
HAL Id: cea-04558315
https://cea.hal.science/cea-04558315

Submitted on 24 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph-based clustering under differential privacy
Rafaël Pinot, Anne Morvan, Florian Yger, Cedric Gouy-Pailler, Jamal Atif

To cite this version:
Rafaël Pinot, Anne Morvan, Florian Yger, Cedric Gouy-Pailler, Jamal Atif. Graph-based clustering
under differential privacy. Plate-Forme Intelligence Artificielle PFIA, Jul 2019, Toulouse, France.
�cea-04558315�

https://cea.hal.science/cea-04558315
https://hal.archives-ouvertes.fr


Graph-based Clustering under Differential Privacy

Rafael Pinot ∗1,2, Anne Morvan †1,2, Florian Yger2, Cédric Gouy-Pailler1, and Jamal Atif2

1CEA, LIST, 91191 Gif-sur-Yvette, France
2Université Paris-Dauphine, PSL Research University, CNRS, LAMSADE, 75016 Paris,

France

March 10, 2018

Abstract

In this paper, we present the first differentially private clustering method for arbitrary-shaped
node clusters in a graph. This algorithm takes as input only an approximate Minimum Spanning Tree
(MST) T released under weight differential privacy constraints from the graph. Then, the underlying
nonconvex clustering partition is successfully recovered from cutting optimal cuts on T . As opposed to
existing methods, our algorithm is theoretically well-motivated. Experiments support our theoretical
findings.

1 Introduction

Weighted graph data is known to be a useful representation data type in many fields, such as bioinfor-
matics or analysis of social, computer and information networks. More generally, a graph can always
be built based on the data dissimilarity where points of the dataset are the vertices and weighted edges
express “distances” between those objects. For both cases, graph clustering is one of the key tools for
understanding the underlying structure in the graph [Schaeffer, 2007]. These clusters can be seen as
groups of nodes close in terms of some specific similarity.

Nevertheless, it is critical that the data representation used in machine learning applications protects
the private characteristics contained into it. Let us consider an application where one wants to identify
groups of similar web pages in the sense of traffic volume i.e. web pages with similar audience. In that
case, the nodes stand for the websites. The link between two vertices represents the fact that some people
consult them both. Edge weights are the number of common users and thus, carry sensitive information
about individuals. During any graph data analysis, no private user surfing behavior should be breached
i.e. browsing from one page to another should remain private. As a standard for data privacy preservation,
differential privacy [Dwork et al., 2006b] has been designed: an algorithm is differentially private if, given
two close databases, it produces statistically indistinguishable outputs. Since then, its definition has been
extended to weighted graphs. Though, machine learning applications ensuring data privacy remain rare,
in particular for clustering which encounters severe theoretical and practical limitations. Indeed, some
clustering methods lack of theoretical support and most of them restrict the data distribution to convex-
shaped clusters [Nissim et al., 2007, Blum et al., 2008, McSherry, 2009, Dwork, 2011] or unstructured
data [Ho and Ruan, 2013, Chen et al., 2015]. Hence, the aim of this paper is to offer a theoretically
motivated private graph clustering. Moreover, to the best of our knowledge, this is the first weight
differentially-private clustering algorithm able to detect clusters with an arbitrary shape for weighted
graph data.

∗rafael.pinot@cea.fr
†anne.morvan@cea.fr. Partly supported by the Direction Générale de l’Armement (French Ministry of Defense).

1

ar
X

iv
:1

80
3.

03
83

1v
1 

 [
cs

.D
S]

  1
0 

M
ar

 2
01

8



Our method belongs to the family of Minimum Spanning Tree (MST)-based approaches. An MST
represents a useful summary of the graph, and appears to be a natural object to describe it at a lower cost.
For clustering purposes, it has the appealing property to help retrieving non-convex shapes [Zahn, 1971,
Asano et al., 1988, Grygorash et al., 2006, Morvan et al., 2017]. Moreover, they appear to be well-suited
for incorporating privacy constraints as will be formally proved in this work.

Contributions: Our contributions are threefold: 1) we provide the first theoretical justifications
of MST-based clustering algorithms. 2) We endow DBMSTClu algorithm [Morvan et al., 2017], an
MST-based clustering algorithm from the literature, with theoretical guarantees. 3) We introduce a
differentially-private version of DBMSTClu and give several results on its privacy/utility tradeoff.

2 Preliminaries

2.1 Notations

Let G = (V,E,w) be a simple undirected weighted graph with a vertex set V , an edge set E, and a weight
function w := E → R. One will respectively call the edge set and the node set of a graph G using the
applications E(G) and V (G). Given a node set S ⊂ V , one denotes by G|S the subgraph induced by S.
We call G = (V,E) the topology of the graph, and WE denotes the set of all possible weight functions
mapping E to weights in R. For the remaining of this work, cursive letter are use to represent weighted
graphs and straight letters refer to topological arguments. Since graphs are simple, the path Pu−v between
two vertices u and v is characterized as the ordered sequence of vertices {u, . . . , v}. We also denote VPu−v
the unordered set of such vertices. Besides, edges eij denote an edge between nodes i and j. Finally, for
all positive integer K, [K] := {1, . . . ,K}.

2.2 Differential privacy in graphs

As opposed to node-differential privacy [Kasiviswanathan et al., 2013] and edge-differential privacy [Hay
et al., 2009], both based on the graph topology, the privacy framework considered here is weight-differential
privacy where the graph topology G = (V,E) is assumed to be public and the private information to
protect is the weight function w := E → R. Under this model introduced by Sealfon [2016], two graphs
are said to be neighbors if they have the same topology, and close weight functions. this framework allows
one to release an almost minimum spanning tree with weight-approximation error ofO (|V | log |E|) for fixed
privacy parameters. Differential privacy is ensured in that case by using the Laplace mechanism on every
edges weight to release a spanning tree based on a perturbed version of the weight function. The privacy
of the spanning tree construction is thus provided by post-processing (cf. Th. 5). However, under a similar
privacy setting, Pinot [2018] recently manages to produce the topology of a tree under differential privacy
without relying on the post-processing of a more general mechanism such as the “Laplace mechanism”.
Their algorithm, called PAMST, privately releases the topology of an almost minimum spanning tree
thanks to an iterative use of the “Exponential mechanism” instead. For fixed privacy parameters, the

weight approximation error is O
(
|V |2
|E| log |V |

)
, which outperforms the former method from Sealfon [2016]

on arbitrary weighted graphs under weak assumptions on the graph sparseness. Thus, we keep here
privacy setting from Pinot [2018].

Definition 2.1 (Pinot [2018]). For any edge set E, two weight functions w,w′ ∈ WE are neighboring,
denoted w ∼ w′, if ||w − w′||∞ := max

e∈E
|w(e)− w′(e)| ≤ µ.

µ represents the sensitivity of the weight function and should be chosen according to the application and
the range of this function. The neighborhood between such graphs is clarified in the following definition.

Definition 2.2. Let G = (V,E,w) and G′ = (V ′, E′, w′), two weighted graphs, G and G′ are said to be
neighbors if V = V ′, E = E′ and w ∼ w′.

The so-called weight-differential privacy for graph algorithms is now formally defined.

2



Definition 2.3 (Sealfon [2016]). For any graph topology G = (V,E), let A be a randomized algorithm
that takes as input a weight function w ∈ WE. A is called (ε, δ)-differentially private on G = (V,E) if for
all pairs of neighboring weight functions w,w′ ∈ WE, and for all set of possible outputs S, one has

P [A(w) ∈ S] ≤ eεP [A(w′) ∈ S] + δ.

If A is (ε, δ)-differentially private on every graph topology in a class C, it is said to be (ε, δ)-differentially
private on C.

One of the first, and most used differentially private mechanisms is the Laplace mechanism. It is
based on the process of releasing a numerical query perturbed by a noise drawn from a centered Laplace
distribution scaled to the sensitivity of the query. We present here its graph-based reformulation.

Definition 2.4 (reformulation Dwork et al. [2006b]). Given some graph topology G = (V,E), for any
fG :WE → Rk, the sensitivity of the function is defined as ∆fG = max

w∼w′∈WE

||fG(w)− fG(w′)||1.

Definition 2.5 (reformulation Dwork et al. [2006b]). Given some graph topology G = (V,E), any function
fG : WE → Rk, any ε > 0, and w ∈ WE, the graph-based Laplace mechanism is ML(w, fG, ε) =
fG(w) + (Y1, . . . , Yk) where Yi are i.i.d. random variables drawn from Lap(∆fG/ε), and Lap(b) denotes

the Laplace distribution with scale b
(

i.e probability density 1
2b exp

(
− |x|b

))
.

Theorem 1 (Dwork et al. [2006b]). The Laplace mechanism is ε-differentially private.

We define hereafter the graph-based Exponential mechanism. In the sequel we refer to it simply as
Exponential mechanism. The Exponential mechanism represents a way of privately answering arbitrary
range queries. Given some range of possible responses to the query R, it is defined according to a utility
function uG :=WE×R → R, which aims at providing some total preorder on the rangeR according to the
total order in R. The sensitivity of this function is denoted ∆uG := max

r∈R
max

w∼w′∈WE

|uG(w, r)− uG(w′, r)| .

Definition 2.6. Given some graph topology G = (V,E), some output range R ⊂ E, some privacy
parameter ε > 0, some utility function uG :=WE×R → R, and some w ∈ WE the graph-based Exponential
mechanism MExp (G,w, uG,R, ε) selects and outputs an element r ∈ R with probability proportional to

exp
(
εuG(w,r)

2∆uG

)
.

The Exponential mechanism defines a distribution on a potentially complex and large range R. As
the following theorem states, sampling from such a distribution preserves ε-differential privacy.

Theorem 2 (reformulation McSherry and Talwar [2007]). For any non-empty range R, given some
graph topology G = (V,E), the graph-based Exponential mechanism preserves ε-differential privacy, i.e if
w ∼ w′ ∈ WE,

P [MExp (G,w, uG,R, ε) = r]

≤ eεP [MExp (G,w′, uG,R, ε) = r] .

Further, Th 3 highlights the trade-off between privacy and accuracy for the Exponential mechanism
when 0 < |R| < +∞. Th 4 presents the ability of differential privacy to comply with composition while
Th 5 introduces its post-processing property.

Theorem 3 (reformulation Dwork and Roth [2013]). Given some graph topology G = (V,E), some
w ∈ WE, some output range R, some privacy parameter ε > 0, some utility function uG :=WE×R → R,
and denoting OPTuG(w) = max

r∈R
uG(w, r), one has ∀ t ∈ R,

uG (G,w,MExp (w, uG,R, ε))

≤ OPTuG(w)− 2∆uG
ε

(t+ ln |R|)

with probability at most exp(−t).

3



Theorem 4 (Dwork et al. [2006a]). For any ε > 0, δ ≥ 0 the adaptive composition of k (ε, δ)-differentially
private mechanisms is (kε, kδ)-differentially private.

Theorem 5 (Post-Processing Dwork and Roth [2013]). Let A :WE → B be a randomized algorithm that
is (ε, δ)-differentially private, and h : B → B′ a deterministic mapping. Then h ◦ A is (ε, δ)-differentially
private.

2.3 Differentially-private clustering

Differentially private clustering for unstructured datasets has been first discussed in Nissim et al. [2007].
This work introduced the first method for differentially private clustering based on the k-means algorithm.
Since then most of the works of the field focused on adaptation of this method [Blum et al., 2008, McSherry,
2009, Dwork, 2011]. The main drawback of those works is that they are not able to deal with arbitrary
shaped clusters. This issue has been recently investigated in Ho and Ruan [2013] and Chen et al. [2015].
They proposed two new methods to find arbitrary shaped clusters in unstructured datasets respectively
based on density clustering and wavelet decomposition. Even though both of these works allow one to
produce non-convex clusters, they only deal with unstructured datasets and thus are not applicable to
node clustering in a graph. Our work focuses on node clustering in a graph under weight-differential
privacy. Graph clustering has already been investigated in a topology-based privacy framework [Mülle
et al., 2015, Nguyen et al., 2016], however, these works do not consider weight-differential privacy. Our
work is, to the best of our knowledge, the first attempt to define node clustering in a graph under weight
differential privacy.

3 Differentially-private tree-based clustering

We aim at producing a private clustering method while providing bounds on the accuracy loss. Our
method is an adaptation of an existing clustering algorithm DBMSTClu. However, to provide theoretical
guarantees under differential privacy, one needs to rely on the same kind of guarantees in the non-private
setting. Morvan et al. [2017] did not bring them in their initial work. Hence, our second contribution is
to demonstrate the accuracy of this method, first in the non-private context.

In the following we present 1) the theoretical framework motivating MST-based clustering methods,
2) accuracy guarantees of DBMSTClu in the non-private setting, 3) PTClust our private clustering
algorithm, 4) its accuracy under differential privacy constraints.

3.1 Theoretical framework for MST-based clustering methods

MST-based clustering methods, however efficient, lack of proper motivation. This Section closes this gap
by providing a theoretical framework for MST-based clustering. In the sequel, notations from Section 2.1
are kept. The minimum path distance between two nodes in the graph is defined which enables to explicit
our notion of Cluster.

Definition 3.1 (Minimum path distance). Let be G = (V,E,w) and u, v ∈ V . The minimum path
distance between u and v is

d(u, v) = min
Pu−v

∑
e∈VPu−v

w(e)

with Pu−v a path from u to v in G, and VPu−v the set of vertices contained in Pu−v.

Definition 3.2 (Cluster). Let be G = (V,E,w), 0 < w(e) ≤ 1 ∀e ∈ E a graph, (V, d) a metric space based
on the minimum path distance d defined on G and D ⊂ V a node set. C ⊂ D is a cluster iff. |C| > 2 and
∀C1, C2 s.t. C = C1 ∪ C2 and C1 ∩ C2 = ∅, one has:

argmin
z∈D\C1

{ min
v∈C1

d(z, v) } ⊂ C2

4



Assuming that a cluster is built of at least 3 points makes sense since singletons or groups of 2 nodes
can be legitimately considered as noise. For simplicity of the proofs, the following theorems hold in the
case where noise is neglected. However, they are still valid in the setting where noise is considered as
singletons (with each singleton representing a generalized notion of cluster).

Theorem 6. Let be G = (V,E,w) a graph and T a minimum spanning tree of G. Let also be C a cluster
in the sense of Def. 3.2 and two vertices v1, v2 ∈ C. Then, VPv1−v2 ⊂ C with Pv1−v2

a path from v1 to v2

in G, and VPv1−v2 the set of vertices contained in Pv1−v2
.

Proof. Let be v1, v2 ∈ C. If v1 and v2 are neighbors, the result is trivial. Otherwise, as T is a tree, there
exist a unique path within T between v1 and v2 denoted by Pv1−v2 = {v1, . . . , v2}. Let now prove by
reductio ad absurdum that VPv1−v2 ⊂ C. Suppose there is h ∈ VPv1−v2 s.t. h /∈ C. We will see that
it leads to a contradiction. We set C1 to be the largest connected component (regarding the number of
vertices) of T s.t. v1 ∈ C1, and every nodes from C1 are in C. Because of h’s definition, v2 /∈ C1. Let be
C2 = C\C1. C2 6= ∅ since v2 ∈ C2. Let be z∗ ∈ argmin

z∈V \C1

{ min
v∈C1

d(z, v) } and e∗ = (z∗, v∗) an edge that

reaches this minimum. Let us show that z∗ /∈ C. If z∗ ∈ C, then two possibilities hold:

1. There is an edge ez∗ ∈ T , s.t. ez∗ = (z∗, z′) with z′ ∈ C1. This is impossible, otherwise by definition
of a connected component, z∗ ∈ C1. Contradiction.

2. For all ez∗ = (z∗, z′) s.t z′ ∈ C1, one has ez∗ /∈ T . In particular e∗ /∈ T . Since h is the neighbor of
C1 in G there is also eh ∈ T , s.t. eh = (h, h′) with h′ ∈ C1. Once again two possibilities hold:

(a) w(ez∗) = min
z∈V \C1

{ min
v∈C1

d(z, v) } < w(eh). Then, if we replace eh by ez∗ in T , its total weight

decreases. So T is not a minimum spanning tree. Contradiction.

(b) w(ez∗) = w(eh), therefore h ∈ argmin
z∈V \C1

{ min
v∈C1

d(z, v) }. Since h /∈ C, one gets that

argmin
z∈V \C1

{ min
v∈C1

d(z, v) } 6⊂ C2. Thus, C is not a cluster. Contradiction.

We proved that z∗ /∈ C. In particular, z∗ /∈ C2. Then, argmin
z∈V \C1

{ min
v∈C1

d(z, v) } 6⊂ C2. Thus, C is not a

cluster. Contradiction. Finally h ∈ C and VPv1−v2 ⊂ C.

This theorem states that, given a graph G, an MST T , and any two nodes of C, every node in the
path between them is in C. This means that a cluster can be characterized by a subtree of T . It justifies
the use of all MST-based methods for data clustering or node clustering in a graph. All the clustering
algorithms based on successively cutting edges in an MST to obtain a subtree forest are meaningful in
the sense of Th.6. In particular, this theorem holds for the use of DBMSTClu [Morvan et al., 2017]
presented in Section 3.2.1.

3.2 Deterministic MST-based clustering

This Section introduces DBMSTClu [Morvan et al., 2017] that will be adapted to be differentially-private,
and provide accuracy results on the recovery of the ground-truth clustering partition.

3.2.1 DBMSTClu algorithm

Let us consider T an MST of G, as the unique input of the clustering algorithm DBMSTClu. The
clustering partition results then from successive cuts on T so that a new cut in T splits a connected
component into two new ones. Each final connected component, a subtree of T , represents a cluster.
Initially, T is one cluster containing all nodes. Then, at each iteration, an edge is cut if some criterion,
called Validity Index of a Clustering Partition (DBCVI) is improved. This edge is greedily chosen to
locally maximize the DBCVI at each step. When no improvement on DBCVI can be further made, the
algorithm stops. The DBCVI is defined as the weighted average of all cluster validity indices which are
based on two positive quantities, the Dispersion and the Separation of a cluster:

5



Definition 3.3 (Cluster Dispersion). The Dispersion of a cluster Ci (DISP) is defined as the maximum
edge weight of Ci. If the cluster is a singleton (i.e. contains only one node), the associated Dispersion is
set to 0. More formally:

∀i ∈ [K], DISP(Ci) =

{
max

j, ej∈Ci
wj if |E(Ci)| 6= 0

0 otherwise.

Definition 3.4 (Cluster Separation). The Separation of a cluster Ci (SEP) is defined as the minimum
distance between the nodes of Ci and the ones of all other clusters Cj , j 6= i, 1 ≤ i, j ≤ K,K 6= 1 where
K is the total number of clusters. In practice, it corresponds to the minimum weight among all already
cut edges from T comprising a node from Ci. If K = 1, the Separation is set to 1. More formally, with
incCuts(Ci) denoting cut edges incident to Ci,

∀i ∈ [K], SEP(Ci) =

{
min

j, ej∈incCuts(Ci)
wj if K 6= 1

1 otherwise.

Definition 3.5 (Validity Index of a Cluster). The Validity Index of a cluster Ci is defined as:

VC(Ci) =
SEP(Ci)−DISP(Ci)

max(SEP(Ci),DISP(Ci))
∈ [−1; 1]

Definition 3.6 (Validity Index of a Clustering Partition). The Density-Based Validity Index of a Clus-
tering partition Π = {Ci}, 1 ≤ i ≤ K, DBCVI(Π) is defined as the weighted average of the Validity Indices
of all clusters in the partition where N is the number of vertices.

DBCVI(Π) =

K∑
i=1

|Ci|
N

VC(Ci) ∈ [−1, 1]

DBMSTClu is summarized in Algorithm 1: evaluateCut(.) computes the DBCVI when the cut in
parameter is applied to T . Initial DBCVI is set −1. Interested reader could refer to [Morvan et al., 2017]
Section 4. for a complete insight on this notions.

3.2.2 DBMSTClu exact clustering recovery proof

In this section, we provide theoretical guarantees for the cluster recovery accuracy of DBMSTClu. Let us
first begin by introducing some definitions.

Definition 3.7 (Cut). Let us consider a graph G = (V,E,w) with K clusters, T an MST of G. Let denote
(C∗i )i∈[K] the set of the clusters. Then, CutG(T ) := {ekl ∈ T | k ∈ C∗i , l ∈ C∗j , i, j ∈ [K]2, i 6= j}. In

the sequel, for simplicity, we denote e(ij) ∈ CutG(T ) the edge between cluster C∗i and C∗j .

CutG(T ) is basically the set of effective cuts to perform on T in order to ensure the exact recovery
of the clustering partition. More generally, trees on which CutG(.) enables to find the right partition are
said to be a partitioning topology.

Definition 3.8 (Partitionning topology). Let us consider a graph G = (V,E,w) with K clusters C∗1 , . . . , C
∗
K .

A spanning tree T of G is said to have a partitioning topology if ∀i, j ∈ [K], i 6= j, |{e = (u, v) ∈
CutG(T ) | u ∈ C∗i , v ∈ C∗j }| = 1.

Def. 3.7 and 3.8 introduce a topological condition on the tree as input of the algorithm. Nevertheless,
conditions on weights are necessary too. Hence, we define homogeneous separability which expresses the
fact that within a cluster the edge weights are spread in a controlled manner.

6



Algorithm 1 DBMSTClu(T )

1: Input: T , the MST
2: dbcvi← −1.0
3: clusters← ∅
4: cut list← {E(T )}
5: while dbcvi < 1.0 do
6: cut tp← ∅
7: dbcvi tp← dbcvi
8: for each cut in cut list do
9: newDbcvi← evaluateCut(T , cut)

10: if newDbcvi ≥ dbcvi tp then
11: cut tp← cut
12: dbcvi tp← newDbcvi
13: if cut tp 6= ∅ then
14: clusters← cut(clusters, cut tp)
15: dbcvi← dbcvi tp
16: cut list← cut list\{cut tp}
17: else
18: break
19: return clusters, dbcvi

Definition 3.9 (Homogeneous separability condition). Let us consider a graph G = (V,E,w), s ∈ E and
T a tree of G. T is said to be homogeneously separable by s, if

αT max
e∈E(T )

w(e) < w(s) with αT =

max
e∈E(T )

w(e)

min
e∈E(T )

w(e)
≥ 1.

One will write for simplicity that HT (s) is verified.

Definition 3.10 (Weak homogeneity condition of a Cluster). Let us consider a graph G = (V,E,w) with
K clusters C∗1 , . . . , C

∗
K . A given cluster C∗i , i ∈ [K], C∗i is weakly homogeneous if: for all T an MST

of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈ CutG(T ), HT|C∗
i
(e(ij)) is verified. For simplicity, one denote

¯
αi = max

T MST of G
αT|C∗

i

Definition 3.11 (Strong homogeneity condition of a Cluster). Let us consider a graph G = (V,E,w) with
K clusters C∗1 , . . . , C

∗
K . A given cluster C∗i , i ∈ [K], C∗i is strongly homogeneous if: for all T a spanning

tree (ST) of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈ CutG(T ), HT|C∗
i
(e(ij)) is verified. For simplicity, one

denote ᾱi = max
T ST of G

αT|C∗
i

We show that the weak homogeneity condition is implied by the strong homogeneity condition.

Proposition 3.1. Let us consider a graph G = (V,E,w) with K clusters C∗1 , . . . , C
∗
K . If a given cluster

C∗i , i ∈ [K] is strongly homogeneous, then, it is weakly homogeneous.

Proof. If T a spanning tree of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈ CutG(T ), HT|C∗
i
(e(ij)) is verified, then

in particular, it is true for any MST.

Strong homogeneity condition appears to be naturally more constraining on the edge weights than
the weak one. The accuracy of DBMSTClu is proved under the weak homogeneity condition, while the
accuracy of its differentially-private version is only given under the the strong homogeneity condition.

7



Theorem 7. Let us consider a graph G = (V,E,w) with K homogeneous clusters C∗1 , . . . , C
∗
K and T an

MST of G. Let now assume that at step k < K−1, DBMSTClu built k+1 subtrees C1, . . . , Ck+1 by cutting
e1, e2, . . . , ek ∈ E.

Then, Cutk := CutG(T ) \ {e1, e2, . . . , ek} 6= ∅ =⇒ DBCVIk+1 ≥ DBCV Ik, i.e. if there are still
edges in Cutk, the algorithm will continue to perform some cut.

Proof. See supplementary material.

Theorem 8. Let us consider a graph G = (V,E,w) with K homogeneous clusters C∗1 , . . . , C
∗
K and T an

MST of G.
Assume now that at step k < K − 1, DBMSTClu built k + 1 subtrees C1, . . . , Ck+1 by cutting

e1, e2, . . . , ek ∈ E. We still denote Cutk := CutG(T )\{e1, e2, . . . , ek}.
If Cutk 6= ∅ then argmax

e∈T \{e1, e2, ..., ek}
DBCV Ik+1(e) ⊂ Cutk i.e. the cut edge at step k + 1 is in Cutk.

Proof. See supplementary material.

Theorem 9. Let us consider a graph G = (V,E,w) with K weakly homogeneous clusters C∗1 , . . . , C
∗
K and

T an MST of G. Let now assume that at step K − 1, DBMSTClu built K subtrees C1, . . . , CK by cutting
e1, e2, . . . , eK−1 ∈ E. We still denote CutK−1 := CutG(T )\{e1, e2, . . . , eK−1}.

Then, for all e ∈ T \{e1, e2, . . . , eK−1}, DBCV IK(e) < DBCV IK−1 i.e. the algorithm stops: no
edge gets cut during step K.

Proof. See supplementary material.

Corollary 3.1. Let us consider a graph G = (V,E,w) with K weakly homogeneous clusters C∗1 , . . . , C
∗
K

and T an MST of G. DBMSTClu(T ) stops after K − 1 iterations and the K subtrees produced match
exactly the clusters i.e. under homogeneity condition, the algorithm finds automatically the underlying
clustering partition.

Proof. Th. 7 and 9 ensure that under homogeneity condition on all clusters, the algorithm performs
the K − 1 distinct cuts within CutG(T ) and stops afterwards. By definition of CutG(T ), it means the
DBMSTClu correctly builds the K clusters.

3.3 Private MST-based clustering

This section presents our new node clustering algorithm PTClust for weight differential privacy. It relies
on a mixed adaptation of PAMST algorithm [Pinot, 2018] for recovering a differentially-private MST of
a graph and DBMSTClu.

3.3.1 PAMST algorithm

Given a simple-undirected-weighted graph G = (V,E,w), PAMST outputs an almost minimal weight
spanning tree topology under differential privacy constraints. It relies on a Prim-like MST algorithm,
and an iterative use of the graph based Exponential mechanism. PAMST takes as an input a weighted
graph, and a utility function. It outputs the topology of a spanning tree which weight is almost minimal.
Algorithm 3 presents this new method, using the following utility function:

uG : WE ×R → R
(w, r) 7→ −|w(r)− min

r′∈R
w(r′)|.

PAMST starts by choosing an arbitrary node to construct iteratively the tree topology. At every iteration,
it uses the Exponential mechanism to find the next edge to be added to the current tree topology while
keeping the weights private. This algorithm is the state of the art to find a spanning tree topology under
differential privacy. For readability, let us introduce some additional notations. Let S be a set of nodes

8



from G, and RS the set of edges that are incident to one and only one node in S (also denoted xor-
incident). For any edge r in such a set, the incident node to r that is not in S is denoted r→. Finally, the
restriction of the weight function to an edge set R is denoted w|R.

Algorithm 2 PAMST(G, uG, w, ε)

1: Input: G = (V,E,w) a weighted graph (separately the topology G and the weight function w), ε a
degree of privacy and uG utility function.

2: Pick v ∈ V at random
3: SV ← {v}
4: SE ← ∅
5: while SV 6= V do
6: r =MExp(G, w, uG,RSV , ε

|V |−1 )

7: SV ← SV ∪ {r→}
8: SE ← SE ∪ {r}
9: return SE

Theorem 10 states that using PAMST to get an almost minimal spanning tree topology preserves
weight-differential privacy.

Theorem 10. Let G = (V,E) be the topology of a simple-undirected graph, then ∀ε > 0, PAMST(G, uG, •, ε)
is ε- differentially private on G.

3.3.2 Differentially private clustering

The overall goal of this Section is to show that one can obtain a differentially private clustering algorithm
by combining PAMST and DBMSTClu algorithms. However, PAMST does not output a weighted
tree which is inappropriate for clustering purposes. To overcome this, one cloud rely on a sanitizing
mechanism such as the Laplace mechanism. Moreover, since DBMSTClu only takes weights from (0,1],
two normalizing parameters τ and p are introduced, respectively to ensure lower and upper bounds to
the weights that fit within DBMSTClu needs. This sanitizing mechanism is called the Weight-Release
mechanism. Coupled with PAMST, it will allows us to produce a weighted spanning tree with differential
privacy, that will be exploited in our private graph clustering.

Definition 3.12 (Weight-Release mechanism). Let G = (G,w) be a weighted graph, ε > 0 a privacy
parameter, s a scaling parameter, τ ≥ 0, and p ≥ 1 two normalization parameters. The Weight-Release
mechanism is defined as

Mw.r(G,w, s, τ, p) =

(
G,w′ =

w + (Y1, ..., Y|E|) + τ

p

)
where Yi are i.i.d. random variables drawn from Lap (0, s). With w + (Y1, ..., Y|E|) meaning that if one
gives an arbitrary order to the edges E = (ei)i∈[|E|], one has ∀i ∈ [|E|], w′(ei) = w(ei) + Yi.

The following theorem presents the privacy guarantees of the Weight-Release mechanism.

Theorem 11. Let G = (V,E) be the topology of a simple-undirected graph, τ ≥ 0, p ≥ 1, then ∀ε > 0,
Mw.r

(
G, •, µε , τ, p

)
is ε- differentially private on G.

Proof. Given τ ≥ 0, p ≥ 1, and ε > 0, the Weight release mechanism scaled to µ
ε can be break down into

a Laplace mechanism and a post-processing consisting in adding τ to every edge and dividing them by p.
Using Theorems 1 and 5, one gets the expected result.

So far we have presented DBMSTClu and PAMST algorithms, and the Weight-Release mechanism.
Let us now introduce how to compose those blocks to obtain a Private node clustering in a graph, called

9



Algorithm 3 PTClust(G,w, uG, ε, τ, p)

1: Input: G = (V,E,w) a weighted graph (separately the topology G and the weight function w), ε a
degree of privacy and uG utility function.

2: T = PAMST(G,w, uG, ε/2)
3: T ′ =Mw.r(T,w|E(T ),

2µ
ε , τ, p)

4: return DBMSTClu(T ′)

PTClust. The algorithm takes as an input a weighted graph (dissociated topology and weight function),
a utility function, a privacy degree and two normalization parameters. It outputs a clustering partition.
To do so, a spanning tree topology is produced using PAMST. Afterward a randomized and normalized
version of the associated weight function is released using the Weight-release mechanism. Finally the
obtained weighted tree is given as an input to DBMSTClu that performs a clustering partition. The
following theorem ensures that our method preserves ε-differential privacy.

Theorem 12. Let G = (V,E) be the topology of a simple-undirected graph, τ ≥ 0, and p ≥ 1, then ∀ε > 0,
PTClust(G, •, uG, ε, τ, p) is ε-differentially private on G.

Proof. Using Theorem 10 one has that T is produced with ε/2-differential privacy, and using Theorem 11
one has that w′ is obtained with ε/2-differential privacy as well. Therefore using Theorem 4, T ′ is
released with ε-differential privacy. Using the post-processing property (Theorem 5) one gets the expected
result.

3.4 Differential privacy trade-off of clustering

The results stated in this section present the security/accuracy trade-off of our new method in the
differentially-private framework. PTClust relies on two differentially private mechanisms, namely PASMT
and the Weight-Release mechanism. Evaluating the accuracy of this method amounts to check whether us-
ing these methods for ensuring privacy does not deteriorate the final clustering partition. The accuracy is
preserved if PAMST outputs the same topology as the MST-based clustering, and if the Weight-Release
mechanism preserves enough the weight function. According to Def. 3.8, if a tree has a partitioning
topology, then it fits the tree-based clustering. The following theorem states that with high probability
PAMST outputs a tree with a partitioning topology.

Theorem 13. Let us consider a graph G = (V,E,w) with K strongly homogeneous clusters C∗1 , . . . , C
∗
K

and T = PAMST(G, uG , w, ε), ε > 0. T has a partitioning topology with probability at least

1−
K∑
i=1

(|C∗i | − 1) exp

(
− A

2∆uG(|V | − 1)

)

with A = ε

ᾱimax(w(e))
e∈E

(
G|C∗

i

) −min (w(e))
e∈E

(
G|C∗

i

)
+ ln |E|.

Proof. See supplementary material.

The following theorem states that given a tree T under the strong homogeneity condition, if the subtree
associated to a cluster respects Def. 3.9, then it still holds after applying the Weight-Release mechanism
to this tree.

Theorem 14. Let us consider a graph G = (V,E,w) with K strongly homogeneous clusters C∗1 , . . . , C
∗
K

and T = PAMST (G, uG , w, ε), T = (T,w|T ) and T ′ =Mw.r(T,w|T , s, τ, p) with s << p, τ . Given some

10



(a) Homogeneous graph (b) DBMSTClu (c) PTClust, ε = 1.0 (d) PTClust, ε = 0.7 (e) PTClust, ε = 0.5

Figure 1: Circles experiments for n = 100. PTClust parameters: wmin = 0.1, wmax = 0.3, µ = 0.1.

cluster C∗i , and j 6= i s.t e(ij) ∈ CutG(T ), if HT|C∗
i
(e(ij)) is verified, then HT ′|C∗

i
(e(ij)) is verified with

probability at least

1− V(ϕ)

V(ϕ) + E(ϕ)2

with the following notations :

• ϕ = (maxYj)
2

j∈[|C∗i |−1]

− minZj
j∈[|C∗i |−1]

×Xout

• Yj ∼
iid
Lap

(
max

e∈E(T )
w(e)+τ

p , sp

)

• Zj ∼
iid
Lap

(
min

e∈E(T )
w(e)+τ

p , sp

)
• Xout ∼ Lap

(
w(e(ij)+τ

p , sp

)
,

Proof. See supplementary material.

Note that Theorem 14 is stated in a simplified version. A more complete version (specifying an analytic
version of V(ϕ) and E(ϕ)) is given in the supplementary material.

4 Experiments

So far we have exhibited the trade-off between clustering accuracy and privacy and we experimentally
illustrate it with some qualitative results. Let us discuss hereafter the quantitative performances of our
algorithm. We have performed experiments on two classical synthetic graph datasets for clustering with
nonconvex shapes: two concentric circles and two moons, both in their noisy versions. For the sake
of readability and for visualization purposes, both graph datasets are embedded into a two dimensional
Euclidean space. Each dataset contains 100 data nodes that are represented by a point of two coordinates.
Both graphs have been built with respect to the strong homogeneity condition: edge weights within
clusters are between wmin = 0.1 and wmax = 0.3 while edges between clusters have a weight strictly
above w2

max/wmin = 0.9. In practice, the complete graph has trimmed from its irrelevant edges (i.e.
not respecting the strong homogeneity condition). Hence, those graphs are not necessarily Euclidean

11



0

1

2

3

4

5

6

7 89

10

1112

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27
28

2930

31

32
33

34
35

3637
3839

40

41

42

43
44
45

46

47
48

49

50

51
52

53

54

55
56

57

58
59

60

61

62

63

64
65

66
67

68

69

70 71 7273

74

75

76 77
78

79

80

81

82

83

84
85
86

87

88

89

9091

92

93

94
95

96

97

98

99

(a) Homogeneous graph

0

1

2

3

4

5

6

7 89

10

1112

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27
28

2930

31

32
33

34
35

3637
3839

40

41

42

43
44
45

46

47
48

49

50

51
52

53

54

55
56

57

58
59

60

61

62

63

64
65

66
67

68

69

70 71 7273

74

75

76 77
78

79

80

81

82

83

84
85
86

87

88

89

9091

92

93

94
95

96

97

98

99

(b) DBMSTClu (c) PTClust, ε = 1.0 (d) PTClust, ε = 0.7 (e) PTClust, ε = 0.5

Figure 2: Moons experiments for n = 100. PTClust parameters: wmin = 0.1, wmax = 0.3, µ = 0.1.

since close nodes in the visual representation may not be connected in the graph. Finally, weights are
normalized between 0 and 1.

Figures 1 and 2 (best viewed in color) show for each dataset (a) the original homogeneous graph G
built by respecting the homogeneity condition, (b) the clustering partition1 of DBMSTClu with the used
underlying MST, the clustering partitions for PTClust with µ = 0.1 obtained respectively with different
privacy degrees2 : ε = 0.5 (c), ε = 0.7 (c) and ε = 1.0 (e). The utility function uG corresponds to the
graph weight. Each experiment is carried out independently and the tree topology obtained by PAMST
will eventually be different. This explains why the edge between clusters may not be the same when the
experiment is repeated with a different level of privacy. However, this will marginally affect the overall
quality of the clustering.

As expected, DBMSTClu recovers automatically the right partition and the results are shown here
for comparison with PTClust. For PTClust, the true MST is replaced with a private approximate
MST obtained for suitable τ and p ensuring final weights between 0 and 1.

When the privacy degree is moderate (ε ∈ {1.0, 0.7}), it appears that the clustering result is slightly
affected. More precisely, in Figures 1c and 1d the two main clusters are recovered while one point is
isolated as a singleton. This is due to the randomization involved in determining the edge weights for the
topology returned by PAMST. In Figure 2c, the clustering is identical to the one from DBMSTClu in
Figure 2b. In Figure 1d, the clustering is very similar to the DBMSTClu one, with the exception of an
isolated singleton. However, as expected from our theoretical results, when ε is decreasing, the clustering
quality deteriorates, as DBMSTClu is sensitive to severe changes in the MST (cf. Figure 1e, 2e).

5 Conclusion

In this paper, we introduced PTClust, a novel graph clustering algorithm able to recover arbitrarily-
shaped clusters while preserving differential privacy on the weights of the graph. It is based on the release
of a private approximate minimum spanning tree of the graph of the dataset, by performing suitable
cuts to reveal the clusters. To the best of our knowledge, this is the first differential private graph-
based clustering algorithm adapted to nonconvex clusters. The theoretical analysis exhibited a trade-off
between the degree of privacy and the accuracy of the clustering result. This work suits to applications
where privacy is a critical issue and it could pave the way to metagenomics and genes classification using

1For the sake of clarity, the edges in those Figures are represented based on the original weights and not on the privately
released weights.

2Note that, although the range of ε is in R?
+, it is usually chosen in practice in (0, 1] [Dwork and Roth, 2013, Chap 1&2].

12



individual gene maps while protecting patient privacy. Future work will be devoted to deeply investigate
these applications.

References

T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on minimum and maximum
spanning trees. In Proceedings of the Fourth Annual Symposium on Computational Geometry, SCG ’88,
pages 252–257, New York, NY, USA, 1988. ACM.

A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08, pages 609–
618, New York, NY, USA, 2008. ACM.

L. Chen, T. Yu, and R. Chirkova. Wavecluster with differential privacy. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management, CIKM ’15, pages 1011–1020,
New York, NY, USA, 2015. ACM.

C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86–95, Jan. 2011.

C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends R© in
Theoretical Computer Science, 9(3-4):211–407, 2013.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Eurocrypt, volume 4004, pages 486–503. Springer, 2006a.

C. Dwork, F. McSherry, K. Nissim, and A.Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography, pages 265–284. Springer Berlin Heidelberg, 2006b.

O. Grygorash, Y. Zhou, and Z. Jorgensen. Minimum spanning tree based clustering algorithms. In 2006
18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), pages 73–81, Nov
2006.

M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the degree distribution of private
networks. In 2009 Ninth IEEE International Conference on Data Mining, pages 169–178, Dec 2009.

S.-S. Ho and S. Ruan. Preserving privacy for interesting location pattern mining from trajectory data.
Trans. Data Privacy, 6(1):87–106, Apr. 2013.

S. P. Kasiviswanathan, K. Nissim, S. Raskhodnikova, and A. Smith. Analyzing graphs with node differen-
tial privacy. In Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography,
TCC’13, pages 457–476, Berlin, Heidelberg, 2013. Springer-Verlag.

F. McSherry. Privacy integrated queries. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD). Association for Computing Machinery, Inc., June 2009.

F. McSherry and K. Talwar. Mechanism design via differential privacy. In Annual IEEE Symposium on
Foundations of Computer Science (FOCS), Providence, RI, October 2007. IEEE.

A. Morvan, K. Choromanski, C. Gouy-Pailler, and J. Atif. Graph sketching-based massive data clustering.
SIAM Data Mining 2018 (to appear), 2017.

Y. Mülle, C. Clifton, and K. Böhm. Privacy-integrated graph clustering through differential privacy. In
EDBT/ICDT Workshops, 2015.

H. H. Nguyen, A. Imine, and M. Rusinowitch. Detecting communities under differential privacy. In
Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society, WPES ’16, pages
83–93, New York, NY, USA, 2016. ACM.

13



K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing - STOC. ACM Press,
2007.

R. Pinot. Minimum spanning tree release under differential privacy constraints. ArXiv e-prints, Jan. 2018.

S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27 – 64, 2007.

A. Sealfon. Shortest paths and distances with differential privacy. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems - PODS. ACM Press, 2016.

C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Com-
put., 20(1):68–86, Jan. 1971.

14



SUPPLEMENTARY MATERIAL

6 Proof regarding the accuracy of DBMSTClu

6.1 Proof of Theorem 7

This theorem relies on the following lemma:

Lemma 1. Let us consider a graph G = (V,E,w) with K clusters C∗1 , . . . , C
∗
K and T an MST of G. If

for all i ∈ [K], C∗i is weakly homogeneous, then argmax
e∈T

w(e) ⊂ CutG(T ) i.e. the heaviest edges in T are

in CutG(T ).

Proof. Let us consider C∗i a cluster of G. As C∗i is weakly homogeneous, ∀j ∈ [K] s.t. e(ij) ∈ CutG(T ),
max
e∈T|C∗

i

w(e) < w(e(ij)). Hence, argmax
e∈E(T )

w(e) ⊂ CutG(T ).

Theorem. 7 Let us consider a graph G = (V,E,w) with K homogeneous clusters C∗1 , . . . , C
∗
K and T an

MST of G. Let now assume that at step k < K − 1, DBMSTClu built k + 1 subtrees C1, . . . , Ck+1 by
cutting e1, e2, . . . , ek ∈ E.

Then, Cutk := CutG(T ) \ {e1, e2, . . . , ek} 6= ∅ =⇒ DBCVIk+1 ≥ DBCV Ik, i.e. if there are still
edges in Cutk, the algorithm will continue to perform some cut.

Proof. Let note DBCVI at step k, DBCV Ik =
∑k+1
i=1

|Ci|
N VC(Ci). Let assume that Cutk 6= ∅. Therefore,

there is e∗ ∈ Cutk and i ∈ {1, . . . , k + 1} s.t. e∗ ∈ E(Ci). Since e∗ ∈ CutG(T ), using Lem. 1, one can
always take e∗ ∈ argmax

e∈E(Ci)
w(e). Then, if we denote C1

i , C2
i the two subtrees of Ci induced by the cut of e∗

(see Fig. 3 for an illustration) and DBCV Ik+1(e∗) the associated DBCVI value,

∆ = DBCV Ik+1(e∗)−DBCV Ik

=
|C1
i |
N

(
SEP(C1

i )−DISP(C1
i )

max(SEP(C1
i ),DISP(C1

i ))

)
︸ ︷︷ ︸

VC(C1
i )

+
|C2
i |
N

(
SEP(C2

i )−DISP(C2
i )

max(SEP(C2
i ),DISP(C2

i ))

)
︸ ︷︷ ︸

VC(C2
i )

−|Ci|
N

(
SEP(Ci)−DISP(Ci)

max(SEP(Ci),DISP(Ci))

)
︸ ︷︷ ︸

VC(Ci)

.

There are two possible cases:

1. VC(Ci) ≤ 0, then SEP(Ci) ≤ DISP(Ci) = w(e∗). As for l ∈ {1, 2}, SEP(Cli) ≥ SEP(Ci) and
DISP(Cli) ≤ DISP(C〉) because e∗ ∈ argmax

e∈E(C〉)
w(e), then, for l ∈ {1, 2},

SEP(Cli)−DISP(Cli)
max(SEP(Cli),DISP(Cli))

≥ SEP(Cl)−DISP(Ci)
max(SEP(Ci),DISP(Ci))

=
SEP(Ci)
w(e)

− 1

and ∆ ≥ 0.

2. VC(Ci) ≥ 0, then SEP(Ci) ≥ DISP(Ci) = w(e∗) i.e. max(SEP(Ci),DISP(Ci)) = SEP(Ci), for l ∈
{1, 2}, DISP(Cli) ≤ DISP(Ci) i.e. DISP(Cli) ≤ w(e∗), SEP(Cli) = w(e∗) hence SEP(Cli) ≥ DISP(Cli).
Thus, VC(Ci) = 1 − DISP(Ci)

SEP(Ci) and for l ∈ {1, 2}, VC(Cli) = 1 − DISP(Cli)
SEP(Cli)

. Then, for l ∈ {1, 2},
VC(Cli) ≥ VC(Ci) and ∆ ≥ 0.

For both cases, ∆ = DBCV Ik+1(e∗)−DBCV Ik ≥ 0. Hence, at least the cut of e∗ improves the current
DBCVI, so the algorithm will perform a cut at this stage.

15



C1
i

e∗ C2
i

Ci

Figure 3: Illustration for Th. 7’s proof.

6.2 Proof of Theorem 8

Theorem. 8 Let us consider a graph G = (V,E,w) with K homogeneous clusters C∗1 , . . . , C
∗
K and T an

MST of G.
Let now assume that at step k < K − 1, DBMSTClu built k + 1 subtrees C1, . . . , Ck+1 by cutting

e1, e2, . . . , ek ∈ E. We still denote Cutk := CutG(T )\{e1, e2, . . . , ek}.
Then, Cutk 6= ∅ =⇒ argmax

e∈T \{e1, e2, ..., ek}
DBCV Ik+1(e) ⊂ Cutk i.e. the edge that the algorithm cuts at

step k + 1 is in Cutk.

Proof. It is sufficient to show that, at step k, if there exists an edge e∗ whose cut builds two clusters, then
e∗ maximizes DBCVI among all possible cuts in the union of itself and both resulting clusters. Indeed,
showing this for two clusters, one can easily generalize to the whole graph as a combination of couples of
clusters (see Fig. 5 for an illustration): if for each couple, the best local solution is in Cutk, then the best
general solution is necessary in Cutk.

Let us consider at step k of the algorithm two clusters C∗1 and C∗2 such that e∗ the edge separating
them in T is in Cutk (see Fig. 4 for an illustration). For readability we denote T|C∗1 = C∗1 and T|C∗2 = C∗2
Let us proof that for all ẽ ∈ T|C∗1∪C∗2 , one has: DBCV Ik+1(e∗) > DBCV Ik+1(ẽ). W.l.o.g. let assume
ẽ ∈ C∗1 and let denote C∗1,1 and C∗1,2 the resulting subtrees from the cut of ẽ. We still denote DBCV Ik+1(e)
the value of the DBCVI at step k + 1 for the cut of e.

∆ := DBCV Ik+1(e∗)−DBCV Ik+1(ẽ)

=
|C∗1 |
N

(
SEP(C∗1 )−DISP(C∗1 )

max(SEP(C∗1 ),DISP(C∗1 ))

)
+
|C∗2 |
N

(
SEP(C∗2 )−DISP(C∗2 )

max(SEP(C∗2 ),DISP(C∗2 ))

)
︸ ︷︷ ︸

A

−
(
|C∗1,1|
N

(
SEP(C∗1,1)−DISP(C∗1,1)

max(SEP(C∗1,1),DISP(C∗1,1))

)
+
|C∗1,2|
N

(
SEP(C∗1,2)−DISP(C∗1,2)

max(SEP(C∗1,2),DISP(C∗1,2))

))
︸ ︷︷ ︸

B

By weak homogeneity of C∗1 and C∗2 , A =
|C∗1 |
N

(
1− DISP(C∗1 )

SEP(C∗1 )

)
+
|C∗2 |
N

(
1− DISP(C∗2 )

SEP(C∗2 )

)
> 0

16



B =
|C∗1,1|
N

(
SEP(C∗1,1)−DISP(C∗1,1)

max(SEP(C∗1,1),DISP(C∗1,1))

)
︸ ︷︷ ︸

B1

+
|C∗1,2|
N

(
SEP(C∗1,2)−DISP(C∗1,2)

max(SEP(C∗1,2),DISP(C∗1,2))

)
︸ ︷︷ ︸

B2

By Lem. 1, e∗ ∈ argmax
e∈E(T|C∗1∪C∗2 )

w(e) so DISP(C∗1,2) = w(e∗).

Since e∗ ∈ CutG(T ), one has w(e∗) ≥ max(SEP(C∗1 ),SEP(C∗2 )). Moreover, as C∗2 is a subtree of C∗1,2,

then SEP(C∗1,2) ≤ SEP(C∗2 ). Thus, w(e∗) ≥ SEP(C∗1,2). Finally, B2 =
|C∗1,2|
N

(
SEP(C∗1,2)

DISP(C∗1,2) − 1
)
≤ 0.

Besides, w(ẽ) ≤ SEP(C∗1 ) =⇒ SEP(C∗1,1) = w(ẽ) ≤ max
e∈E(C∗1 )

w(e) and DISP(C∗1,1) = max
e∈E(C∗1,1)

w(e) ≥

min
e∈E(C∗1 )

w(e). Then, two possibilities hold:

1. B1 < 0 =⇒ B < 0 < A.

2. B1 ≥ 0, thus one has B1 =
|C∗1,1|
N

(
1− DISP(C∗1,1)

SEP(C∗1,1)

)
≤ |C

∗
1,1|
N

(
1−

min
e∈C∗1

w(e)

max
e∈C∗1

w(e)

)
. Under weak homogeneity

condition, there is:
DISP(C∗1 )
SEP(C∗1 ) <

min
e∈C∗1

w(e)

max
e∈C∗1

w(e) . Thus,

B1 <
|C∗1,1|
N

(
1− DISP(C∗1 )

SEP(C∗1 )

)
<
|C∗1 |
N

(
1− DISP(C∗1 )

SEP(C∗1 )

)
because C∗1,1 is a subtree ofC∗1

< A

So, B1 +B2 = B < A = DBCV Ik+1(e∗).

Since B < A, ∆ > 0 and e∗ maximizes DBCVI among all possible cuts in the union of itself and both
resulting clusters. Q.E.D.

e∗ C∗
2

C∗
1

ẽ
C∗
1,2C∗

1,1

Figure 4: Illustration for Th. 8’s proof.

6.3 Proof of Theorem 9

Theorem. 9 Let us consider a graph G = (V,E,w) with K weakly homogeneous clusters C∗1 , . . . , C
∗
K

and T an MST of G. Let now assume that at step K − 1, DBMSTClu built K subtrees C1, . . . , CK by
cutting e1, e2, . . . , eK−1 ∈ E. We still denote CutK−1 := CutG(T )\{e1, e2, . . . , eK−1}.

17



Figure 5: Illustration for Th. 8’s proof. Each circle corresponds to a cluster. The six clusters are handled
within five couples of clusters.

Then, for all e ∈ T \{e1, e2, . . . , eK−1}, DBCV IK(e) < DBCV IK−1 i.e. the algorithm stops: no
edge gets cut during step K.

Proof. According to Th. 7 and Th. 8, for all k < K, if Cutk 6= ∅, the algorithm performs some cut from
CutG(T ). We still denote for all j ∈ [K] C∗j = T|C∗j .Since |CutG(T )| = K−1, the K−1 first steps produce

K − 1 cuts from CutG(T ). Therefore, DBCVIK−1 =
∑

j∈[K−1]

|C∗j |
N VC(C∗j ).

Let be e the (expected) edge cut at step K, splitting the tree C∗i into C∗i,1 and C∗i,2.

∆ = DBCVIK−1−DBCVIK

=
|C∗i |
N

VC(C∗i )−
|C∗i,1|
N

VC(C∗i,1)−
|C∗i,2|
N

VC(C∗i,2)

=
|C∗i |
N

SEP(C∗i )−DISP(C∗i )

max(SEP(C∗i ),DISP(C∗i ))
−
|C∗i,1|
N

SEP(C∗i,1)−DISP(C∗i,1)

max(SEP(C∗i,1),DISP(C∗i,1))
−
|C∗i,2|
N

SEP(C∗i,2)−DISP(C∗i,2)

max(SEP(C∗i,2),DISP(C∗i,2))

Since C∗i is a weakly homogeneous cluster, therefore SEP(C∗i ) ≥ DISP(C∗i ). Then, minimal value of
∆, ∆min is reached when SEP(C∗i,1) ≥ DISP(C∗i,1), SEP(C∗i,2) ≥ DISP(C∗i,2), SEP(C∗i,1) = SEP(C∗i,2) =

min
e′∈E(C∗i )

w(e′), DISP(C∗i,1) = DISP(C∗i,2) = max
e′∈E(C∗i )

w(e′). Then,

N ×∆min = |C∗i |
(

1− DISP(C∗i )

SEP(C∗i )

)
− |C∗i,1|

(
1−

DISP(C∗i,1)

SEP(C∗i,1)

)
− |C∗i,2|

(
1−

DISP(C∗i,2)

SEP(C∗i,2)

)

= |C∗i |
(

1− DISP(C∗i )

SEP(C∗i )

)
− |C∗i,1|

1−
max

e′∈E(C∗i )
w(e′)

min
e′∈E(C∗i )

w(e′)

− |C∗i,2|
1−

max
e′∈E(C∗i )

w(e′)

min
e′∈E(C∗i )

w(e′)


= |C∗i |

−DISP(C∗i )

SEP(C∗i )
+

max
e′∈E(C∗i )

w(e′)

min
e′∈E(C∗i )

w(e′)


By weak homogeneity condition on C∗i ,

DISP(C∗i )
SEP(C∗i ) <

min
e′∈E(C∗

i
)
w(e′))

max
e′∈E(C∗

i
)
w(e′) ≤

max
e′∈E(C∗

i
)
w(e′))

)
e′∈E(C∗

i

minw(e′) . Therefore, ∆min > 0

and ∆ > 0.

18



7 Proofs regarding the accuracy of PTClust

7.1 Proof of Theorem 13

Theorem. 13 Let us consider a graph G = (V,E,w) with K strongly homogeneous clusters C∗1 , . . . , C
∗
K

and T = PAMST(G, uG , w, ε), ε > 0. T has a partitioning topology with probability at least

1−
K∑
i=1

(|C∗i | − 1)e

− ε
2∆uG(|V |−1)

(ᾱimax(w(e))
e∈E(G|C∗

i
)

−min (w(e))
e∈E(G|C∗

i
)

)+ln(|E|)

Proof. Let T = PAMST(G, uG , w, ε), {R1, ...,R|V |−1} denotes the ranges used in the successive calls of

the Exponential mechanism in PAMST(G, uG , w, ε), rk = MExp(G, w, uG ,Rk,
ε

|V | − 1︸ ︷︷ ︸
ε′

), and Steps(C∗i )

the set of steps k of the algorithm were Rk contains at least one edges from G|C∗i . Finally for readability
we denote uk = uG(w, rk)

P[T has a partitioning topology]

=P[∀i, j ∈ [K], i 6= j, |{(u, v) ∈ E(T ), u ∈ C∗i , v ∈ C∗j }| = 1︸ ︷︷ ︸
A

] = 1− P[¬A]

If we denote B = “∀i ∈ [K], ∀k > 1 ∈ Steps(C∗i ), if rk−1 ∈ E(G|C∗i ) then rk ∈ E(G|C∗i )” One easily
has: B =⇒ A, therefore P[¬A] ≤ P(¬B). Moreover, by using the privacy/accuracy trade-off of the
exponential mechanism, one has

∀t ∈ R,∀i ∈ [K],∀k ∈ Steps(C∗i ) P

uk ≤ −2∆uG
ε′

(t+ ln |Rk|)︸ ︷︷ ︸
Ak(t)

 ≤ exp(−t).

Moreover one can major P[¬B] as follows

P
[
∃i ∈ [K],∃k ∈ Steps(C∗i ) s.t rk−1 ∈ E(G|C∗i ) and rk /∈ E(G|C∗i )

]
By using the union bound, one gets

≤
∑
i∈[K]

P
[
∃k ∈ Steps(C∗i ) s.t rk−1 ∈ E(G|C∗i ) and rk /∈ E(G|C∗i )

]
Using the strong homogeneity of the clusters, one has

=
∑
i∈[K]

P

∃k ∈ Steps(C∗i ) s.t uk ≤ −|ᾱimaxw(e)
e∈E(G|C∗

i
)

−minw(r)
r∈Rk

|


≤
∑
i∈[K]

P

∃k ∈ Steps(C∗i ) s.t uk ≤ −|ᾱimaxw(e)
e∈E(G|C∗

i
)

− minw(e)
e∈E(G|C∗

i
)

|


By setting tk,i = ε′

2∆uG
(ᾱimax(w(e))

e∈E(G|C∗
i

)

−min (w(e))
e∈E(G|C∗

i
)

) + ln(|Rk|) one gets

=
∑
i∈[K]

P [∃k ∈ Steps(C∗i ) s.t Ak(tk,i)]

19



Since for all i ∈ [K], and k ∈ Steps(C∗i ), |Rk| ≤ |E|, and using a union bound, one gets

≤
∑
i∈[K]

∑
P

k∈Steps(C∗i )

[Ak(tk,i)] ≤
∑
i∈[K]

∑
exp

k∈Steps(C∗i )

(−ti,k)

≤
K∑
i=1

(|C∗i | − 1) exp

− ε

2∆uG(|V | − 1)

ᾱimaxw(e)
e∈E(G|C∗

i
)

− minw(e)
e∈E(G|C∗

i
)

+ ln(|E|)



7.2 Proof of Theorem 14

Let recall the theorem from S. Kotz on the Laplace distribution and generalizations (2001):

Theorem 15. Let n ∈ N, (Xi)i∈[n] ∼
iid
Lap(θ, s), denoting Xr:n the order statistic of rank r one has for

all k ∈ N,

E
[
(Xr:n − θ)k

]
= sk

n!Γ(k + 1)

(r − 1)!(n− r)!

(−1)k
n−r∑
j=0

aj,r,k +

r−1∑
j=0

bj,r,k


︸ ︷︷ ︸

α(n,k)

Theorem. 14 Let us consider a graph G = (V,E,w) with K strongly homogeneous clusters C∗1 , . . . , C
∗
K

and T = PAMST(G, uG , w, ε), and T ′ = Mw.r(T,w|T , s, τ, p) with s << p, τ . Given some cluster C∗i ,

and j 6= i s.t e(ij) ∈ CutG(T ), if HT|C∗
i
(e(ij)) is verified, then HT ′|C∗

i
(e(ij)) is verified with probability at

least

1−
Λ1 + (θ2

(ij) + δ)Λ2 − (Λ2
3 + θ2

(ij)Λ
2
4)

Λ1 + (θ2
(ij) + δ)Λ2 + 2Λ3Λ4

with the following notations:

• δ = s
p , θmin =

min
e∈E(T )

w(e)+τ

p

• θmax =
max

e∈E(T )
w(e)+τ

p ,θ(ij) = w(e(ij)+τ
p

• Λ1 = 24δ4nα(n, 4) + 12θmaxδ
3nα(n, 3) + 12θ2

maxδ
2nα(n, 2) + 4θ3

maxδnα(n, 1) + θ4
max

• Λ2 = 2δ2nα(1, 2) + 2θminδnα(1, 1) + θ2
min

• Λ3 = 2δ2nα(n, 2) + 2θmaxδnα(n, 1) + θ2
max

• Λ4 = δnα(1, 1) + θmin

Proof. Let τ > 0 and p > 1, according to the weight-release mechanism, all the randomized edge

weights w′(e) with e ∈ E(T ′) are sampled from independents Laplace distributions Lap(w(e)+τ
p , sp ).

Given some cluster C∗i , and j 6= i s.t e(ij) ∈ CutG(T ), HT|C∗
i
(e(ij)) is verified. Finding the probabil-

ity that HT ′|C∗
i
(e(ij)) is verified is equivalent to find the probability P

 (maxXe)
2

e∈E(C∗i )

minXe
e∈E(C∗i )

< Xout

 with Xe ∼
indep

Lap(w(e)+τ
p , sp ) and Xout ∼ Lap(w(e(ij))+τ

p , sp ).Denoting with Yi ∼
iid
Lap (θmax, δ) , Zi ∼

iid
Lap (θmin, δ) and Xout ∼

20



Lap(θ(ij), δ), one can lower bounded this probability by P

 (maxYi)
2

i∈[|C∗
i
|−1]

minZi
i∈[|C∗

i
|−1]

< Xout

 . Choosing τ big enough s.t

minZi
i∈[|C∗i |−1]

< 0 is negligible, one has

P

 (maxYi)
2

i∈[|C∗i |−1]

minZi
i∈[|C∗i |−1]

< Xout



=P

(maxYi)
2

i∈[|C∗i |−1]

− minZi
i∈[|C∗i |−1]

×Xout

︸ ︷︷ ︸
ϕ

< 0

 .

Moreover since τ , p >> s, one has E(ϕ) ≤ 0. Therefore,

P [ϕ < 0] =P

ϕ− E(ϕ) < −E(ϕ)︸ ︷︷ ︸
≥0


=1− P [ϕ− E(ϕ) > −E(ϕ)]

Using the one-sided Chebytchev inequality, one gets

≥1− V(ϕ)

V(ϕ) + E(ϕ)2
= 1− V(ϕ)

E(ϕ2)

By giving an analytic form to E(ϕ) and V(ϕ) by using Theorem 15 one gets the expected result.

21


	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Differential privacy in graphs
	2.3 Differentially-private clustering

	3 Differentially-private tree-based clustering
	3.1 Theoretical framework for MST-based clustering methods
	3.2 Deterministic MST-based clustering
	3.2.1 DBMSTClu algorithm
	3.2.2 DBMSTClu exact clustering recovery proof

	3.3 Private MST-based clustering
	3.3.1 PAMST algorithm
	3.3.2 Differentially private clustering

	3.4 Differential privacy trade-off of clustering

	4 Experiments
	5 Conclusion
	6 Proof regarding the accuracy of DBMSTClu
	6.1 Proof of Theorem ??
	6.2 Proof of Theorem ??
	6.3 Proof of Theorem ??

	7 Proofs regarding the accuracy of PTClust
	7.1 Proof of Theorem ??
	7.2 Proof of Theorem ??


