
HAL Id: cea-04556172
https://cea.hal.science/cea-04556172v1

Submitted on 23 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MOGNET: A mux-residual quantized network
leveraging online-generated weights

Van Thien Nguyen, William Guicquero, Gilles Sicard

To cite this version:
Van Thien Nguyen, William Guicquero, Gilles Sicard. MOGNET: A mux-residual quantized
network leveraging online-generated weights. AICAS 2022 - IEEE 4th International Confer-
ence on Artificial Intelligence Circuits and Systems, Jun 2022, Incheon, South Korea. pp.90-93,
�10.1109/AICAS54282.2022.9869933�. �cea-04556172�

https://cea.hal.science/cea-04556172v1
https://hal.archives-ouvertes.fr

MOGNET: A Mux-residual quantized Network
leveraging Online-Generated weights

Van Thien Nguyen, William Guicquero and Gilles Sicard
CEA-LETI, F-38000, Grenoble, France

{vanthien.nguyen, william.guicquero, gilles.sicard}@cea.fr

Abstract—This paper presents a compact model architecture
called MOGNET, compatible with a resource-limited hardware.
MOGNET uses a streamlined Convolutional factorization block
based on a combination of 2 point-wise (1×1) convolutions with
a group-wise convolution in-between. To further limit the overall
model size and reduce the on-chip required memory, the second
point-wise convolution’s parameters are on-line generated by a
Cellular Automaton structure. In addition, MOGNET enables
the use of low-precision weights and activations, by taking
advantage of a Multiplexer mechanism with a proper Bitshift
rescaling for integrating residual paths without increasing the
hardware-related complexity. To efficiently train this model we
also introduce a novel weight ternarization method favoring the
balance between quantized levels. Experimental results show that
given tiny memory budget (sub-2Mb), MOGNET can achieve
higher accuracy with a clear gap up to 1% at a similar or even
lower model size compared to recent state-of-the-art methods.

Index Terms—CNN, quantized neural networks, skip connec-
tions, channel attention, logic-gated CNN, Cellular Automaton.

I. INTRODUCTION

The successful use of Convolutional Neural Networks
(CNNs) in image recognition tasks has been recently ac-
companied by a considerable increase in model architectures
complexity, expanding the number of parameters as well as the
computational costs. Unfortunately, this limits the deployment
of such network models in embedded systems with limited
hardware resources. Therefore, designing lightweight models
–regarding memory and computational capabilities– is a chal-
lenge to enable accurate inference tasks at the edge. Recent
efforts towards alleviating this algorithmic overhead involve
several techniques such as efficient model design [1], network
quantization [2] and layer inter-connection pruning [3].

Our goal here is to reduce the overall hardware needs
required to run a model implemented in resource-constrained
devices (e.g., for ASIC design) while still ensuring an accept-
able accuracy. Unlike several works focusing on large models
to achieve extremely high compression rates [4], [5], we first
propose a hardware-compliant model architecture to which we
further apply efficient quantization methods.

In this paper, we present the compact MOGNET model
architecture which combines:

• quantized residual modules with a Multiplexer-based skip
mechanism and,

• a custom factorization of convolution layers that uses on-
line generated weights.

Indeed, a Cellular Automaton (CA) is used to automatically
generate the weights of a pointwise convolution in each
factorized-CNN block, thus reducing parameter-related storage
requirements. Moreover, we introduce a novel training frame-
work to obtain the ternary weights in our model which favors
the balance between 3 discrete levels.

II. RELATED WORKS

Residual connections [6] have become important elements
of modern CNN architectures, which aim at increasing model
expressivity, favoring feature reuse, and alleviating the gradi-
ent vanishing in deep CNNs. [7] then incorporates an attention
mechanism into the residual learning. SENet [8] proposes a
channel attention involving feature aggregation and recabli-
ration stages. MOGNET also employs these aforementioned
concepts, however, it mainly focuses on the possible hardware
mapping of the model. While previous works perform the
residual connections using full-precision, we propose a quan-
tized Multiplexer (MUX) layer with BitShift rescaling allows
integrating both an addition connection and a channel-wise
attention-like mechanism with a very limited data precision
and thus restrained hardware-related costs.

Quantization reduces the precision of weights and activa-
tions for low-bitwidth computations. Advanced methods inte-
grate the quantization during training to jointly optimize the
quantizer with the quantized weights, under the minimization
of the quantization error [9], [10] or the output task loss
[11]. In MOGNET, for the sake of versatility, quantizers are
regularized to provide balanced quantized outputs.

Efficient architecture design involves the definition of
alternative architectures to the hardware-expensive canonical
network models. Depthwise Separable Convolution (DSConv
[12]) has become a building block in different CNN archi-
tectures [13], [1] which performs a depthwise convolution
followed by a pointwise (1 × 1) convolution. [14] revisits
DSConv by putting the pointwise (with orthonormal regular-
ization) before the depthwise convolution to cap the redun-
dancy. Grouped convolution is also introduced [15] on the
continuum between regular convolution and DSConv. ResNext
[16] presents a building block including 2 pointwise layers and
a grouped convolution inserted in-between. Our work proposes
a factorization similar to the building block of ResNext,
without activation inserted in-between layers.

Cellular Automata [17] enable the generation of random
states given an initialization and update rule function. Hence,

this repetitive structure is commonly used for generating on-
the-fly sets of random vectors [18], or computing in random
representations [19]. In MOGNET, we leverage CA to generate
part of weight parameters of our model, consequently reducing
the overall model memory-related footprint.

Fig. 1: Top-level architecture description of MOGNET with
Convolutional Factorization Leveraging On-line Generated
weights (CFLOG) and MUX Residual Block (MRB). The final
1×1 convolution is followed by Batch Normalization (BN)
prior to a Global Average Pooling (GAP). Here n,m are the
parameters controlling the number of output feature maps and
the latent dimension in CFLOG, MP stands for 2×2 Max
Pooling and g-GConv is Grouped Convolution with g groups.

III. MOGNET

Figure 1 describe the MOGNET architecture that uses
integer-only multiplication-accumulations (MACs) and
hardware-compliant operations such as 1-bit Bitshifts and
2-input multiplexers. The following description yet presents
MOGNET from its algorithmic view point, i.e. with
computations done in a real-valued domain but with relevant
hardware-equivalent specializations. In this section, we first
focus on our custom MUX Residual Block (MRB), then on
our convolution layer factorization (CFLOG).

A. MUX residual Block (MRB)

We denote k as the quantization bitwidth of the activations
throughout the network. Indeed, a k-bit Quantized Rectified
Linear Unit (QReLU) is defined so that for any input, the
outputs are in the set {0, 1

2k−1
, 2
2k−1

, ...1}:

QReLU(x; k) =

{
1

2k−1
⌊(2k − 1)x⌉ if k > 1,

1{x>0} if k = 1.
(1)

For the backward pass, we compute the gradient using the
Straight-Through-Estimator strategy (STE, [20]) ∂QReLU

∂x =
1{|x|≤1}. As the Addition y = x1 + x2 of two unsigned k-bit
activations x1, x2 will increase the dynamic range by 1-bit, we
make use of the following Bitshift software description inside
the MRB, to keep y always at k-bit:

Bitshift(y; k) =

{
1

2k−1
⌊ (2k−1)y

2 ⌋ if k > 1,

⌈y
2 ⌉ if k = 1.

(2)

Due to the specific use of this function for the add-type
connection, we adopt a completely-passed-through gradient
∂Bitshift

∂y = 1. For k > 1, this rescaling can be implemented
by a 1-bit bitshift, while in the specific case of k = 1, the
combination of the addition and the bitshift can be replaced by
an appropriate single OR gate. Let us denote I0, I1 ∈ Rh×w×n

as the output of the Bitshift operation and the second QReLU
where h,w, n are the height, width and number of channels;
S ∈ {0, 1}1×1×n as the binary control signal. The MRB core
element is MUX which can be mathematically described as:

MUX(I0, I1;S) = I1 ⊙ S + I0 ⊙ (1 − S) (3)

where ⊙ is a channel-wise multiplication. The control signal
S embeds a parameter-free channel attention which consists
in a Thresholded Global Average Pooling (TGAP). TGAP
simply corresponds to a channel-wise Global Average Pooling
(GAP) followed by a binarization T (x) = 1{x>0.5m}, where
m is set to the maximum of the GAP’s outputs in the full-
precision representation and to 1 in the quantized model which
is the maximum possible value of quantized activations. For
the hardware deployment, this last operation can be imple-
mented via an integer accumulation followed by an integer-
to-integer comparison. This way, the input of each MRB will
automatically control the operation of the Multiplexer module
in a channel-wise manner. Concretely, MRB will perform
the Additional connection for each input feature map that is
dominated by small values. Otherwise, the MRB will simply
keep the straightforward output of the second QReLU. One
interesting aspect of this MUX-skip connection is that it favors
the balance between the number of large-valued data with
respect to the number of small-valued data throughout the
networks, this without any other regularization strategy.

B. Convolution factorization leveraging CA-generated weights

To further reduce the on-chip memory and the compu-
tational complexity of the model, we replace all regular
convolutions (except the first and the last layers, cf. Fig. 1) by
a light-weight factorization consisting of 2 pointwise layers
and a grouped convolution (Fig. 2), namely CFLOG. Unlike
the building block in ResNext [16], we do not use any non-
linearity (e.g. normalization, activation) between these layers.
Moreover, to further reduce the model size, the last pointwise
convolution’s weights are fixed during training and generated
in real-time by a CA given a certain seed. The first pointwise
convolution embeds the input feature into low-dimension
m < Ci, the number of input channels. The grouped conv
layer performs g groups of convolutions and also outputs
m feature maps. Finally, these feature maps are sequentially
projected back to a high-dimensional space of Co channels
(Co = n in CFLOG, n, m) thanks to a CA-generated kernel.
As depicted in Fig. 2, this kernel is formed by concatenating all
states obtained when evolving a Co-cell CA during m update
states. In this work, we consider Wolfram’s rule 30 for the
local evolution function between states. We choose m = Ci

2
that gives the following compression rate (CR) between the

number of trainable parameters (#pr) of CFLOG and that of
the regular convolution:

CR =
Cim+ 32m2

g

32CiCo
=

Ci

Co

(
1

18
+

1

4g

)
(4)

Fig. 2: CFLOG description with CA-generated weights.

C. Balanced Ternary Quantization (BTQ)

In order to drastically compress the model, we binarize [21]
all learnable pointwise and ternarize all other layers’ weights.
To obtain the ternarized parameters, we introduce a novel
quantization-aware training scheme which favors the balance
between 3 discrete levels. The ternary mapping q : R →
{−1, 0,+1} is applied to the real-valued proxy weights w,

q(w; s) = Clip
(⌊w

s

⌉
,−1, 1

)
, (5)

where s is the step size parameter. We still adopt the STE
gradient ∂q

∂w = 1{|w|≤1}. In Fig. 3 we denote q1 and q2 as the
tertiles of the proxy weight’s histogram. Observing that the
proxy weights distribution may change during the training, but
the median value usually stays around zero, we assume that q1
and q2 are symmetrically distributed, i.e. q1 ≈ −q2 with q2 >
0. Therefore, to equi-distribute the quantized weights, we can
automatically update the step size s at the beginning of each
epoch based on q1 and q2. Concretely, we expect that the sum
of the absolute value of the tertiles (q1, q2) is approximately
equal to that of the thresholds (− s

2 ,
s
2), therefore we have:

s = |q1|+ |q2|. (6)

The algorithm for training BTQ is detailed in Algorithm 1,
in which the step size update is described in lines 2− 5.

IV. EXPERIMENTS

A. Experimental settings

We implemented all the proposed elements using the Ten-
sorFlow [22] library and CellPylib [23] package. The quan-
tized models are first initialized from their full-precision
counterparts being trained on CIFAR-10 and CIFAR-100 [24]
datasets from scratch, where ReLU and Linear activations
replace our QReLU and BitShift. Then, we train the quantized

Fig. 3: Balanced ternary quantization with histogram bin
equalization when 2 tertiles (q1, q2) are symmetrical and
coincide with the quantization thresholds (− s

2 ,
s
2).

Algorithm 1 Training MOGNET with BTQ

Input: Initial proxy weights {Wl}Ll=1 and training dataset
Output: Optimized {Wl}Ll=1, {sl}Ll=1

// B, T , L: #batches, #epochs, #layers using BTQ
// Wl: full-precision proxy weights of the lth layer,
// sl: quantization step size used at the lth layer,

1: for t = 1 to T do
2: for l = 1 to L do
3: Find 2 tertiles q1 and q2 of layer l
4: Compute and update sl (Eq. 6)
5: end for
6: for b = 1 to B do
7: Forward pass using {q(Wl; sl)}Ll=1 (Eq. 5)
8: Backward pass and update {Wl}Ll=1

9: end for
10: end for

models through a 2-stage procedure: first train quantized
weights with full-precision activations and second, fine-tune
the quantized weights with all quantized activations. We apply
the simple data augmentation scheme for training: random
crop from all-sided 4-pixel padded images combined with
random horizontal flips. Table I details the training and op-
timization setting used to derive our experimental results.

TABLE I: Training and optimization settings

Dataset CIFAR-10 CIFAR-100

Optimizer Adam [25]
(β1 = 0.9, β2 = 0.999)

Adam
(β1 = 0.9, β2 = 0.999)

Initial learning rate (LR) 10−3 10−3

Batch size 50 50
First stage epoch 180 250

First stage
LR schedule

Exponentially decay
after 120-th epoch

Exponentially decay
after 150-th epoch

Second stage epoch 150 250
Second stage
LR schedule

Exponentially decay
after 80-th epoch

Exponentially decay
after 150-th epoch

Rate of LR decay 0.9 0.9

B. Experimental results

We evaluate the performance of our models in comparison
with recent state-of-the-art model compression techniques:
Stacking Low-dimensional Binary Filters (SLBF [26]) on

ResNet (RN)-18 and VGG-16 [27]; Efficient Tensor Decompo-
sition (ETD [28]) on RN-20 and RN-32. Table II reports the
model size, the activation precision as well as the accuracy
of different methods and models. It demonstrates that for
n = 128 and g = 4, MOGNET achieves the highest accuracy
level on CIFAR-10, while having lower model size and 3-
bit only activations. Moreover, at the same configuration,
MOGNET outperforms other methods on CIFAR-100 with
a clear gap of nearly 1% (67.89 → 68.80%) at the similar
weight-related memory. We can mention the impact of the
hyperparameter k on the model performance, with a significant
degradation when decreasing the activation precision to 1-bit
or 2-bit. Figure 4 additionally reports accuracy versus model
size curves of various considered models/hyperparameters. On
both two datasets, MOGNET stays in the optimal top-left
zone implying low on-chip memory requirements with high
accuracy. However, when increasing the model size (n > 128),
MOGNET curves fall under that of SLBF-RN18. This last
result means that MOGNET, with its limited depth, is more
relevant to target extremely low-sized (< 2Mb) models.

TABLE II: Comparison of different network compression
methods on CIFAR-10 and CIFAR-100.

Method
Model

Activation
Bitwidth

(k)

CIFAR-10 CIFAR-100
Model size

(Mb) Acc (%) Model size
(Mb) Acc (%)

SLBF [26]
RN-18 32 1.67 91.70 1.72 67.89

VGG-16 32 1.84 89.24 1.89 62.88
ETD [28]

RN-20 32 1.94 91.47 3.80 67.36
RN-32 32 2.54 91.96 2.83 67.17

Ours
(n=128, g=8)

1
1.13

87.60
1.22

59.30
2 90.81 65.88
3 91.31 66.83

Ours
(n=128, g=4)

1
1.72

88.99
1.76

61.27
2 91.16 66.55
3 92.12 68.80

(a) CIFAR-10. (b) CIFAR-100.

Fig. 4: Test accuracy of different compression method-model
couplings. Our models are with 3-b activations.

V. CONCLUSION

This work introduces a novel hardware-compliant quan-
tized model architecture called MOGNET, which integrates
a custom Multiplexer mechanism and a lightweight convolu-
tion factorization that leverages Cellular Automaton-generated
weights, in order to limit the hardware memory needs. We

empirically show that our method can achieve better accuracy
with lower model size than previous works, in particular for a
tiny memory budget, while limiting the digital dynamic range
using 3-bit quantized activations for integer-only MACs.

REFERENCES

[1] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in CVPR, 2017.

[2] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” ArXiv, vol. abs/1609.07061, 2017.

[3] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” CoRR, 2015.

[4] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
in ICLR, 2016.

[5] D. Oktay, J. Ballé, S. Singh, and A. Shrivastava, “Scalable model
compression by entropy penalized reparameterization,” in ICLR, 2020.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[7] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and
X. Tang, “Residual attention network for image classification,” in CVPR,
2017.

[8] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
CVPR, 2018.

[9] F. Li and B. Liu, “Ternary weight networks,” ArXiv, vol. abs/1605.04711,
2016.

[10] X. Zhao, Y. Wang, X. Cai, C. Liu, and L. Zhang, “Linear symmetric
quantization of neural networks for low-precision integer hardware,” in
ICLR, 2020.

[11] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization,” in ICLR, 2020.

[12] L. Sifret, Rigid-Motion Scattering For Image Classification. Ecole
Polytechnique, CMAP PhD thesis, 2014.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” ArXiv, vol. abs/1704.04861,
2017.

[14] D. Haase and M. Amthor, “Rethinking depthwise separable convolu-
tions: How intra-kernel correlations lead to improved mobilenets,” in
CVPR, 2020.

[15] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in CVPR,
2018.

[16] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in CVPR, 2017.

[17] S. Wolfram, A New Kind of Science. Champaign, Ilinois, USA: Wolfram
Media Inc., 2002.

[18] J. Liu and Q. Sun, “Chaotic cellular automaton for generating measure-
ment matrix used in cs coding,” IET Signal Process., vol. 11, 2017.

[19] Ö. Yılmaz, “Reservoir computing using cellular automata,” ArXiv, vol.
abs/1410.0162, 2014.

[20] Y. Bengio, N. Léonard, and A. Courville, “Estimating or Propagating
Gradients Through Stochastic Neurons for Conditional Computation,”
arXiv:1308.3432 [cs], Aug. 2013.

[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in NeurIPS, 2016.

[22] M. A. et al., “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems,” ArXiv, vol. abs/1603.04467, 2016.

[23] L. M. Antunes, “Cellpylib: A python library for working with cellular
automata,” Journal of Open Source Software, vol. 6, no. 67, 2021.

[24] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Im-
ages,” 2009.

[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[26] W. Lan and L. Lan, “Compressing deep convolutional neural networks
by stacking low-dimensional binary convolution filters,” in AAAI, 2021.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[28] M. Yin, Y. Sui, S. Liao, and B. Yuan, “Towards efficient tensor
decomposition-based DNN model compression with optimization frame-
work,” in CVPR, 2021.

