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Abstract—Adjusting the quantization according to the data or
to the model loss seems mandatory to enable a high accuracy
in the context of quantized neural networks. This work presents
Histogram-Equalized Quantization (HEQ), an adaptive frame-
work for linear and symmetric quantization. HEQ automatically
adapts the quantization thresholds using a unique step size
optimization. We empirically show that HEQ achieves state-of-
the-art performances on CIFAR-10. Experiments on the STL-10
dataset even show that HEQ enables a proper training of our
proposed logic-gated (OR, MUX) residual networks with a higher
accuracy at a lower hardware complexity than previous work.

Index Terms—CNN, quantized neural networks, histogram
equalization, skip connections, logic-gated CNN

I. INTRODUCTION

Designing low-precision networks [1] is a promising area of
research aiming at reducing the bit width to represent weights
and activations, thus reducing the overall computational com-
plexity and memory-related costs, namely for performing
inference at the edge. The advantages of quantization have
been demonstrated on several resource-efficient low-precision
CNN accelerators [2], [3], [4], [5], [6].

Quantization-Aware Training (QAT) is the common ap-
proach to preserve the performance of quantized models and
avoid unacceptable accuracy degradation due to the limited
precision. QAT usually consists in using real-valued proxies
of the model weights that are on-the-fly quantized during the
forward pass while being updated during the backward pass
[7]. Although several nonlinear quantization mappings [8], [9]
and [10] have demonstrated remarkable algorithmic perfor-
mances, they are not fully compliant with a simple hardware
implementation. On the contrary, a linear symmetric mapping
[11] naturally matches a streamlined hardware, making it a
more relevant and reasonable choice for model quantization.

In the case of linear symmetric quantization, the thresholds
are derived from a unique step size. The calibration of this
scaling factor plays a key role and we state that it is likely
intractable to find the optimal a priori value, given that it
deeply depends on the model topology, its initialization, the
inference task and the training procedure. Therefore, using an
adjustable scaling factor during the training has demonstrated
to be more favorable because of taking into consideration the
evolution of weight/activation layer-wise distributions. State-
of-the-art methods propose to optimize these parameters under
the minimization of the quantization error and/or the loss func-
tion. For example, [12] aims at minimizing the mean squared
error between the floating-point weights and their ternarization
while [11] updates the step size through a simulated gradient

in which the descent direction is based on the quantization
error. On the other hand, [13] and later [14] propose to learn
the scaling factor using the task loss backpropagation. Fur-
thermore, [15] introduces a Straight-Through-Estimated (STE
[16]) gradient of the step size with respect to the loss. Based on
this work, [17] and [18] take advantage of bitwidth-dependent
regularizations to optimize the layer-wise bit allocation given
a target model size or a computational budget.

In this paper, we claim that –in most cases– a proper
quantization scheme should cover all the available data rep-
resentation space, somehow maximizing the entropy of the
weights [19]. Based on this hypothesis, [20] presents a 2-
bit quantization methods for recurrent models where the step
size equals to a constant multiple of the mean value of
the proxy weights. Similarly, [21] determines the thresholds
of 3-value and 4-value quantizations according to the mean
and the standard deviation of the proxy weights. However,
these approaches are not generic and applied only to under
3-bit quantization. On the contrary, our proposed method –
Histogram-Equalized Quantization (HEQ)– automatically ad-
justs the step size of an n-value quantization according to its
n-quantiles such that the resulting quantized values are more
balanced, without any further regularization. We empirically
show that our method provides a better accuracy than previous
methods on different topology variants, from the baseline plain
model to our proposed logic-gated residual networks. Indeed,
HEQ advantageously enables a proper training of quantized
models that embed OR and MUX logic gates to replace
floating-point types of skip connections, this way simplifying
the Hardware mapping of layer interconnections.

II. LINEAR SYMMETRIC QUANTIZATION

This paper focuses on the linear symmetric quantization to
a restricted range of odd n > 2 discrete values. We consider
the mapping g : R→ [[−1,+1]] applied to the weight w as:

g(w; s) =
2
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where [[−1,+1]] is discretized with an output step size of 2
n−1 ,

s is the input step size and Clip(x; a, b) = min(max(x, a), b)
with a < b. While existing works usually keep the range of
floating values by the factor s outside of the clipping function,
here we use the 2

n−1 scale factor so that all the quantized
values are explicitely shrunk in the interval [−1,+1]. During
backpropagation, we use the straight-through-estimated (STE
[16]) gradient ∂g

∂w = 1{|x|≤1} to update the proxy weights.



(a) Full-precision model. (b) Full-precision model.

(c) TWN-Ternary weights (d) DoReFa-quinary weights

(e) HEQ-ternary weights (f) HEQ-quinary weights

Fig. 1: Weight distributions of 2 layers (in 2 columns) after
training of: full-precision model (1st line), existing ternary-
weight and quinary-weight model (2nd line), and our proposed
HEQ method (3rd line) along with quantization thresholds.

This formulation thus depends on the definition of s that
deeply impacts on the model accuracy. Let us consider Ternary
Weight Networks (TWN) [12] as the baseline where s =

2τ
∑n

i=1 |Wi|
n , with a fixed norm factor τ = 0.7. Although

the optimal s may change depending on the data distribution,
this method cannot be applied to higher precisions and the
predefined τ limits the adaptability of the quantizer. Similarly,
DoReFa [22] forces the real values into the range of [−1,+1]
by a mapping adapted to the data, but the thresholds remain
fixed. Fig. 1 depicts the histogram of proxy weights (blue bars)
and quantized weights (horizontal green lines) in the case of
3-value (Figs. 1c, 1e) and 5-value (Figs. 1d, 1f) quantization
whose initialization (from full-precision model) is shown in
Figs. 1a and 1b, respectively. We can observe that in both cases
of TWN (Fig. 1c) and DoReFa (Fig. 1d), the proxy weights are
mainly concentrated around zero and the distributions between
thresholds (vertical green lines) are unbalanced. In particular,
the quinary weights (3-bit) in Fig. 1d can be approximated by
only 3 values (2-bit). Consequently, the quantized weights fail
to exploit all available values which may cause the model to be
sub-optimal. This motivates the use of more proper quantizers,
favoring the balance of quantized weights.

III. HISTOGRAM-EQUALIZED QUANTIZATION (HEQ)

To resolve the aforementioned imbalance between quantized
values, we propose HEQ to automatically adjust s during
training. Assuming that a proper quantizer should optimize
the balanced use of available discrete values in the data repre-
sentation space, we iteratively tune s based on the histogram
of the proxy weights to equi-distribute quantized weights.

A. Method

In Fig. 2 we denote {(qi, q−i)}i∈[[1,n−1
2 ]] as n − 1 points

which divide the histogram of weights into n intervals with
equiprobabilities (namely n-quantiles). Observing that the
weights distribution may change during the training procedure
but with a median value that usually stays around zero,
we assume that these quantiles are symmetrically distributed
around zero, i.e. q−i ≈ −qi with qi > 0 or |qi| = qi.

Fig. 2: Symmetric linear quantization with histogram bin
equalization when n-quantiles (q−i, qi) are symmetrical and
coincide with the quantized thresholds.

In order to equalize the histogram bins of quantized values,
we thus re-estimate and update s such that the resulting thresh-
olds used by the quantization function (see Fig. 2) are getting
closer to these quantiles. Therefore, s can be approximated by
a weighted sum of the quantiles such that qi approximately
coincides with (2i−1)s

2 . Concretely, we assume that the sum
of the absolute value of n-quantiles is approximately equal to
that of the thresholds:

n−1
2∑

i=1

(|q−i|+ qi) = 2

n−1
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(2i− 1)s

2
, (2)

from which we can derive the following updating formula:

s =
4
∑n−1

2
i=1 (|q−i|+ qi)

(n− 1)2
. (3)

This approach has the great advantage of being generic, com-
patible with almost all use cases regardless the quantization
level, the position of the layer and its type (with a possible
extension to an even n). To maintain the stability of the
model during optimization, we compute and update s only
at the beginning of each epoch. The formal training procedure
is detailed in Algorithm 1. The proxy weight distributions
obtained after a training stage that are reported in Figs. 1e and
1f clearly demonstrate that HEQ provides a more balanced
distribution of quantized weights.

Note that with symmetric quantiles, the resulting quantized
weights become more equalized. This can be enhanced by
forcing the weight median to zero, which has not been applied
in the scope of this work for the sake of clarity since it seems
to have only a slight impact on the performance of the model.



Algorithm 1 Training QNN with Histogram-Equalized Quan-
tization (HEQ)

Input: Initial proxy weights {Wl}Ll=1 and training dataset
Output: Optimized {Wl}Ll=1, {sl}Ll=1

// B, I , L: #batches, #epochs, #layers
// Wl: full-precision proxy weights of the lth layer,
// sl: quantization step size used at the lth layer.

1: for i = 1 to I do
2: for l = 1 to L do
3: Find n-quantiles of layer l
4: Compute and update sl (Eq. 3)
5: end for
6: for b = 1 to B do
7: Forward pass using {g(Wl; sl)}Ll=1 (Eq. 1)
8: Backward pass and update {Wl}Ll=1

9: end for
10: end for

B. State-of-the-art benchmark

HEQ has been evaluated on the CIFAR-10 dataset [23]
with 32 × 32 RGB images and using the VGG-Small model
like in [10]. A combination of a scale-invariant random crop
(performed on all-sided 4-pixel padded images) combined
with a random horizontal flip is used for data augmentation.
Initial proxy weights are from a pre-trained full-precision net-
work. Motivated by Hardware considerations, a 2-bit activation
scheme as detailed in DoReFa [22] has been used. Our model
is trained during 100 epochs with a small batch size of 50 to
favor exploration. The learning rate is set to 10−3 during the
first 50 epochs, then exponentially rescaled by a factor of 0.9
at each epoch. Finally, a very last epoch with a larger batch
size of 100 and a smaller learning rate of 10−5 is performed
for fine-tuning. Fig. 3 allows a comparison between TWN
[12] and our HEQ method with respect to the resulting weight
distributions. While the zero values dominate all layers in the
case of TWN, our method reduces the variance and limits the
number of weights at 0 to nearly 1/3 as shown in Fig. 3.
The number of −1 values slightly dominates as more proxy
weights are concentrated on the negative side.

Fig. 3: Comparison of the ternary-weight distribution using
TWN and our HEQ method.

Fig. 4 depicts the variation of s during training in both
ternary and quinary cases. It shows that the evolution of s
depends on the layer and has different convergence values.

(a) Ternary quantization. (b) Quinary quantization.

Fig. 4: Evolution of the step size s during training.

Table I reporting the average accuracy of each configuration
over 5 realizations, demonstrates the competitiveness of HEQ
compared to the state-of-the-art quantization methods. For
instance, when quantizing both weights (W) and activations
(A) into 2-bit, we obtain 93.51% accuracy while having only
3 values {−1, 0,+1} over 4 values possible like LQ [10]
and LLSQ [11]. Compared to the full-precision model, we
observe mostly no degradation in the case of quinary weights
(n = 5) and even a gain with septenary weights (n = 7).
Moreover, while other works give rise to a full-precision
scaling factor besides the integer weights which demands the
fusion into Batch Normalization [24] (BN) for later hardware
implementation, our models trained with HEQ-ternary and
HEQ-quinary obtain directly integer values 0,±1 (logical
operations) and ±0.5 (bitshifts) which is already compatible
for an easy hardware deployment.

TABLE I: Comparison with the state-of-the-art low-precision
quantization methods on CIFAR-10.

Method HW-Compatibility Bitwidth W/A Accuracy(%)
TWN [12] + 2/32 92.56
STTN [25] + 2/2 92.93
TRQ [14] + 2/2 91.2

LQ [10] - 2/32 93.8
2/2 93.50

LLSQ [11] + 2/2 93.31
FP32 baseline 32/32 93.68
HEQ-ternary ++ 2/2 93.51
HEQ-quinary ++ 3/2 93.66

HEQ-septenary + 3/2 93.75

IV. EXTENSIONS TO BINARIZED SKIP CONNECTIONS

A. Logic-gated Residual Neural Networks

Although quantization methods have been mainly applied
to a wide range of DNN topologies, their usage is mainly
focused on reducing the weight and activation bit widths.
On the other hand, the element-wise addition in the case of
skip connections (ResNet [26]) is still performed using a full-
precision like in [27], [28] and [29]. The reason is that apart
from improving feature map reusability, these full-precision



additions are mostly used to handle the gradient vanishing
and mismatching issues, which seem to be even more crucial
in the context of quantized models. However, it results in
additional costs with respect to the corresponding hardware
implementation. In this section, we focus on the compression
of those skip connections, including the residual addition and
the attention-like multiplication [30], such that these element-
wise operations can be implemented by only OR and MUX
logic gates rather than 32-bit arithmetic hardware.

Fig. 5: Models with the plain block (11-hidden layer VGG
[31]-variant), OR-gated block and MUX-OR gated block.

Fig. 5 depicts the proposed model design with 3 consec-
utive convolution blocks with different variants: plain block
(denoted as VGG-11), OR block (ORNet-11) and MUX-OR
block (MUXORNet-11), where F denotes the basis number
of convolutional output feature maps. All the activations are
binarized using the Heaviside function H(x) = 1{x>0} where
1 is the indicator function. The logical OR operation between
two binary inputs is arithmetically performed as x1 ∨ x2 =
H(x1 + x2). The MUX-OR block additionally embeds an
attention-alike branch (called MUX branch) along with the
OR skip connection. This MUX branch is composed of a
channel-wise Thresholded Global Average Pooling (TGPA)
that corresponds to a Global Average Pooling (GPA) followed
by the (re)binarization T (x) = 1{x>0.5m}, where m is set to
the maximum of the GPA’s outputs in full-precision model and
to 1 in quantized model. When deploying the quantized model,
this operation can be basically implemented via a bitcount
followed by a comparison with a threshold level equal to
half the number of pixels. Concretely, the OR-skip connection
will be performed for each input feature map channel that
has more zeros than ones. Otherwise, the MUX will simply
keep the straightforward output of the second Convolution-
BatchNorm-Heaviside (CBH) module. One interesting aspect
of such a MUX-skip connection is that it favors to balance
the number of 1 with respect to the number of 0 throughout
the networks, this without any other specific regularization.
In terms of hardware deployment, while existing approaches
with 32-bit additions and multiplications require hundreds of
Xilinx FPGA slices [32], a 1-bit OR only costs a single slice
and consumes much less energy [33].

B. Experimental results

In this section, we evaluate the aforementioned Neural
Network topology variants using the proposed HEQ with
ternary weights on STL-10 dataset [34] of 96 × 96 RGB
images. To limit the overfitting, we used the following data
augmentation scheme: random crop from all-sided 12-pixel
padded images combined with random horizontal flips and
cutouts of 32 × 32 pixel patches [35]. All the parameters
of the quantized model are initialized from its pre-trained
full-precision network counterpart, in which all Heaviside
functions are replaced by ReLU. We set F = 64 instead of 128
in VGG-7, resulting in smaller-sized model. All propositions
are implemented using Tensorflow [36] and Larq [37].

TABLE II: Comparison with the state-of-the-art low-precision
quantization methods on STL-10 dataset.

Model Training Regularization # params.
(M)

Bitwidth
W/A

Acc.
(%)

VGG-7 LSQ [15] #params×bit [17] 4.57 2.5/8 83.6
#MACs×bit [18] 2.2/8 83.8

VGG-11
HEQ None 3.14 2/1

83.34
ORNet-11 83.82

MUXORNet-11 84.17

Table II summarizes the performance of our proposed
models compared to previous work [18] which uses the LSQ
[15] method to jointly adapt the step size and the layer-wise
bitwidths under a model size-based [17] or a MAC×bit-based
regularization. Note that we only took into account the number
of convolution parameters for the sake of a fair comparison.
While the plain baseline obtains only 83.3% accuracy, ORNet-
11 achieves 83.8% and the MUXORNet-11 even achieves up
to 84.2%, i.e. a noticeable improvement without increasing the
overall model size and with a negligible extra cost of 2-input
MUX, OR gates and thresholded bitcounts. In terms of model
size, all our 3 model variants contain less parameters at lower
precision compared to [18]. However, the proposed ORNet-
11 optimized by HEQ already achieves the same level of
accuracy while MUXORNet-11 even obtains a better accuracy
(0.37%). These results demonstrate the effectiveness of HEQ
on different DNN designs, from VGG-like to the proposed
ORNet and MUXORNet. It also shows the possibility of
compressing the skip connections via logic gates in order to
significantly simplify the hardware mapping of more sophis-
ticated ternarized neural network topologies than VGG-like.

V. CONCLUSION

We introduce a novel QAT method based on the equalization
of layer-wise weight histograms. During the training process,
the step size is adaptively changed according to the proxy
weight distribution through its n-quantiles, such that the
quantized levels are approximately equalized. We empirically
show that the models trained with our HEQ can achieve not
only state-of-the-art accuracy on CIFAR-10, but even a better
accuracy on STL-10 dataset thanks to the proposed logic-gated
residual networks, while using a lower precision than previous
works on budget-aware learned quantization.
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