
HAL Id: cea-04556186
https://cea.hal.science/cea-04556186

Submitted on 23 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BILLNET: A Binarized Conv3D-LSTM Network with
Logic-gated residual architecture for hardware-efficient

video inference
Van Thien Nguyen, William Guicquero, Gilles Sicard

To cite this version:
Van Thien Nguyen, William Guicquero, Gilles Sicard. BILLNET: A Binarized Conv3D-
LSTM Network with Logic-gated residual architecture for hardware-efficient video inference.
SiPS 2022 - IEEE Workshop on Signal Processing Systems, Nov 2022, Rennes, France.
�10.1109/SiPS55645.2022.9919206�. �cea-04556186�

https://cea.hal.science/cea-04556186
https://hal.archives-ouvertes.fr

BILLNET: A Binarized Conv3D-LSTM Network
with Logic-gated residual architecture for

hardware-efficient video inference
Van Thien Nguyen, William Guicquero and Gilles Sicard

Smart Integrated Circuits for Imaging Laboratory
CEA-LETI

F-38000, Grenoble, France
vanthien.nguyen@cea.fr

Abstract—Long Short-Term Memory (LSTM) and 3D con-
volution (Conv3D) show impressive results for many video-
based applications but require large memory and intensive
computing. Motivated by recent works on hardware-algorithmic
co-design towards efficient inference, we propose a compact
binarized Conv3D-LSTM model architecture called BILLNET,
compatible with a highly resource-constrained hardware. Firstly,
BILLNET proposes to factorize the costly standard Conv3D
by two pointwise convolutions with a grouped convolution in-
between. Secondly, BILLNET enables binarized weights and
activations via a MUX-OR-gated residual architecture. Finally,
to efficiently train BILLNET, we propose a multi-stage training
strategy enabling to fully quantize LSTM layers. Results on Jester
dataset show that our method can obtain high accuracy with
extremely low memory and computational budgets compared to
existing Conv3D resource-efficient models.

Index Terms—3D CNN, LSTM, quantized neural networks,
skip connections, channel attention, logic-gated CNN

I. INTRODUCTION

Video recognition has recently drawn substantial attention
due to the success of several Deep Neural Networks (DNNs)
[1], [2], [3] and the increasing number of large-scale video
datasets [4], [5], [6]. Compared to other tasks like image
classification that only relies on spatial data, video recognition
is much more complex since it also requires extracting the
underlying temporal features in the time direction. Among
existing model architectures for spatio-temporal pattern recog-
nition, Conv3D [7] and Recurrent Neural Networks (RNNs),
e.g. LSTM [8], have demonstrated to be relevant for learning
latent spatio-temporal representations. However, these model
components exhibit hardware-related drawbacks such as large
memory requirements so as a high computational complexity.
For instance, Conv3D expands the convolution kernel to the
time direction for capturing local temporal features, therefore
increasing both the local memory and computational needs
by an order of magnitude compared to Conv2D. On the
other hands, LSTM is computationally expensive because
of its stateful nature, i.e., computing the current features
taking into account previous states. Consequently, designing
a hardware-compliant Conv3D-LSTM model for embedded
inference applications remains a significant challenge.

Motivated by the need for efficient video inference, recent
works have been focusing on the design of light-weight ar-
chitectures [9], [10] or hardware-aware network pruning [11].
Another approach to accelerate the computation during infer-
ence and further reduce the hardware-related costs consists
in lowering the bitwidth of model’s weights and activations
[12]. Even though significant works on Quantization Aware
Training (QAT) [13], [14] have been done in recent years,
they are mostly focused on the quantization of feed-forward
Convolutional Neural Networks (CNNs). On the contrary,
training fully quantized models that embed recurrent layers
like LSTMs remains an important issue. Indeed, quantizing
the hidden states of LSTM involves a quantization error that is
accumulated throughout the data sequence due to its recurrent
nature, hence implying an overall accuracy degradation. It may
explain why existing approaches [15], [16] are limited to the
use of quantization regarding the LSTM weights while keeping
activations in a floating-point representation.

This work thus aims at demonstrating that a fully-quantized
model can also be deployed for video-based inference. To
this end, we propose a hardware-compliant Conv3D-LSTM
architecture called BILLNET on which binarization techniques
are applied to further reduce the model size as well as the
computational costs. Our main contributions are then:

• A compact Binarized Conv3D-LSTM model architecture
with a MUX-OR skip connection mechanism,

• A multi-stage training procedure that provides a fully
quantized BILLNET with bitshift normalization (remov-
ing additional biases related to batch normalization).

II. RELATED WORKS

A. Residual connections for video inference

Residual learning such as element-wise addition [17] and
attention mechanism [18], [19] is firstly introduced in 2D
CNNs in order to increase network expressivity, favor feature
reuse while easing the back-propagation for deeper models.
Since Conv3D has become a more preferable option for video
recognition than its 2D counterpart, it is straightforward that
3D CNNs should adopt residual architecture paradigms like

978-1-6654-8524-1/22/$31.00 ©2022 IEEE

element-wise addition [20], [21] and attention mechanisms
[22] to improve model performance. However, it is noteworthy
mentioning that these skip connection operations are mostly
performed using full-precision arithmetic, which results in
additional hardware-related costs, especially in the context of
fully-quantized models (targeting a dedicated hardware map-
ping). In our work, we thus introduce a 3D quantized MUX
layer with an OR-gated connection that allows integrating
both an element-wise additional connection and a channel-
wise attention-like mechanism, while keeping a binarized data
representation.

B. Efficient 3D CNN architecture.

Several works have recently proposed alternative architec-
tures to alleviate the parameter-heaviness of Conv3D. [23],
[24] partly replace Conv3D by 2D convolutions. [25] proposes
different variants for the 3D residual block by separating
3 × 3 × 3 kernels with 1 × 3 × 3 spatial convolutions and
3× 1× 1 temporal convolutions. On the other hand, [26] pro-
cesses the temporal features without parameters and multiply-
accumulate (MAC) operations by shifting part of the channels
along the time dimension. Finally, [9] converts various well-
known resource-efficient 2D CNNs such as MobileNet [27],
ShuffleNet [28] to 3D CNNs. In our work, BILLNET uses a
basic factorization closely related to the one of 3D ResNext
[20], including 2 pointwise layers and a grouped Conv3D,
without nonlinearity (i.e., activation) inserted in-between.

C. Network quantization.

Network quantization [12] reduces the bitwidth of weights
and/or activations. In the most extreme case, Binarized Neural
Networks (BNNs) [13] restrict both weights and activations to
a 1-bit representation using Sign function, this ways reducing
the costly full-precision MACs to bitwise operations (i.e.,
using XNOR gates). Despite tremendous progress during the
last few years, there still exists a lack of efforts on model
quantization for video inference. Recently, [29] adaptively
selects the per-frame optimal bitwidth, conditioned on input
data. [30] proposes a binary 3D CNN constraining weight
and activation values to 0 or 1. Besides, existing approaches
[31], [16], [32], [33] mostly focus on the compression of
LSTM for language or speech models only. To the best of our
knowledge, there is no prior works on fully-quantized LSTM
in the context of video inference. Our work tries to fill in this
gap by proposing a multi-stage training algorithm to provide
a fully-quantized Conv3D-LSTM model.

III. BILLNET

Figure 1 depicts the top-level view of BILLNET that
involves integer-only MACs and bitwise operations such as
2-input multiplexers and OR gates. This model takes as input
a sequence of 16 frames with a spatial resolution of 96×128.
BILLNET contains a spatio-temporal feature extractor with
a Conv3D part to extract spatio-temporal features between
adjacent frames, and a LSTM part to keep track longer-term
temporal dependencies. In this section, we first focus on the 3D

Convolution Factorization (CF), then on the custom 3D MUX-
OR Residual (MOR) block, finally on the LSTM weights and
activations quantization.

Fig. 1: Top-level architecture description of BILLNET with
Convolutional Factorization (CF) and MUX-OR Residual
(MOR) Block. Here n is the parameters controlling the number
of output feature maps, g-GConv is Grouped Convolution with
g groups, MP and GAP stand for Max Pooling and Global
Average Pooling.

A. Conv 3D Factorization

The core building block of BILLNET is a light-weight
factorization, namely CF, consisting of 2 pointwise layers
(filter size: 1 × 1 × 1) and a g-grouped convolution (filter
size: 3× 3× 3). Unlike the building block of 3D ResNext in
[20], there is no nonlinearity (e.g., normalization, activation)
between these layers. The number of output channels Co of
each CF is defined by the parameter n (i.e., Co ∈ {n, 2n, 4n}).
Note that, the number of channels in low dimension of every
CF is set to Ci/2.

B. 3D MUX-OR Residual (MOR) block

In BILLNET, we binarize all the activations using the
Heaviside function H(x) = 1{x>0}, where 1 is the indicator
function. During the backward pass, the Straight-Through-
Estimated gradient (STE [34]) ∂H

∂x = 1{|x|≤1} is used. For
the sake of genericity, we then define the Clipped Identity:

Clip(y) = max (−1,min (1, y)) (1)

with STE gradient ∂Clip
∂y = 1. Concretely, applying this

function to the sum of x1, x2 will obtain the same binary
output {0, 1} as performing the logical OR operation, i.e.,
Clip(x1 + x2) = x1 ∨ x2. Therefore, we employ the Clipped
Identity to keep the data in binary representation. Let us denote
I0, I1 ∈ RT×h×w×n as the output of this OR operation and the
second Heaviside where T, h, w, n are the time steps, height,

width and number of channels; S ∈ {0, 1}T×1×1×n as the
binary control signal. The 2-MUX layer can be described as:

MUX(I0, I1;S) = I1 ⊙ S + I0 ⊙ (1 − S) (2)

where ⊙ is a channel-wise multiplication. The control sig-
nal S embeds a parameter-free channel attention through a
Thresholded Global Average Pooling (TGAP). TGAP simply
consists of a channel-wise Average Pooling (AP) with filter
size and strides of 1 × h × w, followed by a binarization
T (x) = 1{x>0.5m} where m is first set to the maximum
of the layer-wise AP’s tensor outputs for the full-precision
mode, then being replaced by 1 for the final quantized model
version (see section IV). When deploying the quantized model,
this operation can be implemented via a bit-count followed
by an integer-to-integer comparison. This architecture allows
the input of each MOR to control the operation of the MUX
gate in a channel-wise manner. In details, if the input feature
map is dominated by zero values, the OR skip-connection
will be performed (Fig. 2a). Otherwise, the MUX gate will
simply keep the output of the second Heaviside (Fig. 2b).
Consequently, this mechanism intrinsically balances zero and
one latent values throughout the network, this without any
additional regularization.

C. Fully-quantized LSTM

LSTM [8] is commonly used because of its capability to
capture long-term dependencies within sequences. The basic
structure of a cell in LSTM can be described as follows:

it = sigmoid (W i.[xt, ht−1] + bi) (3)

ft = sigmoid (W f .[xt, ht−1] + bf) (4)

ot = sigmoid (W o.[xt, ht−1] + bo) (5)

c̃t = tanh (W c.[xt, ht−1] + bc) (6)

ct = ft ⊙ ct−1 + it ⊙ c̃t (7)

ht = ot ⊙ tanh(ct) (8)

Eqs. 3- 6 defines the input gate, forget gate, output gate
and candidate memory, respectively. Temporal information is
transferred along time steps via ct and ht (Eqs. 7- 8).

1) LSTM weight binarization: Let us denote ni, no as
the dimension of input and output sequences, therefore we
have [xt, ht−1] ∈ Rni+no . In order to simplify the hardware
mapping, all biases are removed. Since the projections will
increase the dynamic range of the data, the weight binarization
of LSTMs are done with a scaling factor as follows:

SSign(w) =
3√

ni + no
Sign(w) (9)

The scaling factor 3√
ni+no

is chosen as a compromise between
scaling the propagated gradients of the activation functions
and matching the bipolar distributions of the later quantized
sign and heaviside activations. During backward pass, we still
employ the same STE gradient as [13]. This scheme is applied
to all 4 kernels of the LSTM layers.

(a) Case of an input dominated by zeros.

(b) Case of an input dominated by ones.

Fig. 2: The operation of the channel-wise MUX gate with
feature maps extracted during inference of a test sample. The
TGAP is implemented by a bitcount followed by an integer-
to-integer comparison, where the threshold is equal to one half
of the spatial resolution (6×8

2 = 24).

2) LSTM activation quantization: Whereas quantizing
weights is almost straightforward, it becomes much more
complex in the case of activations in LSTM due to its internal
structure. We replace all sigmoid activations in Eqs. 3- 5 by the
Heaviside function like in III-B and tanh in Eq. 6 by a strict
Sign. Since the addition in Eq. 7 will increase the dynamic
range of data, we will keep ct values within {−1, 0,+1}
by using the already introduced Clipped Idendity (Eq. 1).
Consequently, the tanh activation applied to the ternary ct in
Eq. 8 is simply removed, which allows obtaining the output
ht in a ternary representation {−1, 0, 1}. Figure 3 depicts
the computational graph of the proposed Quantized LSTM
(QLSTM) according to the aforementioned scheme. To better
visualize the quantization aspect, we also display the dynamic
of internal intermediate values along the connection lines.

Fig. 3: Computational graph of the proposed Quantized LSTM.

IV. MULTI-STAGE QUANTIZATION TRAINING ALGORITHM

This work targets a fully-quantized model, including
weights, quantizations, hidden states of LSTM and even the
Batch Normalizations (BN [35]). In order to limit the model
performance degradation, we apply a multi-stage training
procedure in which, we iteratively replace elements of BILL-
NET by its corresponding quantized version, intrinsically fine-
tuning the model to retain the accuracy.

1st stage: Training full-precision model. We firstly train
the 32-bit model with ReLU activations in Conv3D part and
use it as a proper model initialization.

2nd stage: Quantizing all weights. We keep the full-
precision activations and binarize weights using Sign [13]
for the Conv3D part and SSign for the LSTMs (c.f. III-C1).
Similarly, for the last Dense layer which reduces the dimen-
sion of data from 4m to #classes, we also apply a Scaled
Ternarization (STern) to its weights:

STern(w) =
1√
4m

Tern(w) (10)

where the Tern function is originally introduced in [36]. It
is worth mentioning that in hardware implementation, we can
simply get rid of these scaling factors, since they do not affect
the results of the later Sign/ Heaviside activations and the
Argmax operations.

3rd stage: Quantizing Conv3D activations. In this stage,
we replace all ReLU by the Heaviside activations while
keeping the LSTM activations at full-precision.

4th stage: Removing BNs. The full-precision affine trans-
form of BN remains an obstacle for model hardware de-
ployment, in particular for 3D CNNs where the data is 4D
tensors with an additional temporal dimension. Therefore, we
approximate the scaling factors of BN layers in a power-of-
2 fashion, which advantageously corresponds to the bitshift
operation. Denoting µ, σ2 as the moving mean and the moving
variance of BN after the second stage, at inference time, the
BN processes the input x to provide the output y as follows:

y = γ
x− µ√
σ2 + ϵ

+ β ≡ γ̂x+ β̂ (11)

where γ̂ = γ√
σ2+ϵ

and β̂ = β − γµ√
σ2+ϵ

are equivalent to the
scale and the offset vectors. We replace all BN layers by the
following offset-free BitShift Normalization (BSN):

y = 2⌊log2|γ̂|⌉x (12)

Note that in BILLNET, each BN layer is followed by a
Heaviside activation. When replacing the BN by BSN, since
the equivalent scaling factors are always positive, they will
simply keep the sign of data unchanged, therefore, they have
no impact to the outcomes of the later Heaviside function.
Consequently, all BSNs in BILLNET do not need to be
explicitly implemented.
5th stage: Quantizing LSTM activations. Finally, we

replace the sigmoid and tanh used in the LSTM layers (as
discussed in subsection III-C2). The model is now fully quan-
tized with mostly all weights and activations are binarized,
except for the ternary output of the QLSTMs and the ternary
weights of the last Dense layer.

V. EXPERIMENTS

A. Settings

Data pre-processing: We consider 16-frame sequences
with a resolution of 96×128 for training and testing. The Jester
Dataset V1 [6] is a large-scale hand gesture recognition dataset
composed of video clips with a variable number of frames
(from 12 to 70). In particular, most of the sequences have
between 30-40 frames. Therefore, in order to properly fit the
target temporal dimension of 16, we first apply a 2× temporal
down-sampling for sequences of more than 24 frames. This
allows us to capture all the hand gestures from end to end. In
addition, if the resulting video contains less than 16 frames, we
symmetrically repeat the first and the last frames, otherwise,
we randomly select the initial time index for the first frame.

Training stages: To train the models, we employ the Adam
optimizer [37] and the standard Categorical Cross-Entropy
(CCE) loss, with a mini-batch size of 40. The configuration
of (initial learning rate, number of epochs) at every stage is
respectively (0.0005, 100), (0.0003, 80), (0.0003, 80), (0.0002,
80) and (10−6, 80). For each stage, the learning rate firstly re-
mains unchanged, before being exponentially decayed during
the last 50 epochs, with a fixed decay rate of 0.85.

Hardware-related metrics: We measure the model hard-
ware efficiency in terms of the memory cost using weight-
related memory (model size), and the computational complex-
ity using Bit-OPerations (BOPs [38]). This allows us to assess
the number of parameters and MACs along with the precision
of weights and activations. Conventionally, we assume that
each full-precision weight and activation requires 32 bits.

B. Results

We denote the proposed model with n = 32k as BILLNET
k×. Figure 4 reports the evolution of the accuracy and
train/test losses. Each training stage (denoted from S1 to S5)
allows retaining the accuracy despite introducing quantiza-
tion effects, even if the remaining gap is significant when
quantizing the LSTM activations (S5). Figure 5 depicts the
accuracy/efficiency compromise of BILLNET and 3D efficient
models from [9]. Since [9] does not show the model size
and the number of GBOPs for Jester dataset, we compute
these values based on their trained models and code (publicly

available 1). It is clear that all quantized versions (S2 to S5) of
BILLNET stay on the optimal top-left corner, enabling various
types of hardware/accuracy compromises. Table I reports the
performance of BILLNET 2× with the specific configura-
tion of g=4 and m=n/2 compared to other resource-efficient
models. Please note that since BILLNET does not reduce
the temporal dimension (except for the first convolution) in
order to cap the inference output latency, the full-precision
(S1) model involves a higher computational cost than Mo-
bileNet and ShuffleNet versions. However, when quantizing
the weights and activations, we can advantageously reduce the
weight-related memory and computational complexity with at
least one order of magnitude. In particular, compared to a
3D-MobileNet V1, the weight-quantized BILLNET 2× (S2)
provides a higher accuracy (+0.8%) with a smaller model size
(1%) and lower computation needs in terms of #GBOPs (17%).
Besides, GBOP reduction between S3 and S4 (8.53 → 6.39
GBOPs) shows that it is crucial to replace the BNs by bitshifts,
to fully benefit from a hardware simplification in practice.
The quantization of LSTM activations has limited impacts on
the total number of GBOPs while significantly decreasing the
performance from S4 to S5 (3.78% loss). However, it is still
highly relevant considering a dedicated hardware mapping,
designed to handle only bit-wise and bit-count operations.
Figure 6 exhibits a class-temporal response of size 8 × 27
for a Pulling Two Fingers In gesture example.

(a) CCE loss. (b) Accuracy metric (Acc.).

Fig. 4: Training curves (CCE loss and accuracy) of BILLNET
2× throughout all 5 training stages.

(a) Memory vs. Acc. (b) Comp. cost vs. Acc.

Fig. 5: Weight memory (Mb) and computational costs (GBOPs
∼ 109 BOPs [38]) versus Top-1 Accuracy. Edge-less stars are
for BILLNET with g=2 and m=n, edged stars are for m=n/2
and g = n

16 (with n ∈ {64, 128}).

1https://github.com/okankop/Efficient-3DCNNs

TABLE I: Comparison of resource-efficient models on Jester
hand gesture dataset, weight-related memory (model size), and
bitwidth-aware computational complexity (GBOPs). Results
reported here are for BILLNET with g=4, n=64 and m=32.

Model Model size (Mb) Comp. (GBOP) Acc. (%)
3D-ShuffleNet V1 [9] 31.04 119.25 92.27
3D-ShuffleNet V2 [9] 42.56 106.09 91.96
3D-MobileNet V1 [9] 106.56 141.02 90.81
3D-MobileNet V2 [9] 42.24 243.18 93.34

BILLNET 2× -S1 32.23 718.89 92.18
BILLNET 2× -S2 1.01 24.54 91.64
BILLNET 2× -S3 1.01 8.53 88.33
BILLNET 2× -S4 1.01 6.39 87.75
BILLNET 2× -S5 1.01 6.34 83.97

Fig. 6: Class-temporal BILLNET output responses for a Jester
test sample labeled as a Pulling Two Fingers In gesture. High-
lighted time/class positions with maximum values correlate
to the most informative frames of the input video. Besides,
similar classes (Pulling Hand In, Sliding Two Fingers In) also
exhibit high values at the same columns.

VI. CONCLUSION

We introduced a hardware-tiny model for video inference
called BILLNET, which involves binary/ternary weights and
activations. BILLNET integrates 3D MUX-OR skip connec-
tions and a Conv3D factorization to limit the memory and
computation needs. Thanks to a 5-stage training procedure,
BILLNET offers different hardware-algorithmic trade-offs
with significantly reduced model size and #GBOPs (together
with its inherent arithmetic simplifications), while providing
an on-par accuracy compared to previously published compact
models. More importantly, we aim at designing a hardware-
compliant network suitable for later implementation on FPGA
or ASIC-based platforms. For this purpose, the fully-quantized
BILLNET (S5) can fit a hardware supporting only bit-wise
and bit-count operations. Our future works is to revise the
last training stage approach (e.g., gradually sharpening the
activations during training) to reduce the accuracy loss due
to LSTM activations quantization.

REFERENCES

[1] S. Sudhakaran, S. Escalera, and O. Lanz, “Gate-shift networks for video
action recognition,” in 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 1099–1108.

[2] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks for action recognition in videos,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 41,
no. 11, pp. 2740–2755, 2019.

[3] M. O. Turkoglu, S. D’Aronco, J. Wegner, and K. Schindler, “Gating re-
visited: Deep multi-layer RNNs that can be trained,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.

[4] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the Kinetics dataset,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 4724–4733.

[5] S. Abu-El-Haija, N. Kothari, J. Lee, A. Natsev, G. Toderici, B. Varadara-
jan, and S. Vijayanarasimhan, “YouTube-8M: A large-scale video clas-
sification benchmark,” ArXiv, vol. abs/1609.08675, 2016.

[6] J. Materzynska, G. Berger, I. Bax, and R. Memisevic, “The Jester
dataset: A large-scale video dataset of human gestures,” in 2019
IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), 2019, pp. 2874–2882.

[7] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D cnns retrace
the history of 2D cnns and imagenet?” in 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2018, pp. 6546–6555.

[8] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, nov 1997.

[9] O. Köpüklü, N. Kose, A. Gunduz, and G. Rigoll, “Resource efficient
3D convolutional neural networks,” in 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), 2019, pp. 1910–
1919.

[10] A. J. Piergiovanni, A. Angelova, and M. S. Ryoo, “Tiny video networks,”
ArXiv, vol. abs/1910.06961, 2019.

[11] M. Sun, P. Zhao, M. Gungor, M. Pedram, M. Leeser, and X. Lin, “3D
CNN acceleration on FPGA using hardware-aware pruning,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[12] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1, p.
6869–6898, jan 2017.

[13] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems (NeurIPS), 2016, pp. 4107–4115.

[14] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization,” in 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020.

[15] J. Ott, Z. Lin, Y. Zhang, S.-C. Liu, and Y. Bengio, “Recurrent neural
networks with limited numerical precision,” ArXiv, vol. abs/1611.07065,
2016.

[16] M. Z. Alom, A. T. Moody, N. Maruyama, B. C. Van Essen, and T. M.
Taha, “Effective quantization approaches for recurrent neural networks,”
in 2018 International Joint Conference on Neural Networks (IJCNN),
2018, pp. 1–8.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[18] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” in 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 6450–6458.

[19] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 8, pp. 2011–2023, 2020.

[20] K. Hara, H. Kataoka, and Y. Satoh, “Learning spatio-temporal features
with 3D residual networks for action recognition,” in 2017 IEEE In-
ternational Conference on Computer Vision Workshops (ICCVW), 2017,
pp. 3154–3160.

[21] X. Du, Y. Li, Y. Cui, R. Qian, J. Li, and I. Bello, “Revisiting 3D resnets
for video recognition,” ArXiv, vol. abs/2109.01696, 2021.

[22] J. Li, X. Liu, W. Zhang, M. Zhang, J. Song, and N. Sebe, “Spatio-
temporal attention networks for action recognition and detection,” IEEE
Transactions on Multimedia, vol. 22, no. 11, pp. 2990–3001, 2020.

[23] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri, “A
closer look at spatiotemporal convolutions for action recognition,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2018, pp. 6450–6459.

[24] S. Xie, C. Sun, J. Huang, Z. Tu, and K. Murphy, “Rethinking spatio-
temporal feature learning: Speed-accuracy trade-offs in video classifica-
tion,” in Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part XV, V. Fer-
rari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., pp. 318–335.

[25] Z. Qiu, T. Yao, and T. Mei, “Learning spatio-temporal representation
with pseudo-3D residual networks,” in 2017 IEEE International Con-
ference on Computer Vision (ICCV), 2017, pp. 5534–5542.

[26] J. Lin, C. Gan, and S. Han, “TSM: Temporal shift module for efficient
video understanding,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 7082–7092.

[27] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[28] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 6848–6856.

[29] X. Sun, R. Panda, C.-F. R. Chen, A. Oliva, R. Feris, and K. Saenko,
“Dynamic network quantization for efficient video inference,” in Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2021, pp. 7375–7385.

[30] G. Li, M. Zhang, Q. Zhang, and Z. Lin, “Efficient binary 3D convo-
lutional neural network and hardware accelerator,” J. Real Time Image
Process., vol. 19, no. 1, pp. 61–71, 2022.

[31] A. Fasoli, C. Chen, M. J. Serrano, X. Sun, N. Wang, S. Venkataramani,
G. Saon, X. Cui, B. Kingsbury, W. Zhang, Z. Tüske, and K. Gopalakr-
ishnan, “4-bit quantization of LSTM-based speech recognition models,”
CoRR, vol. abs/2108.12074, 2021.

[32] P. Wang, X. Xie, L. Deng, G. Li, D. Wang, and Y. Xie, “HitNet: Hybrid
ternary recurrent neural network,” in Advances in Neural Information
Processing Systems (NeurIPS), vol. 31, 2018.

[33] G. Nan, C. Wang, W. Liu, and F. Lombardi, “DC-LSTM: Deep com-
pressed LSTM with low bit-width and structured matrices,” in 2020
IEEE International Symposium on Circuits and Systems (ISCAS), 2020,
pp. 1–5.

[34] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
arXiv:1308.3432 [cs], Aug. 2013.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ArXiv, vol.
abs/1502.03167, 2015.

[36] F. Li and B. Liu, “Ternary weight networks,”
CoRR, vol. abs/1605.04711, 2016. [Online]. Available:
http://arxiv.org/abs/1605.04711

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[38] Y. Wang, Y. Lu, and T. Blankevoort, “Differentiable joint pruning and
quantization for hardware efficiency,” in Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XXIX, ser. Lecture Notes in Computer Science, A. Vedaldi,
H. Bischof, T. Brox, and J. Frahm, Eds., vol. 12374. Springer, pp.
259–277.

