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Abstract

Faithfully reproducing surroundings in 3D is a key-

component in Mixed Reality for medical training in neona-

tology, where a user sees a hospital room in a Virtual Real-

ity helmet while retaining tangible interaction with a baby

mannequin and various medical tools. Deep learning solu-

tions have high claims against classical methods but their

performance in real-life application remains unclear. To fill

this blank, we present a comparative study of depth map

based Multi-View Stereo methods for dense 3D reconstruc-

tion. We compare classical state-of-the-art methods to their

learned counterparts and assess their robustness to weakly-

textured and reflective surfaces as well as accuracy on thin

structures both globally and locally. We also analyze the ef-

fect of depth filtering along with computational effort. Our

experiments reveal various factors which contribute to the

performance gap between the methods that we discuss in

detail. This study is the first to evaluate traditional dense

geometry reconstruction methods against brand-new deep

learning models. It helps to better understand what suits

best the challenges of hospital environments. Furthermore,

it builds a solid analytic ground to underscore the strengths

and weaknesses of the learned methods.

1. Introduction

For various computer vision applications, dense 3D re-

construction plays an important role. Supported by latest

innovative tools and technology, professional training in

healthcare became one of them [3, 4]. In this article we

focus on neonatal resuscitation training - an essential skill

for health care providers who are involved in the child de-

livery (i.e. intervention, which sometimes required shortly

after birth to help a baby breathe and to help its heart beat).

Simulation scenario in neonatology includes various

modalities such as human, synthetic and digital (Figure 1a-

c). Recent digital simulation solutions employ Virtual Re-

Figure 1: Learning by simulation for neonatal resuscitation.

(a) - training via role-playing; (b) - high-fidelity mannequin;

(c) - training in VR game; (d) - demo of the MR set-up (i.e.

a user is interacting with the mannequin while seeing its 3D

model with augmented virtual features in the VR helmet).

ality (VR) to enrich the experience. They however often

suffer from two major shortcomings: 1) the non-tangible

side of VR often bothers learners and requires a pre-learning

phase and 2) the risk of motion sickness. As part of the

collaborative effort with one of the specialized centers for

medical training in France, we aim to go one step further.

We develop a Mixed Reality (MR) system that solves VR-

related problems and leverages all simulation types whereas

allowing medical students to profit from a fully immersive

experience. Figure 1 illustrates the main idea and the com-

ponents of the proposed solution. For successful MR dense

and faithful 3D reconstruction of the environment plays an

important role. It allows to attain a consistent and accurate

display between virtual and real objects. Moreover it is es-

sential for minimizing the user’s mistakes while interacting

with the environment which also reassures the learner and

helps to stay focus on the task.

In this paper we focus on the Multi-View Stereo (MVS)

approach for dense 3D reconstruction that have been the

most successful in terms of robustness and the number of

applications [10, 12, 19]. MVS methods evolved as a result

of careful engineering using geometric priors and various

depth cues. They vary in complexity but generally share
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similar ideas and use multiple depth maps due to the flex-

ibility and scalability of such representation [8, 6, 17, 20].

Recently, new line of methods emerged [11, 25, 26] that

builds on the pivotal ideas from classical MVS within Deep

Learning (DL) framework.

While classsical MVS methods and their performance

has been extensively studied and tested on public bench-

marks [13, 15, 18, 19, 21], the evaluation of learned MVS

methods remains spurious and mainly exists within the ex-

perimental sections in the corresponding publications. This

creates a significant gap in understanding how well the

learned MVS stands against classical MVS. Specifically, 1)

How well learned MVS models can generalize to a unseen

data? 2) Does the inclusion of semantic features helps to

better reconstruct challenging areas such as thin structures,

weakly-textured and reflective surfaces? 3) What are the

crucial factors that have to be taken into account for devel-

opment of a learned MVS method?

To this end, we propose a first comparative study of

classical depth map based MVS methods and their learned

counterparts on real-life dataset composed of challenging

scenes from medical environment. We start with a review

of related methods in §2. We define the evaluation protocol

and provide the description of our dataset as well as evalu-

ation criteria in §3. Our experiments reveal various factors

which contribute to the performance gap between classical

and learned MVS methods that we discuss in detail in §4.

Finally, we synthesize our findings into conclusions in §5.

2. Multi-View Stereo in the Wild

The goal of MVS is to reconstruct a dense 3D point cloud

from a collection of images taken from different views with

the known camera poses. In our study we focus on methods

that operate directly on the image, where the core problem is

to infer depth (and normal) information for every view. Full

MVS pipeline consist of three main stages: 1) sparse re-

construction, where given the input image sequence and the

corresponding camera calibration a Structure from Motion

(SfM) is solved to obtain a sparse point cloud and camera

poses; 2) densification, where per-view depth (and normal)

information is inferred by solving dense pixel-wise stereo-

correspondence problem and 3) fusion, where individual

depth maps are merged into a single dense point cloud. In

this work we aim to evaluate methods proposed for densifi-

cation task. Therefore, we provide an overview of existing

depth map based MVS methods, further ‘MVS methods’.

2.1. Classical Methods

Traditional MVS methods are composed of five build-

ing blocks, namely stereo-pair selection, matching cost

computation (e.g. photo-similarity metrics), cost aggre-

gation, depth (and normal) computation (e.g. local or

global), and depth refinement (e.g. sub-pixel accuracy).

They generally build on few seminal ideas such as Patch-

Match algorithm [1], originally proposed for image edit-

ing, its re-purposed version PatchMatchStereo [5] as well

as PlaneSweepStereo [7].

[1] is a randomized algorithm for quickly finding

approximate nearest neighbor matches between image

patches. This idea was adopted to MVS under assump-

tion of fronto-parallel scene structure until the authors of [7]

proposed a way to handle slanted surfaces, where they back-

project the image set onto successive virtual planes in differ-

ent directions in the 3D space. Later, the authors of [5] com-

bined both aforementioned concepts and proposed a method

that randomly initializes depth values and further refines the

hypothesis based on the local propagation and the random

search strategies on slanted support windows.

Further extention of [5] was presented in [20], where

authors’ effort is focused on improving stereo-pair selec-

tion and depth refinement. They select a subset of cam-

era pairs depending on the number of shared points com-

puted by SfM and their mutual parallax angle followed by

depth map estimation and refinement enforcing consistency

among many views. [6], in turn, explores more effective

depth hypothesis propagation scheme in such a way that

computation can better exploit the parallelization of GPUs.

Unlike [20], the authors aggregate a set of matching costs

computed from different source images for each reference

view. This approach suffers from decoupled depth estima-

tion and camera pairs selection. [23] proposed an attempt to

overcome this issue where the authors extended [6] with yet

more efficient propagation pattern and their optimization

procedure jointly considers all the views and all the depth

hypotheses. For the depth estimation of weakly-textured

areas, they onwards propose a multi-scale geometric con-

sistency guidance [24].

Opposing the idea of using all images to compute the

matching costs, [28] proposed an effective method to deal

with stereo-pair selection. The authors designed a robust

variational approximation framework with joint depth esti-

mation and pixel-wise view selection, where they alternate

depth update with a propagation as in [1]. They incorporate

fixed view selection and pixel-wise view inference with a

forward-backward checks for fixed depth levels. [17] ex-

tended this method with a focus on view selection, where

they employ view-dependent priors and jointly estimate per-

pixel depths and normals, such that the knowledge of the

normals enables slanted support windows.

Although these methods are the top performing ap-

proaches in several MVS public benchmarks [13, 15, 18,

19, 21], there exist open issues. Despite good performance

on well textured areas under Lambertian surface assump-

tion, weakly-textured and reflective regions are often poorly

reconstructed. Moreover, depth discontinuities pose addi-

tional challenge as well as the presence of thin structures.



2.2. Deep Learning Methods

Motivated by the success in classification and recogni-

tion tasks due to the robustness of deep features learned us-

ing convolution neural networks (CNNs) and the assump-

tion that they can introduce global semantic information

such as structural, specular and reflective priors for more

robust matching, a number of efforts have been made to ap-

ply DL to dense 3D reconstruction. Deep features have been

extensively used for stereo matching and similarity metric

learning [9, 14, 27] to name a few. However, directly ex-

tending the learned two-view stereo to multi-view settings

is less trivial. In that front there are considerably fewer pi-

oneers. They mainly combine key contributions of learned

two-view methods and borrow insights from seminal ideas

in classical MVS approaches [11, 22, 25, 26].

[11] poses the depth estimation as a multi-class classifi-

cation problem. First, the authors produce a set of plane-

sweep volumes [7] for a reference view that contains the

warped neighbor colors at every disparity, and feed these

into a CNN to extract features from each patch pair (ref-

erence patch vs. patch in plane-sweep volume). Second,

they use an encoder-decoder architecture with skip connec-

tions to aggregate the features across large spatial regions.

Lastly, they use a max-pooling layer to aggregate the infor-

mation extracted by each neighbor image and produce the

final depth estimate which is then refined using conditional

random fields (CRFs). This method is trained on a combi-

nation of real and synthetic datasets to circumvent the issue

of incomplete ground truth, and, theoretically, can handle

an arbitrary resolution.

[22] proposed a partially learned MVS method, where

multiple images are first encoded into the cost volume by

calculating pixel-wise absolute intensity difference and it is

then passed to the encoder-decoder network along with a

reference frame that estimates inverse depth maps at four

resolutions. Even though, the method has a multi-view na-

ture it is primarily targeted for continuous generation of

depth maps given image-pose sequences from a localized

moving camera rather than for dense 3D reconstruction.

[25] encodes camera geometries in the network as differ-

entiable homography and infers the depth map for the ref-

erence image. In this solution, deep image features are first

extracted from input images through a 2D CNN. These fea-

tures are then warped into the reference camera frustum by

differentiable homographies to build the feature volumes in

3D space. To handle N -view image input, a variance based

cost metric is proposed to map N feature volumes to one

cost volume. Similar to the learned two-view stereo, this

solution regularizes the cost volume using the multi-scale

3D CNNs, and regresses the reference depth map through

the soft argmin operation. A refinement network is further

applied to enhance the depth map quality. The method does

not include synthetic data in its training.

The major drawback of [25] is its inability to handle

high-resolution images because the memory requirement of

learned cost volume regularizations grows with model’s res-

olution. To this end [26] proposed a modification, where the

authors exploit recurrent neural networks (RNNs) and regu-

larize the cost volume in a sequential manner using the con-

volutional gated recurrent unit (GRU). This model does not

employ any specific data augmentation and produce depth

maps 4x times smaller than the original input.

Whilst learned MVS methods specifically designed for

3D reconstruction are not many, they already exhibit an in-

teresting research direction. Taking into account the fast

development of the DL tools and solid understanding of

analytical geometry this may inspire more contributions to

learned MVS in near future. Consequently, the comparative

evaluation with classical approaches becomes essential.

2.3. Selected Methods

Whereas we strive to identify the most suitable solu-

tion for dense 3D reconstruction of medical environment,

it is necessary to choose the methods for evaluation taking

into account various factors. First, the method should ei-

ther represent the state-of-the-art or to be close to it, espe-

cially in case of classical MVS with its long history. Con-

cerning learned MVS, we consider the latest contributions

that target 3D reconstruction. Second, the method should

have some record of testing on public benchmarks such that

we can relate our findings to some reference point. Avail-

ability of an open-source implementation is another impor-

tant factor that facilitates the evaluation considerably. Tak-

ing into account incremental nature of the contributions, we

limit the selection to four methods with two representatives

per category. These requirements lead us to the following

choice of methods which we will further refer to in the re-

maining sections of this paper: classical MVS methods (C-

MVS) [17, 20], learned MVS methods (L-MVS) [11, 26].

3. Comparative Evaluation

To evaluate the methods’ performance we adopt the

protocol and quantitative measures from public bench-

marks [15, 18]. Given a densely reconstructed point cloud

R obtained from our dataset by each selected method and

a ground truth dense point cloud G acquired with high-

precision laser scanner, the principle is to align R to G with

the maximal possible precision and evaluate the quality and

fidelity of R. The main objective is to analyze how the

method behaves in the presence of thin structures, weakly-

textured and reflective surfaces and examine the effect of

depth filtering. Thus, our evaluation framework consist of

four main steps: 1) dataset and ground truth acquisition; 2)

execution of the selected methods; 3) R model to G model

alignment 4) comparative evaluation through a number of

experiments. The details are given below.



(a) ToolBox (b) NewBorn (c) ToolStand (d) ReanimTable

Figure 2: Images from the dataset with specular (red),

weakly-textured (yellow) and thin (blue) structures and re-

spective ground truth models. (Best viewed electronically)

3.1. Dataset and Ground Truth

Our dataset is composed of four medical scenes. It was

acquired in the partnered center for medical training. A

consumer grade DSLR camera was used to manually obtain

the image sequences of the scene so it is always the central

point of the acquisition. This is a natural setting for the user

of MR system. All the scenes were obtained under same

fixed and uniform illumination indoors. We used NIKON

D750 with fixed intrinsic at 6016×4016 pixels image size.

Figure 2 shows the sample views from each scene.

ToolBox with 20 views, being the smallest object and

the shortest image sequence, shows a plastic box with some

medical instruments in it (Figure 2a). It is a close-up exam-

ple of a reflective and weakly-textured scene. This object is

also present in the ToolStand scene but it has been specifi-

cally extracted as a separate entity to evaluate on.

ToolStand with 71 views shows the medical toolstand

with various objects on it located near the wall in a child

delivery room (Figure 2c). It also showcases the reflective

and weakly-textured surface but at a bigger scale.

NewBorn with 43 views, depicts the high-fidelity baby

mannequin used in the training sessions to replace a real

patient (Figure 2b). This is one of the main objects that the

user interacts with and on which various augmentations oc-

curs (e.g. change of skin color). It is an example of smooth

depth discontinuities with a homogeneous texture.

ReanimTable with 152 views, being the largest both in

size and scale, shows a reanimation table in the child de-

livery room where the neonatal reanimation is performed

(Figure 2d). This scene contains a lot of fine metallic and

plastic structures while being the largest in out dataset.

To obtain the ground truth G, measurements with the

high-precision laser scanner were made for each scene and

around and above the objects in it, where possible. We used

a portable hand-held close range (0.1 - 10 meters) laser

scanner Creaform HandySCAN 3D unlike the static wide

range (0.6 - 330 meters) Faro Focus X 330 used in [15, 18].

It allows continuous acquisition such that a complete 3D

model can be obtained in one session with alignment and

fusion of the 3D scans performed in real-time. Its maxi-

mal accuracy is 0.030 millimeters contrary to 2 millimeters

in [15, 18]. Alas it requires the use of tracking targets to get

the highest performance level (small circular chape stickers

visible on the example of the NewBorn scene in Figure 2b).

Our G models are not always complete due to the vast

presence of specular and semi-transparent objects which are

difficult to digitize. They are not rendered as the colored

point clouds using images from the camera. First, there ex-

ists a difference between the image and laser point cloud

resolution where the latter is sparse at the full DSLR reso-

lution. Second, upsampling the G model’s density or down-

sampling the images may lead to misalignment of color and

the surface geometry. This is also why we have chosen not

to generate ground truth depth maps from the laser scanner.

3.2. Method Execution

All methods have been tested on a computer with AMD

16 cores (x32) CPU, 32GB RAM, GeForce GTX 1080 ti

11Gb GPU. Our ground truth does not contain the depth

maps to directly evaluate the methods. Thus, we integrate

them in the full MVS pipeline as described below.

In sparse reconstruction step we rely on SfM method

in [16] due to its robustness and efficiency. Unlike [18],

we do not perform realignment of the acquired images with

G models at this step in order to overcome any remaining

SFM drift effects. This requires to rely on the color infor-

mation from the laser scanner which we do not have. Even

though [26] was specifically designed to deal with high res-

olution images, it cannot handle the images from our dataset

in their original resolution. Therefore, all images were stan-

dardized to 1152×864 size by downsampling and centered

cropping to achieve a fair comparison. This is maximum

size that fits to [26] while preserving the aspect ratio.

In densification stage we run all the selected MVS meth-

ods one by one using default parameters without downscal-

ing the input to make the methods more comparable and

preserve their original formulation.

In fusion we opt for customized execution. Note that

open-source implementation of C-MVS methods [17, 20]

is provided with a corresponding sophisticated fusion algo-

rithms. We, however, prefer to carefully exploit the multi-

view information at the level of photo-consistency, and use a

rather basic fusion scheme. To this end we simplified the fu-

sion steps in clasical methods by turning off specific param-

eters triggered for ‘best’ outcome. L-MVS methods [11, 26]

are complemented with the basic fusion method from [6].

3.3. Reconstruction to Ground Truth Alignment

Because the images capture wide view of the scenes

while the G models are limited to a certain part, we ex-

tract the Region of Interest (RoI) from the R prior to the



alignment. This is done by manually pre-registering G with

R and removing all points of R which do not fall within the

bounding box of the corresponding G model yielding RRoI .

Thus, the alignment is performed in two steps:

1. We pre-align RRoI to G by picking 20 points corre-

spondences. This simplifies the automatic point cloud

registration and helps to achieve more accurate result.

2. We run iterative closest point algorithm (ICP) [2] with

scale adjustment for fine registration. It uses the root-

mean-square (RMS) of the ratio between the devia-

tions of the centroids of each point cloud to estimate

the scale. We run ICP for 200 iterations reaching final

RMS as low as 1 millimeter (mm) .

3.4. Success Criteria and Evaluation Metrics

A suitable method should have high score in its global

performance within an optimal allowed deviation τ . We

choose this to be 2mm for all scenes according to the needs

of our application and because they do not vary greatly in

scale and sampling density (i.e. all scenes were scanned at

close range). Ideally, R should have no missing parts and

minimal noise in the areas of thin structures. To quantify

the global performance we employ different quality metrics

used in the existing benchmarks [15, 18]:

• Accuracy - ξA is a fraction (%) of the points in R that

are close to the nearest points in G up to certain τ .

• Completeness - ξC is a fraction (%) of the points in G
that are close to the nearest points in R up to certain τ .

• F-1 Score - ξF measures the method’s performance for

a certain τ . It combines accuracy and completeness in

the form of harmonic mean 2 · (ξA · ξC)/(ξA + ξC).

• Rank denoted S is inferred from F-1 Score and defined

as an average ξF of a method across the dataset.

ξA can be maximized by producing a very sparse set

of precisely localized points that yields a low ξC and vice

versa. Meanwhile only R that is both accurate and complete

can guarantee a high ξF score for a conservative τ . We also

focus on examining ξA and ξC across a range of distance

thresholds which we set to τ = 1, 2, 5, 10, 20, 50 mm.

High global ξA and ξC scores do not necessarily imply

an accurate and complete reconstruction in challenging ar-

eas. Thus, it is important to perform a fine-grained examina-

tion. We propose to visually inspect G distance-color coded

with respect to R in the the regions of interest to analyze the

completeness in the weakly-textured and reflective surfaces

and the amount of noise localized around thin structures.

Finally, we are interested in relatively fast execution as

the estimation of individual depth maps is just one step in

the full MVS pipeline. Thus, we measure computation time

for each method in minutes across all images in a scene as

well as average result per image across the dataset.

4. Experimental Results

4.1. Global Reconstruction Quality

The results in Table 1 show the global performance of all

evaluated methods for each of the medical scenes. It reports

the ξA, ξC , ξF scores for the reconstruction produced by

the methods using distance threshold τ = 2mm. For each

method the table also provides its average rank S which, we

believe, is a robust measure of the relative performance.

We found that C-MVS [17] achieves the highest accu-

racy on all scenes in our dataset regardless the inclusion or

exclusion of the depth filtering in the fusion step. It attains

the top ξF scores on three scenes out of four and yields the

‘best’ rank S = 1.25 . On ToolStand it is superseded by its

categorical neighbor C-MVS [20], which ξF score is only a

small fraction higher.

Despite the competition between C-MVS [20] and L-

MVS [26], the former ranks the second ‘best’ on our dataset

with S = 2.25 leaving behind the latter. In particular,

C-MVS [20] achieves ξF = 73.38 on the ToolBox scene,

where L-MVS [26] follows right after with a significant gap.

This situation changes on the NewBorn and ReanimTable

scenes, where L-MVS [26] beats C-MVS [20]. This is ex-

pected result for the NewBorn scene as it depicts an ob-

ject of homogeneous texture and very smooth surface where

handcrafted photo-consistency metrics are unreliable. A re-

markable performance gap on Reanimtable scene can be

also attributed to the learned nature of L-MVS [26].

L-MVS [11] is ranked the last despite constantly pro-

viding the highest ξC scores. In fact, it demonstrates the

situation mentioned in §3.4. In particular, ξC is maximized

by densely covering the space with points, where only small

fraction of points are actually accurate.

The exclusion of depth filtering step notably increases

ξC while reducing ξA. This is a common trend across all

the scenes and for all the methods. Interestingly, the in-

clusion of the filtering step lowers the ξF score. Overall,

ToolBox and NewBorn appears to be the easiest datasets for

the evaluated methods. ToolStand and ReanimTable are the

hardest that can be ascribed to the larger scale as well as

amount of specular materials and thin structures.

In addition to the global statistics on the specific dis-

tance threshold Figure 3 shows sensitivity of the methods to

the different thresholds across the dataset. Concretely, each

graph provides a plot of two curves representing accuracy

ξA and completeness ξC for the corresponding method for

each threshold τ . We found that the accuracy and complete-

ness rankings among C-MVS methods are relatively stable

with respect to τ whilst both L-MVS methods show more

sensitivity. This implies that classical methods are more ro-
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C-MVS [17] 1.25 85.41 / 81.13 65.23 / 73.05 73.97 / 76.88 82.29 / 78.17 88.22 / 98.80 82.15 / 87.28 70.27 / 66.75 58.42 / 65.43 63.80 / 66.08 86.49 / 82.16 69.51 / 82.16 77.08 / 79.95

C-MVS [20] 2.25 83.78 / 78.75 65.27 / 72.44 73.38 / 75.47 61.81 / 58.10 87.77 / 97.42 72.54 / 72.79 69.50 / 65.33 60.91 / 67.61 64.92 / 66.45 48.89 / 45.95 53.81 / 59.72 51.23 / 51.94

L-MVS [26] 2.5 69.26 / 67.87 52.73 / 56.94 59.87 / 61.93 64.25 / 62.96 86.68 / 93.61 73.80 / 75.28 53.98 / 52.90 48.21 / 52.06 50.93 / 52.48 64.82 / 63.52 67.13 / 72.50 65.96 / 67.71

L-MVS [11] 4 42.01 / 41.58 75.68 / 79.46 54.03 / 54.60 23.10 / 22.86 98.22 / 100.0 37.40 / 37.43 32.21 / 31.88 70.91 / 74.45 44.30 / 44.65 19.34 / 19.14 79.5 / 83.48 31.11 / 31.14

Table 1: Performance statistics for all methods across all scenes in the dataset for ξA, ξC , ξF and S at τ = 2mm distance

threshold obtained with and without depth filtering (+/-) with ‘best’ scores and ‘worst’ scores.

C-MVS [17] C-MVS [20] L-MVS [26] L-MVS [11]

(a) ToolBox (b) NewBorn (c) ToolStand (d) ReanimTable

Figure 3: Sensitivity of ξA and ξC (%, vertical axis) to the distance thresholds τ (mm, horizontal axis) for all methods across

the dataset. Solid line denotes ξA and dashed line denotes ξC . (Best viewed electronically)

bust to the depth range related uncertainty. All the methods

reach their maximal performance (both ξA and ξC) at 10mm

on NewBorn, ToolStand and on ReanimTable while on Tool-

Box it is at 5mm. Considering ξA and ξC being over 80% as

the minimal desired performance, only after 10mm some of

the methods can reach the plank on our dataset, except the

NewBorn scene. Figures 3c and 3d emphasize the average

performance drop for the hardest scenes in the dataset.

4.2. Robustness to Challenging Structures

C-MVS methods are known to suffer in the areas of ho-

mogeneous texture and non-Lambertian materials. Depth

discontinuities on object boundaries pose additional chal-

lenges. Thus, it is no surprise that reconstructed models

may have missing parts and certain amount of noise local-

ized near object edges and thin structures. L-MVS meth-

ods, in contrast, have high claims in this matter relying

on semantic features which assumed to better represent the

scene’s context. In this work we are interested in the best

performance for each category of methods. This aids the

understanding of how much room remains for the progress,

specifically when there exist a significant performance gap

between classical and learned MVS. Figure 4 shows the full

view of the models obtained by the best-performing meth-

ods. For each method and each scene, the figure provides

the final reconstruction, the accuracy and completeness.

One can see that L-MVS [26] provides a better coverage

of the table surface in the ToolBox scene even though the

ξC does not capture this. This is also true for the remaining

scenes. It, however, tends to oversmooth the reconstruction

(e.g. the face of the baby-mannequin in the NewBorn scene).

C-MVS [17], in turn, preserves more details. This can be

seen on ReanimTable scene. Generally, both methods have

difficulties in the same areas.

Figure 5 shows the close-up views of some of the most

challenging areas in the two hardest scenes of our dataset,

namely ToolStand and ReanimTable for C-MVS [17] and

L-MVS [26]. Colored rectangles emphasize the differences

in perfomance between the methods. Thus, L-MVS [26]

struggle to reconstruct thin reflective handle of the Tool-

Stand shown in black rectangle in Figure 5a. Blue rectangle

highlights the area with the thin reflective structure on the

homogeneous background. C-MVS [17] performs remark-

ably better in this area. It, however, cannot complete the

flat surface of the table as well as L-MVS [26] as shown by

red rectangle. We can see in Figure 5b how sophisticated

depth filtering prevents C-MVS [17] to corectly reconstruct

the metrology pannel as highlited by red rectangle. The ef-

fect of the depth map resolution can be observed as well.

Specifically, L-MVS [26], which output depth maps are 4x

smaller than the original input, fails to recover thin objects

and details as highlighted with blue and black rectangles.

4.3. Computation Time

Table 2 provides the measured time in minutes. Even

though, processing time strongly depends on how a method

is implemented, we believe that some global useful con-

clusions can be drawn out of these results. C-MVS [20]



C-MVS [17], ξF = 73.97

C-MVS [17], ξA = 85.41

C-MVS [17], ξC = 65.23

L-MVS [26], ξF = 59.87

L-MVS [26], ξA = 69.26

L-MVS [26], ξC = 52.73

(a) ToolBox

C-MVS [17], ξF = 82.15

C-MVS [17], ξA = 82.29

C-MVS [17], ξC = 88.22

L-MVS [26], ξF = 73.80

L-MVS [26], ξA = 64.25

L-MVS [26], ξC = 86.68

(b) NewBorn

C-MVS [17], ξF = 63.80

C-MVS [17], ξA = 70.27

C-MVS [17], ξC = 58.42

L-MVS [26], ξF = 50.93

L-MVS [26], ξA = 53.98

L-MVS [26], ξC = 48.21

(c) ToolStand

C-MVS [17], ξF = 77.08

C-MVS [17], ξA = 86.49

C-MVS [17], ξC = 69.51

L-MVS [26], ξF = 65.96

L-MVS [26], ξA = 64.82

L-MVS [26], ξC = 67.13

(d) ReanimTAble

Figure 4: Reconstruction results from the best perfoming classical and leaned MVS methods [17, 26] across the dataset for

τ = 2mm precision threshold. C-MVS results are shown in top three rows and L-MVS results are shown in the bottom three

rows respectively. Rows 1,4 - colored R model; Rows 2,5 - the R model color coded with distance to G visualizes accuracy;

Rows 3,6 - the G model color coded with distance to R visualizes completeness. (Best viewed electronically)



C-MVS [17] L-MVS [26]

(a) ToolStand

C-MVS [17] L-MVS [26]

(b) ReanimTable

Figure 5: Performance of the best C-MVS and L-MVS

on the challenging structures of two hardest scenes in the

dataset. Top row - colored reconstructions and bottom row

- their completeness maps. (Best viewed electronically)

C-MVS [17] **C-MVS [20] L-MVS [26] *L-MVS [11]

ToolBox (20) 9.77 1.53 0.6 241.52 (>4h)

NewBorn (43) 23.58 2.97 1.25 519.268 (>8h)

ToolStand (71) 35.72 5.63 2.02 857.396 (>14h)

ReanimTable (152) 71.47 11.32 4.25 1835.552 (>30h)

Average per image 0.48 0.06 0.02 11.12

Table 2: Runtime for each method per scene in minutes with

fastest and slowest times. (*) - partial execution on CPU

and GPU, (**) - multithreaded CPU only, (20) - # images.

is the fastest in its category and it runs on CPU via effi-

cient multithreaded implementation. C-MVS [17] takes a

long time. We attribute this to simultaneous estimation of

depth and normal maps and photometric/geometric consis-

tency enforcement, which creates a very large and compu-

tationally expensive optimization problem. L-MVS meth-

ods demonstrate two extremities of the computational effort

with [26] - the fastest and [11] - the slowest. We attribute

this to the use of RNN in the regularization phase of [26]

and the unoptimized generation of plane-sweep volumes on

CPU in [11]. The main drawback of the winner [26], how-

ever, is the 4x smaller size of the resulting depth maps.

4.4. Discussion

Traditional approaches are still troublesome to outper-

form. Learned MVS methods have certain difficulties to

generalize to our dataset. This potentially can be improved

via fine-tuning given that the available ground truth is 100%

complete. This is hard to achieve in the settings of real med-

ical environments due to vast amount of specular materials

and weakly-textured surfaces, which are difficult to digitize.

The assumption that learned MVS can introduce global

semantic information for more robust matching appears

rather valid. In some cases learned MVS methods were

able to recover the missing geometry where the photo-

consistency metrics of classical MVS were unreliable.

Evaluated learned MVS methods mainly consider the

overall accuracy by reporting global statistics of depth

C-MVS [17] C-MVS [20] L-MVS [26] L-MVS [11]

global quality **** *** ** *

textureless objects *** *** ** **

reflective surfaces *** *** *** **

thin structures *** *** * *

amount of noise * * *** ****

degree of detail *** **** ** **

computation time ** *** **** *

Table 3: Evaluation summary. The methods ranked with

respect to their efficiency where * (one star) is the lowest

rank and **** (four stars) is the highest rank.

residuals during training. The shortage of the awareness of

salient and important regions like geometric discontinuities

results in apparent defects on object boundaries and thin

structures. Evidently, this dictates the need to incorporate

the depth discrepancy localization into the process. Also,

image super-resolution becomes essential if the model’s ar-

chitecture restricts the input resolution to some maximum.

Finally, one may wonder if there is a win-win situation,

i.e. if there is a method that is not computationally demand-

ing while being accurate and provides maximal coverage of

the scene preserving its fidelity? The answer to this ques-

tion is no as some methods perform well on some aspect

and bad on others. Table 3 provides an evaluation sum-

mary, where methods are ranked w.r.t their efficiency. MVS

method [20] seems to offer the best compromise between

speed, simplicity and efficiency.

5. Conclusion

We presented a comparative evaluation of four depth

map based MVS methods designed for dense 3D recon-

struction. Two of these methods follow traditional practices

of geometric modeling and rely on carefully engineered so-

lutions [17, 20] while others use deep learning [11, 26].

These methods were compared based on their computa-

tional power requirements as well as their capability to cor-

rectly estimate depth information on the challenging dataset

from medical environment while maximizing robustness to

challenging structures. Our results prove the superiority of

classical MVS in accuracy while learned approaches tend to

enforce completness. We believe that further exploring the

potential of learned MVS [11, 26] is a promising research

direction. We plan to continue to improve and enlarge our

dataset that later will be available to the community.
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