curious central
server, without making use of any verifiable computing protocols
to ensure the global model integrity.

B. Secure Federated Learning and Verifiable computation

In order to solve the problem of privacy protection and verifiability
in deep learning system, several works have been proposed, like
SafetyNets [25], and Slalom [26]. However, these schemes either
support a small variety of activation functions like in [25] or require
additional hardware assistance as in [26].

As for applying the verifiable computing protocols for the FL
setting (i.e. verify the integrity of the aggregated results returned
from the central server), to the best of our knowledge, there is
only a recent work on this subject. Xu et al. [11] introduce the
VerifyNet architecture as a solution for cross-device FL preserving
the integrity and the confidentiality of the model with regards to the
global server. The verification of the server calculation results (i.e.
the aggregated model) is realized using the homomorphic hashes
and pseudorandom functions. The privacy of user’s gradients is
guaranteed via a double-masking protocol, having the inconvenient
that it requires multiple exchanges between the users.

As seen in this section and, to the best of our knowledge, so far
there are no approaches for a secure FL which supports the integrity
of the server calculation results while guaranteeing the model privacy
by means of verifiable computation and homomorphic encryption.

C. Secure Federated Learning and other Multi-Party Computation

Multi-party computation (MPC) protocols allow several parties to
collaborate in order to compute a function on their private data such
that each party knows only its input and output. There are several FL
approaches using MPC [9], [10] but due to the high-communication
costs of the multi-party computation and the inherent distributed
nature of FL, it is difficult to implement efficient methods.

D. Secure Federated Learning and Differential Privacy

A few works [27]–[30] have implemented differential privacy to
protect clients’ data from other clients or end-users in a FL context.
These works suggest that differential privacy is more appropriate
for cross-device FL applications. Indeed, a high number of clients
is required to simultaneously allow that
• the ratio of participants per round is low, thus limiting the probability

that a given client participates and therefore (indirectly) releases
any information about his training data in the considered round

• the absolute number of participants per round is high, reducing
the sensitivity of the model updates in a client-level differential
privacy point of view

This hypothesis is not reasonable in the context of the present paper
where the number of clients does not exceed a few hundreds. That is
why we focus in this work on scenarios in which we consider that the
recipients of the final model (clients and end-users) do not perform
attacks like membership inference [31], [32] or model inversion [4],
[6] on the model updates or the final model. Properly implementing
differential privacy would need further experiments and we wish to
design such a framework in a future work.

III. PRELIMINARIES

A. Federated Learning (FL)

FL is a decentralized framework that enables multiple clients to
collaboratively train a shared global model under the orchestration
of a central server while keeping the training data distributed on the
client devices. As a starting point, the server initializes a global model
randomly and then the FL process consists of multiple rounds. At the
beginning of each round, the server selects a subset of clients that take
part in training and sends to them the current global model. Next, each
selected client trains the model locally on his own data and communi-
cates only the model updates back to the server. Finally, the server ag-
gregates these updates before accumulating them into the global model
thereby concluding the round. The most common approach to opti-
mization for FL is the Federated Averaging algorithm [1]. Here, each
client runs several epochs of minibatch stochastic gradient descent
(SGD) minimizing a local loss function, and then the central server
performs a weighted averaging of the updated local models to form the
updated global model. Pseudocode is given in Algorithm 1. By remov-
ing the need to aggregate all data on a central server, FL helps to ensure
data privacy and reduces communication costs. As a result, FL applies
best in situations where data are privacy-sensitive or large in such a
way that it is undesirable or infeasible to transmit them to the server.

B. Homomorphic Encryption (HE)

Homomorphic Encryption (HE) schemes allow to perform com-
putations directly over encrypted data without decrypting it first. That
is, with a Fully homomorphic Encryption scheme E, we can compute
E(m1+m2) and E(m1×m2) from Encrypted messages E(m1) and
E(m2). Thus homomorphic encryption provides a way to outsource
computations to the cloud while protecting the data confidentiality.
Moreover, a simple additive homomorphic cryptosystem (i.e. allowing
to obtain only the encryption of the addition of two messages) is
enough to perform secure federated averaging. Let us recall the
general principles of the Paillier cryptosystem, a well-known and
popular additive homomorphic scheme [33].

KeyGen(sz)→(pk,sk): It generates the keys for the cryptosystem
taking as input the number of bits sz of the modulus.



Algorithm 1 Federated AveragingM is the total number of clients;
K is the number of participants per round t; the selected clients are
indexed by k with Dk the training set of data points on client k and
nk= |Dk|; B is the local minibatch size; E is the number of local
epochs; µ is the learning rate; w are model parameters and l is the
local loss function.
Server executes:

initialize w0

for each round t do
Kt← random set ofK≤M clients
for each client k∈Kt in parallel do

(wkt+1,nk)← ClientUpdate(k,wt)
wt+1←

∑K
k=1

nk

n w
k
t+1 where n=

∑K
k=1nk

ClientUpdate(k,w):
initialize wk=w
B← split nk samples of Dk into batches of sizeB
for each round epoch from 1 toE do

for each batch b∈B do
wk←wk−µ5l(wk;b)

return (wk,nk)

Choose two large prime numbers pE and qE such that
λ = lcm(pE − 1,qE − 1), and set NE = pEqE. We note that the
cleartext domain is ZNE

and the ciphertext domain is ZN2
E

.
Select a random g < N2

E such that gcd(L(gλ

modN2
E),NE)=1,with L(u)= u−1

NE
.

Set pk=(NE,g) and sk=(pE,qE).
Encpk(m)→c: It produces a ciphertext c using the public key pk

by computing c=gmrNE modN2
E, wherem<NE is the message

and r is uniformly chosen in ZNE
.

Decsk(c)→m: It computes the plaintext m from the ciphertext
c, using the private key sk.

LettingD=L(gλ modN2
E) andD−1 its multiplicative inverse

in ZNE
, the decryption is performed by evaluating
m=Dec(c)=L(cλ modN2

E)×D−1 modNE.
More importantly, for the present purpose, this cryptosystem has the
following homomorphic properties:
1) Dec(Enc(m1)Enc(m2)) mod N2

E = m1 + m2 mod NE
(addition of two encrypted messages).

2) Dec(Enc(m)gk) modN2
E=m+k modNE, for all k∈ZNE

(addition of an encrypted message to a clear integer).
3) Dec(Enc(m)k) modN2

E = km modNE, for all k ∈ ZNE

(multiplication of an encrypted message by a clear integer).

C. Batching for Paillier
We can batch several plaintext messages mi in a same Paillier

ciphertext, each one represented on t bits. Let b be the size of a batch,
i.e. the maximum number of positive messages we can encrypt in
a same Paillier ciphertext cp=gm1+m2+...+mb ∗rNE modN2

E or
written differently Enc(m1|m2|...|mb). To decrypt correctly cp it
follows that |m1+m2+...mb|≤NE and b≤ log(NE)/t (i.e. with
a modulus of 2048 bits and messages of t=64 bits, it is possible
to pack together max 32 messages).

However, if we want to perform addition on these packed cipher-
texts, one must take this into account to set up the dimension of the
initial batch to avoid an overflow. Let nbadd the number of additions

we want to perform on these packed messages. The padding (i.e. the
number of zero bits) that has to be added to each slot is equal to nbadd.

As such, one has to encryptEnc(m10...0|m20...0|...|mb0...0).
The size of the batch will then have to be at most: b=

⌊
log2(NE)
t+nbadd

⌋
.

Let us give a short example. Suppose each message we want to
encrypt is a real positive number between 0 and U , with U=100 and
mi having 4 representative digits after the decimal point. As such to
represent these messages, one must have at least dlog2(U∗104)e, i.e.
20 bits. To perform two additions on ciphertexts batching these type of
messages, for a modulus of 2048 bits, one can pack 2048/(20+2)=
93messages in a single ciphertext. For 100 additions on the ciphertexts
of the same format, one can have at most 17 slots/ciphertext.

D. Verifiable Computation

Verifiable Computation (or Verifiable Computing) VC is a
cryptography tool meant to secure the integrity of computations on
authenticated data. It enables a client to delegate to another entity
(in most cases a server) the computation of a function. The other
entity evaluates the function and returns the result with a proof that
the computation of the function was carried out correctly.

Now, we present the VC for Paillier cryptosystem [13]. It is a
Linearly Homomorphic Authenticated Encryption scheme with
Public Verifiability (LAEPuV) and provable correctness called
LEPCoV and it allows the public verifiability of data returned by
the server. This scheme improves Catalano et al.’s instantiated scheme
[14] by avoiding false negatives during the verification step.

Let S=(KeyGenS,Sign,V erify) be a signature scheme.
• AkeyGen(sz, I): takes as input a prime size sz (in number

of bits) and an integer I representing the upper bound for the
number of messages encrypted in each dataset. It calculates the
secure sk and public pk parameters as follows: sample four (safe)
primes pE, qE, pS, qS of size sz/2, such that NE=pE ·qE and
NS = pS ·qS it holds that ϕ(NS)= (pS−1)(qS−1), the group
elements g0, g1, h1,..., hI ∈Z∗Ns

and g∈Z∗
N2

E
of order NE, and

picks a hash functionH. Finally, it runsKeyGenS(sz) to obtain
the secure and private signature key (skS,pkS). Returns the key
pair (sk,pk), where pk=(NE,g,NS,g0,g1,h1,...,hI,H,pkS) and
sk=(pE,qE,pS,qS,skS).

• AEncrypt(sk,τ,i,m): probabilistic algorithm that takes as input
the secret parameter, a messagem∈M , a dataset identifier τ , and
an index i∈{1,...,I} to calculate the ciphertext c containing the
encryption of the message with the tag of verification. Thus, it
computes the Paillier encryptionC of the messagem,R=H(τ ||i),
and a tuple (a,b)∈ZNE

×Z∗NE
such that gabNE =CR modN2

E
(using the factorisation ofNE). In addition, if τ is used for the first
time, it chooses a not yet used prime e of length l≤sz/2 such that
gcd(eNE,ϕ(NS))=1, it computes its inverse e−1 modϕ(NS),
and its signature µe=SignskS(τ ||e) and it stores (τ,e,e−1,µe)
in the list L. Otherwise, it takes (τ,e,e−1,µe) from the list L.
Then, it chooses an element s uniformly at random from ZeNE

and it computes x using the pS and qS such that xeNE =gs0hig
a
1

modNS. It returns c=(C,ei,e
−1
i ,µe,τ,σ), where σ=(a,b,s,x)

is the verification tag.
• AEval(pk,τ,f,{ci}i∈[I]): takes as input the public key pk, a

dataset identifier τ , a linear function f = (fi)i∈I and I ciphers
{ci}i∈[I] = (Ci, ei, e

−1
i , τi, σi). The output is a cipher c. The

algorithm checks if there exists an index l∈[I] such that τ 6=τl,
or that the signature (V erify(pkS,τ ||el,µel)=0). Furthermore,



the algorithm checks if there are two indexes i 6=j∈ [I] such that
ei 6=ej. If one of the checks is true, the algorithm aborts. Otherwise,
the algorithm sets e=e1,e−1=e−11 , µe=µe1 and evaluates f over
ciphertext as: C=

∏I
i=1C

fi
i modN2

E. It also evaluates f over
the tag to obtain a new tag (a,b,s,x) as follows: a=

∑I
i=1fiai

modNE, b =
∏I
i=1 b

fi
i modN2

E, s =
∑I
i=1fisi mod eNE,

s′ =
(∑I

i=1fisi−s
)
/(eNE), a′ =

(∑I
i=1fiai−a

)
/NE, and

x=
∏I

i=1x
fi
i

gs
′

0 g
a′e−1
1

modNS.

It returns the cipher c=(C,e,e−1,µe,σ).
• AV erify(pk,τ,c,f) : takes as input the public key pk, a dataset

identifier τ , a cipher c= (C,a,b,e,s,τ,x), and a linear function
f=(fi)i∈[I], to detect if c is a valid or invalid cipher. For this goal,
the algorithm checks that:

V erify(pkS,τ ||e,σe)=1;

a,s∈ZeNE
;

xeNE =gs0
∏I
i=1h

fi
i g

a
1 modNS;

gabNE =C
∏I
i=1H(τ ||i)fi modN2

E;
If all checks pass, it outputs 1 (i.e c is a valid cipher), else it

outputs 0, (i.e. c is an invalid cipher).
• ADecrypt(sk,τ,c,f) : Taking as input the secret parameter sk,

a data set identifier, a cipher c, and a linear function f=(fi)i∈[I],
it calculates the decryption of c or⊥ (if c is invalid cipher). Then
it verifies if c is a valid cipher by runningAV erify (pk,τ,c,f). If
passed, the algorithm returns the messagem obtained byDec(c).
Otherwise, it returns⊥.
For lack of space, we refer the reader to [14] for the correctness

and the security proofs for LAEPuV scheme and to [13] for the
security and correctness proofs of the LEPCoV scheme.

IV. A SECURE FRAMEWORK
FOR CONFIDENTIAL AND VERIFIABLE FEDERATED LEARNING

A. Overview of the architecture

Figure 1 shows the high-level view of the FL framework while
training with a total of M clients in the case of a malicious central
server. In our approach, the confidentiality of the model is ensured by
homomorphic encryption and the integrity for the computation of the
global model by the central server is guaranteed by public verifiability.

Before the training actually begins, the central server shares with
theM clients the global architecture of the neural network that will
be trained. Also, once the enrollment of the clients participating to
the training is completed, the keys necessary for the homomorphic
encryption and the signatures are generated by one of the clients. This
client responsible for the key generation can be randomly selected
by the server or be the result of a leadership election protocol. All the
clients will then share the same pair of (sk,pk) keys, with the sk key
necessary for the decryption and signing and the public key pk for eval-
uation and verification. The central server holds only the pk required
for the homomorphic evaluation and signature of the global model.

At each round of the training which is an iterative process, the server
randomly selectsK out of theM clients. Each client sends its local
updates of the weights homomorphically encrypted together with an
authentication tag. The server updates the global model by computing
a homomorphic aggregation on the weights. In the same time, it
computes the signature tag associated with the global model. The ho-
momorphic result and the signature tag are sent back to theK clients.
Each of them will verify that the global model was computed correctly

and if so they will decrypt the received global weights. This concludes
the current round and a new iteration can begin. If the verification fails,
the clients will take appropriate actions, outside the scope of this paper.

Once the training is finished, the parameters of the final global
model are sent back to theM clients which decrypt them and explore
them internally for prediction on their local datasets.

It is noted that the same technique can be extended with minor
modifications to the case we consider gradients instead of weights
as local updates sent by the clients.

As example of a relevant application of our secure FL framework,
one can cite the training of a federated model across multiple medical
institutions without sharing the patient data. This allows to collaborate
and build relevant models while keeping the patient data in local, at
the hospital and thus reduce the risk of data leakage while respecting
the health regulations. Another example of use case is the training
of a common model by the partners of a common defence alliance
(e.g. NATO) without sharing their sensitive military data.

Fig. 1. Cross-silo federated learning architecture with Homomorphic Encryption
and public Verifiability

B. Threat and security analysis

Following common cybersecurity practices, this section
summarizes the security properties of our framework in terms of
assets, threats and countermeasures. In our setup we have two assets:
the training data, owned by the clients, and the model they collectively
build with the help of the aggregation server. First, the confidentiality
of the training data of a given client must be guaranteed with respect
to threats coming from both the server as well as (ideally) the other
clients. Additionally, the confidentiality of the model (or, rather the
successive models) must be guaranteed with respect to threats from the
server (as all the clients are granted access to the succession of models,
there is no confidentiality requirements on the models w. r. t. the clients
in our protocol). The integrity of the model should also be guaranteed
against threats coming from the server and, ideally, from the clients.
In this setup, the framework presented in this paper encompasses
two complementary countermeasures in order to address the above
server threats: Fully Homomorphic Encryption and public Verifiable



Computing. Since FHE allows the server to perform its aggregation
function by working directly over encrypted model data, it addresses
confidentiality threats on the model data coming from the server and,
as a by-product that the server works in the encrypted-domain, on the
clients’ training data as well. Now, turning to integrity, our Verifiable
Computing-approach allows all clients to formally establish that the
server correctly performs its aggregation function (albeit on encrypted
data) and, as such, mitigates integrity threats from the server. At
present, client threats are not (yet) covered by our framework. In
particular Differential Privacy, by adding an appropriate noise to
the successive models coefficients (thus preventing model inversion
attacks and the like by the clients which receive the successive models),
can help mitigating confidentiality threats on the clients training data
with respect to one another. Still, properly introducing DP within a FL
framework is easier said than done and will be the focus of another
paper. The last kind of threats that our framework does not fully cover
(and which would also stay uncovered even when bringing DP into
the picture) concerns integrity threats on the model coming from the
clients [4]. It should however be emphasized that these threats are
very hard to mitigate as malicious clients can misbehave in many
different and possibly harmful ways (e.g. from lying on their training
set sizes to using false or even misleading training data). Still, some
form of integrity on the final model can be checked a posteriori, for
example by having each client running the model on its own private
test set and measuring the resulting classification rate. Let us also note
that our security model is valid under the hypothesis of non collusion
between the server and any user participating in the FL protocol.

C. Cryptographic tools and optimizations

As detailed in the section III-C, one can batch several messages
into the same Paillier ciphertext. In the context of our FL approach, the
weights updates by client as well as the overall global model parame-
ters are quite important in terms of size. By batching the weights local
updates and the weights of the global model one can diminish the band-
width requirements and also the evaluation time on the server side.

Let us now give the example on how the batching technique
applies on federated averaging. For the federated averaging, on the
central server side, one must compute in the encrypted domain:
wt+1←−

∑K
k=1

nk

n ∗w
k
t+1 based on the encrypted updates of the

weights received from the clients k.
Of course 0 < nk/n ≤ 1 with r representative digits after the

decimal point. The weights are usually real numbers for which we
will keep only p representative digits of precision. For simplicity
reason, we suppose that all weights are translated into the positive
domain. In this case, one must have for each slot in the packed
message extra space for the term nk/n. As such, each slot i for a
packed ciphertext will be in the form

[ nk/n︸ ︷︷ ︸
dlog2(10r)c

| wkt+1,i︸ ︷︷ ︸
dlog2(10p)c

|0...0︸︷︷︸
K

].

Therefore, one can pack at most bweights in a single ciphertext with

b=
⌊ log2(n)

log2(10r)+log2(10p)+K

⌋
.

More concretely, let us suppose nk/n=(0,r1r2r3), each weight
is in the form (0,p1p2p3p4) andK=10. It follows that we can have
at most b2048/(log2(103∗104)+K)c=61 packed messages in a
single ciphertext.

Let us now go into more details on the training protocol when
using the above specified cryptographic primitives.

At each round of the training, each client sends the result of
AEncrypt over the local updates of the weights: c=(C,e,e−1,µe,σ)
containing the ciphers (C, e, e−1, µe) concatenated with the
corresponding tag σ. The server updates the global model by calling
the AEval algorithm over the received messages c and using f ,
where f is the aggregation function. The output of AEval is sent
back to the K clients. Each of them runs the AV erify algorithm
to verify that the global model was computed correctly. If so they will
evaluate the ADecrypt over the message received to decrypt this
message and obtain the global weights. As mentioned in the section
III-D, the VC scheme for Paillier encryption (LEPCoV) verifies the
outsourced computation of any linear function over any messages in
ZNE

. Then to adapt the LEPCoV for the Paillier batching encryption
of weights it is sufficient to modify only the message weights wk
to w′k, the packed version of the weights. Then each user runs
AEncrypt(sk,τ,i,w′k) instead of AEncrypt(sk,τ,i,wk) and the
cipher becomes c = (C′,e,e−1,µe,σ), where C′ = Enc(w′k) as
illustrated above. The remaining of the framework is completed
like before. Finally, we note that in the evaluation algorithm,
we can evaluate C, b, and x in parallel (i.e. the runtime of
AEval =max(AEval(C),AEval(b),AEval(s)+AEval(a)+
AEval(x))). Each user can run AEncrypt and respectively
AV erify in parallel over the batches of uploaded and respectively
downloaded weights so the associated evaluation times can also be
reduced.

V. EXPERIMENTAL RESULTS

We use the Federated Extended MNIST (FEMNIST) dataset1 as
experimental setup. The extended version of MNIST contains 62
classes (digits, upper and lower letters) and comes with the writer id
in such a way that its federated version was built by partitioning the
data based on the writer [34]. Among the 3,596 writers contained in
the original dataset, we keep the 500 users with the most data. Each
selected user’s dataset has a train/test data split for a total of 165,050
train and 27,433 test images.

Evaluations were done with a standard CNN composed of two
convolution layers (the first with 5∗5 kernel size and 128 channels,
the second with 3∗3 kernel size and 64 channels, each followed with
2∗2 max pooling), a fully connected layer with 512 units and ReLu
activation, and a final softmax output layer (486,654 total parameters).
The evaluation metric was the accuracy on the test sets and, for each
experimentation, 200 learning rounds were done.

We have led two distinct sets of experimentation. On one hand, we
aimed at finding the best hyperparameters (K, B, E)2 to improve the
speedup of the learning process and thus decrease the communication
cost. On the other hand, our concern was about privacy and our goal
was to secure the FL process without degrading its performance.

A. Setting FL hyperparameters

To evaluate the speedup of the learning process relative to the FL
hyperparameters, we report the number of communication rounds
to reach a decent target accuracy of 80%. We first experiment with
the number K of participants per round, which controls the amount
of multi-client parallelism. SettingB=5 andE=10, we show the
impact of varyingK (see Fig.2). AboveK=10, there is only a small
advantage in increasing the client fraction. Thus, for the remainder

1Dataset available at https://www.nist.gov/itl/products-and-services/emnist-dataset
2Notations are those introduced in Algorithm 1



of our experiments we fix K = 10, which strikes a good balance
between computational efficiency and convergence rate.

Fig. 2. Test set accuracy vs. communication rounds varying the number of participants
(B=5 and E=10)

Our second experiment aims at choosing B and E, which control
the number of local calculations for each client. Starting fromB=50
andE=1, we add more computation per client on each round, either
decreasing B, increasing E, or both. Table I demonstrates that adding
more local SGD updates per round can produce a dramatic decrease
in communication costs. In the following, we use the parameters B=5
with E=10 which give the best convergence rate for the FL process.

E
1 5 10 20

B

50 - 195 149 152
10 155 50 48 44
5 87 40 33 34

TABLE I
NUMBER OF COMMUNICATION ROUNDS TO REACH A TARGET ACCURACY OF

80% VARYING BOTH B AND E (WHILE K=10)

B. Quantization vs. utility

Since the encryption quantifies the clear messages, we conducted
experiments to analyze the impact of this quantization on the utility of
the model. Contrary to Section V-A, we fixed the number of learning
rounds to 200 and reported in Table II the accuracy varying the
precision on both wk and nk

n for each participant k. We observe that
a 104 precision is required not to degrade performances. In Figure
3, we focus on performance deterioration due to precision on wk
by showing accuracy for each round considering different weights
precisions (while precision on nk

n is float32).

precision on wk

float32 104 103 102

pr
ec

is
io

n
on

n
k n

float32 84.6% 84.2% 82.6% 75.4%
104 84.5% 84.6% 82.8% 75.1%
103 83.5% 83.3% 82.0% 75.4%
102 78.0% 78.0% 77.2% 73.9%

TABLE II
ACCURACY AFTER 200 LEARNING ROUNDS DEPENDING ON PRECISION ON BOTH

wk AND
nk
n

Fig. 3. Test set accuracy vs. communication rounds varying the precision on weights
wk (while precision on nk

n
is float32)

C. Performance evaluation of LEPCoV scheme

In the beginning, let us specify that all tests presented in this
section were performed on a 2016 DELL PC(Genuine-Intel Core
i7−6600U , 4 cores at 2.60GHz with 16GB RAM at 2.13GHz),
on Ubuntu (Linux kernel 4.15.0−91−generic, with the architecture
x86−64 ) as an operating system. Finally we used the C++ language
to implement the LEPCoV scheme.

Table III summarizes the average runtimes of AKeyGen,
AEncrypt, AV erify, ADecrypt, AEval and the detailed
evaluation, over the tag σ=(a,b,s,x), and over the ciphers C. Note
that the evaluation time ofAEncrypt andADecrypt depends only
on the size of the cryptosystem parameters and the evaluation time
ofAKeyGen,AEval,AV erify further depends on the number of
participantsK. We note that theAKeyGen is performed once. The
time presented in this table forAEncrypt is the time evaluation for
the encryption and tag generation for one message (weight). We recall
that we can evaluate f over C, b, and x in parallel (i.e. the runtime
ofAEval=max(AEval(C),AEval(b),AEval(s)+AEval(a)+
AEval(x))). We also remark that the verification time is rather fast
(e.g 28,87ms forK=10 and a 2048 bits modulus).

Table IV shows the batching characteristics one can use to encrypt
with Paillier cryptosystem the clients updates for the CNN model
described earlier with 486,654 parameters. As such, we report the
number of slots (column ”#slots”) and the number of ciphertexts
(column ”#ctxts”) per participant in one round in function of the
number of participants (K), the precision of the weights wk and of
the term nk/n as well as the modulus size. The number of slots (and
implicitly the number of encrypted messages per round) depends
on the number of bits of the modulus, the number of participants
K and the precision of both nk/n and wk.

Table V shows the bandwidth size in one round between a client
and the central server on upload and download. On the upload
(direction client-server) this message is the output of AEncrypt
algorithm, it thus contains the cipher c and the tag of verification σ.
On the download, it contains the result ofAEval algorithm that runs
on the central server. For example, for a modulus size of 2048 bits,
104 of precision for both nk/n and wk andK=10, each user (out
of 10) sends 486,654×5.6KB' 2.5GB to central server without
batching or it sends 8848×5.6KB'48.3MB to the central server
with batching. Each client receives the same message from the server
of the size 2.5 GB in the case without batching or 49.5 MB with
batching. The 5.6 KB mentioned above is the size for one message,
containing the size of the ciphers C =(c,e,e−1,µe,τ,) auditioned
with the size of the tag σ=(a,b,x,s), both of equal sizes.



Modulus size 1024 2048 3072
K 10 20 50 10 20 50 10 20 50

AkeyGen 19.98 20.07 21.04 163.9571 167.89 170.84 638.79 644.5 645.44
AEncrypt 5.17 5.23 5.36 37.12 37.05 37.12 124.07 117.39 118.6
AV erify 4.36 4.54 5.93 28.87 30.3 34.14 96.54 96.21 101.35
Decrypt 1.71 1.26 1.21 8.6 9.01 8.69 28.18 27.8 28.34

AEval 0.38 0.46 1.16 2.76 1.57 4.16 8.58 8.17 9.31
AEval(c) 0.23 0.46 1.14 0.8 1.57 4.08 1.77 3.82 9.31
AEval(a) 0.0006 0.0008 0.001 0.0008 0.001 0.002 0.001 0.001 0.003
AEval(b) 0.23 0.43 1.16 0.77 1.55 4.16 1.75 3.55 8.53
AEval(s) 0.0009 0.001 0.004 0.001 0.001 0.003 0.001 0.002 0.004
AEval(x) 0.38 0.37 0.42 2.76 2.73 2.5 8.58 8.17 7.52

TABLE III
AVERAGE RUNTIMES (IN MS) OF AKEYGEN,AENCRYPT,ADECRYPT AND AEVAL, FOR DIFFERENT MODULUS AND DATA SIZE K. WITH THE FUNCTION

f(x)=
∑k

i=0nk/n wi WHERE nk/n AND wk OF SIZE 104

Modulus size
1024 2048 3072

nk/n precision 10ˆ4 10ˆ3 10ˆ4 10ˆ3 10ˆ4 10ˆ3
K wk precision #slots #ctxt #slots #ctxt #slots #ctxt #slots #ctxt #slots #ctxt #slots #ctxt

10
10ˆ4 27 18024 30 16221 55 8848 61 7977 83 5863 92 5289
10ˆ3 30 16221 34 14313 61 7977 68 7156 92 5289 102 4771
10ˆ2 34 14313 38 12806 68 7156 76 6403 102 4771 115 4231

20
10ˆ4 21 23174 23 21158 43 11317 47 10354 65 7486 71 6854
10ˆ3 23 21158 25 19466 47 10354 51 9542 71 6854 76 6403
10ˆ2 25 19466 27 18024 51 9542 55 8848 76 6403 83 5863

50
10ˆ4 13 37434 13 37434 26 18717 27 18024 40 12166 41 11869
10ˆ3 13 37434 14 34761 27 18024 29 16781 41 11869 43 11317
10ˆ2 14 34761 15 32443 29 16781 30 16221 43 11317 46 10579

TABLE IV
PAILLIER BATCHING REQUIREMENTS IN FUNCTION OF THE PRECISION AND NUMBER OF PARTICIPANTS

without batching with batching

mod
K 10,20,50 10 20 50

Client, Server 1024 1200 49.2 63.3 102.3
Client, Server 2048 2500 48.3 61.8 102.3
Client, Server 3072 3800 47.5 60.6 98.6

TABLE V
SIZE OF BANDWIDTH (IN MB) BETWEEN ONE CLIENT AND THE CENTRAL SERVER

IN ONE ROUND, WITH 104 PRECISION OF BOTH nk/n AND wk .

Table VI shows the sequential evaluation times for the different
cryptographic primitives with batching, for one round of the training,
for a precision level of 104 for both nk/n andwk and a modulus size
of 2048 bits. The experiments were performed for a modulus on 2048
bits since in terms of security, a modulus size of 2048 bits provides
long-term security guarantees following common practice, 1024
bits is considered insufficient and 3078 bits is reserved for “beyond
30 years” confidentiality requirements. Columns ”unit” report the
times per unitary encrypted messages while columns ”total” report
the times spent to execute the model with all the 486 654 parameters
but without any parallelization. Let us however emphasize that the
execution times especially for AEncrypt and AV erify can be
further improved by involving simple multi-core parallelization, which
seems a viable option in the cross-silo FL context to which this work
applies. Indeed, on the client side, each ciphertext (which contains
several weights) can be prepared independently (and furthermore the
Paillier encryption function can be split in a message independent part,
which can be precomputed, and an online message dependent part
in order to reduce latency). Similarly, on the server side, the averages
can also be computed independently. So due to the “embarrassingly
parallel” nature of both, the computing times in Table VI can easily
(e.g. by an OpenMP parallel-for) be reduced by one or two orders
of magnitude depending on the number of cores of the machines
involved in the protocol. Again, involving high-end machines on both
client and server sides seems realistic in the cross-silo setting.

K=10 K=20 K=50
unit total unit total unit total

AEncrypt 0.73 6469.7 0.756 8552.49 0.741 13865.18
AEval 0.03 244.82 0.06 650.50 0.14 2619.63

AEval(c) 0.028 244.82 0.06 650.50 0.14 2619.63
AEval(a) ≈0 0.02 ≈0 0.06 ≈0 0.18
AEval(b) 0.03 243.94 0.06 636.35 0.14 2619.63
AEval(s) ≈0 0.04 ≈0 0.09 ≈0 0.19
AEval(x) ≈0 36.45 ≈0 46.62 ≈0 78.61
AVerify 0.07 579.54 0.10 1144.15 0.21 4004.69

ADecrypt 0.01 76.09 0.01 97.89 0.01 160.97
TABLE VI

Sequential RUNTIMES (IN SECONDS) FOR 104 PRECISION OF BOTH nk/n AND wk
AND A MODULUS SIZE OF 2048 BITS

VI. CONCLUSION AND PERSPECTIVES

The framework presented in this paper addresses both
confidentiality and integrity threats, on both the training data and
model, coming from the aggregation server by means of HE and
VC techniques. On top of providing strong cryptographic security
guarantees, and despite the far from negligible overhead induced by
these techniques, we claim that our framework achieves practical
performances at least in cross-silo setting when the participants are
willing to deploy high-end machines (between 10 to 100 cores) to
decrease the overall protocol latency to a sustainable level.

As such, this framework is a significant step towards private-by-
design federated learning. However, it is also desirable to cover a
wider security model by also countering threats from the end-users
thus extending our solution to a fully secure framework applicable in
a context where the recipients of the final model may not be trusted
(to some extent). Notably, this will require to bring differential privacy
(DP) into the picture in order to prevent indirect leakage of sensitive
information on the training data from the successive models built
(and disclosed to the clients) in the protocol. In a scenario in which
the clients or the end-users of the final model may be malicious,
DP would indeed protect the model updates or the model itself from
attacks like membership inference [31], [32] or model inversion [4],



[6]. Yet, there are a number of subtleties in doing so, in particular
with respect to distributed noise generation or interferences between
HE and VC on one hand and DP on the other hand.
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