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Abstract—This paper deals with a machine learning 
framework dedicated to nondestructive testing applications, in 
view of flaws detection and characterization. A supervised 
learning strategy is used on a training set made of 
characteristic features, extracted from eddy current testing 
(ECT) and ultrasounds testing (UT) signals. The approach is 
first presented and the key role of the feature extraction by 
means of Partial Least Squares is highlighted. Then, the 
performance of the proposed data-fusion approach, in terms of 
both localization and characterization, is compared to that of 
similar approaches exploiting one inspection technique only. 

Index Terms—non-destructive testing and evaluation, data 
fusion, machine learning, eddy current testing, ultrasounds 
testing. 

I.  INTRODUCTION 

In the context of non-destructive evaluation (NDE), there 
is an increasing need for fast and reliable tools in view of 
automatic flaw(s) detection, localization and 
characterization. Machine learning (ML) algorithms have 
shown to be suitable candidates for such tasks [1]. In the 
framework of eddy current testing (ECT) inspections, recent 
contributions [2, 3] established the link between their 
performance and the training set generation, from the 
viewpoint of feature extraction and the training set sampling 
strategy. The inspection method itself, i.e., the physics 
employed to probe the specimen, brings limitations in the 
inversion performance. In case of electromagnetic-based 
NDE techniques, like ECT for instance, the penetration of 
electromagnetic fields within the probed specimen depends 
on both the excitation frequency applied to the source and 
the medium electrical conductivity magnetic permeability. 
For this reason, ECT is widely employed in order to test 
conductive media (e.g., metal alloys) affected by surface or 
near to the surface cracks. Despite this, ECT present some 
advantages as it does not require any coupling material 
between the probe and the inspected specimen, is very 
reproducible and can be used at high speed. It is thus largely 
used in many industrial sectors like energy, manufacturing, 
metallurgy and aeronautic/aerospace. For the detection of 
cracks deeply buried under the piece surface, other 
inspection methods such as ultrasounds testing (UT) are 
preferred to ECT. In a ML paradigm, a fusion of information 
coming from both ECT and UT measurements can easily be 
carried out, through feature extraction. In this work, we 
implemented such fusion and evaluated its benefit versus that 

of an algorithm employing a single-physic approach (i.e., 
ECT or UT).  

The paper is structured as follows. In the next section, an 
introduction to the physical models employed to describe 
both interactions of electromagnetic field and ultrasounds 
pressure field with the specimen is provided. Subsequently, 
the ML paradigm adopted in this paper is outlined from the 
mathematical point of view. The numerical validation of the 
data fusion approach developed in this paper is discussed in 
Section III. Finally, conclusions and new research 
perspectives are drawn at the end of this paper. 

II. MATHEMATICAL BACKGROUND 

A. The forward model 

The ECT physical solver employed in this work is based 
on the volume integral approach [4, 5] outlined hereafter. For 
sake of simplicity let us consider a homogeneous isotropic 
medium inspected by a coil working in absolute mode. The 
impedance variation due to a coil at a given position 
inspecting a conductive medium can be expressed via the 
reciprocity theorem [6] as  
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ଵ
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׬ ܧ
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where I stands for the current flowing through the coil spires, 

ܧ
௜௡௖

 represents the incident electric field and ݌ is the volume 
electric dipole density representing the secondary source due 
to the presence of a local inhomogeneity within the inspected 
medium. The vectors ݎ′ and ݎ represent the source and the 
field points coordinates, respectively. The dipole density can 
be computed by solving numerically a Fredholm equation of 
the second kind, by means of the method of moments leading 
to the following system of equations  
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In (2), ቂܧ
௧௢௧
ቃ represents the discretized total electric field 

within the volume occupied by the flaw whereas ቂܧ
௜௡௖
ቃ is the 

incident field in the crack zone. ቂܩቃ is the electric-electric 

dyadic Green function which is employed to express the 
effect of the electric dipole source ሾ݌ሿ onto an electric field 
point laying within the discretized zone. k stands for the 
wave number associated to the medium where the flaw lies. 
In our numerical experiments, we have employed a hybrid 
UT model based on the physical theory of diffraction (PTD) 
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accounting Kirchhoff approximation (KA) and the physical 
theory of diffraction (GTD) [7]. According to [7], the 
scattered field by a defect embedded in a homogeneous 
medium can be described as 
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where ߙ is used to represent the longitudinal, transverse 
vertical or transverse horizontal incident waves and ߚ the 
scattered waves counterparts. ఉܵ is the distance between the 
diffraction point the observation point ܦ .ݎఉ

ఈಸ೅ವሺݎሻ and 

ఉܦ
ఈ಼ಲሺݎሻ represent the GTD and the Kirchhoff diffraction 

coefficients, respectively. Still in (3), ݑோ௔௬ and ݑ௄௜௥௖are the 
displacement scatter field and the Rayleigh field, 
respectively. In this work, the obtained time-domain signals 
have been post processed in order to extract the peak value 
of the signal for each probe position considered within the 
scan. 

B. The machine learning inverse model 

A supervised machine learning framework has been 
employed in order to localize and characterize cracks. We 
first extract characteristics from both ECT and UT signals 
with the partial least squares (PLS) algorithm [8]. Then, an 
adaptive sampling strategy based on output space filling 
(OSF) algorithm [2] is performed in the PLS extracted 
feature space in order to collect the N samples representative 
of the final training set. We refer to this training set 
generation strategy as PLS-OSF in the following. The PLS-
OSF approach has been adapted to a multi-physics context in 
which both the ECT extracted feature space and the UT 
extracted feature space should be sampled in parallel. This 
methodology can be summarized as follows: 

 
1. Initialization: we initialize the training set by 

employing a tensor grid made by ଴ܰ  samples thus 
the forward solver for the ECT and the UT is 

evaluated on all the ଴ܰ  samples. The ECT (ܦ
ா஼்

) 

and the UT (ܦ
௎்

) signals are then concatenated in 

order to obtain the initial training set ܦ
ா஼்ି௎்

ൌ

ቄܦ௡
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, ௡ܦ
௎்
; 	݊ ൌ 1,… , ଴ܰ ቅ.  

 
2. PLS feature extraction: the set of original features 

having size ܨ ൌ ଴ܰ ൈ  the number of ܭ with ܭ
concatenated ECT plus UT features are projected into 
the extracted feature space having size equal to 

଴ܰ ൈ  represents the feature dimension via ܬ where ܬ
PLS algorithm [9] by solving the linear equation (4) 

ቆܦ
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where ܵ  is the matrix of loadings ܻ  contains the 

so-called residuals. ܶ  is the matrix that contains the 
compressed information (i.e., the extracted feature) is 

found as ቆܦ
ா஼்ି௎்

ቇ
்

ൈܹ with ܹ is the so-called 

weight matrix, which has been calculated by 
employing SIMPLS algorithm [9]. 

 
3. OSF adaptive sampling: starting from the 

knowledge of ܹ, the most suitable sample to be 
added into the training set is chosen by projecting a 
set of new candidate points into the extracted and 
choosing the one that maximize its Euclidean distance 
with respect to the other samples already embedded 
within the training set. The adaptive sampling loop 
ends when the maximum number of training samples 
ܰ is reached. 
 

4. Inverse ML model fitting: once the training set 
generation phase is ended, an inverse ML model must 
be fit on the data. In this work, we fitted the training 
set data by employing the support vector machine 
regression (SVR) algorithm [10]. Other ML models 
can be considered at this stage such as neural 
network, kernel ridge regression, Gaussian process 
regression, etc. Nevertheless, we opted in favor of 
SVR since enables a the sparse representation of the 
solution along with the possibility to “attach” a 
statistical and a physics-grounded meaning to the 
SVR hyper-parameters that must be tuned in order to 
properly fit the data. 

III. NUMERICAL VALIDATION 

In this work, we addressed a test case involving the 
inspection of an aluminum 2024 plate having thickness equal 
to 6 mm, density equal to 2.77g/cm3 and conductivity equal 
to 18.7 MS/m. A through thickness hole having radius equal 
to 3.75 mm is implanted within the plate and different cracks 
departing radially from the hole with different configurations 
in terms of length, skew angle and depth have been 
considered (see Fig. 1). The inspection procedure consisted 
in probing a squared grid centered on the hole by collecting 
81 by 41 equally spaced samples. The number of features 
associated to the raw signal was equal to 3321 and 6642 for 
UT and ECT method, respectively. That is, the fused raw 
signals consisted in 9963 features from which 20 extracted 
features have been retrieved via PLS algorithm. In order to 
enable predictions on a meaningful range of crack 
parameters, the initialization procedure has been done for 
crack length ݈௖ ∈ ሾ3.0, 10.0ሿ mm, crack ligament ߜ௖ ∈
ሾ0.0, 4.0ሿ mm and crack skew angle ߠ௖ ∈ ሾ0.0, 90.0ሿ deg. A 
full-tensor grid having 27 samples has been considered as 
initialization whereas the final number of samples added 
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with PLS-OSF algorithm was 216. In order to test the 
performance of the developed multi-physics  

 

 

(a) 

 

(b) 

Fig. 1. Examples of studied (a) ECT and (b) UT configuration 

 
strategy, we compare the former one with the respective 
single-physics counterparts (i.e., ECT or UT) on a synthetic 
test set composed of 1000 samples generated via a Latin 
hypercube sampling schema. Furthermore, the robustness of 
the proposed approach was assessed by considering the 
training set data blurred with additive white Gaussian noise 
(AWGN) having signal to noise ration equal to 10, 20, 30 
and 40 dB. 

In Fig. 2, we show the PLS-OSF sampling strategy 
results applied to ECT, UT and ECT-UT. One can notice that 
for all the three type of physics considered, the 
corresponding extracted feature space [i.e., Fig. 2 from (d) to 
(f)] result in an almost evenly sampled in contrast to the 
parameter space counterpart [i.e., Fig. 2 from (a) to (c)]. This 
is representative of the fact that the PLS-OSF algorithms 
tends to emphasize certain crack parameters for which the 
co-variance between data in the training set (i.e., the input 
parameters and the output signals) is maximized. From the 
physics point of view, these parameters are the ones that 
provide the strongest variation on the ECT and the UT 
signals collected by the probes.  Furthermore, to these 
signals correspond the most critical crack configurations that 
one should be able to detect in the inversion procedure since 
are the most critical for possible integrity issues of the 
inspected medium. 

Fig. 3 shows the prediction results obtained for the three 
physics in terms of normalized mean error (NME) [2] values 
considering the three crack parameters for different levels of 
AWGN corruption. We can notice that the data fusion 
approach (ECT-UT) yields the best results for all three 

parameters retrieved, overcoming insufficiencies of each 
single-physics approach. From the computational point of 
view, the 1000 predictions shown in Fig. 3 has been obtained 
in about 0.03 seconds on a standard laptop, which means that 
almost real-time predictions are possible by employing the 
SVR inverse model developed in this paper. 

 

 

 

(a) (d) 

 

 

(b) (e) 

 

 

(c) (f) 

Fig. 2. Training samples mapped on (a)-(c) the crack parameter space, (d)-
(f) the extracted feature space for (a)-(d) ECT, (b)-(e) UT and (c)-(f) ECT-
UT while N0 = 27, J = 2, N = 216. 

IV. CONCLUSION AND PERSPECTIVES 

This paper addresses a preliminary study of a multi-
physics approach applied to NDT-NDE configuration in 
view of flaw(s) localization and characterization. We show 
that the proposed data fusion approach based on both ECT 
and UT improves the results of single physics separately 
when the PLS-OSF sampling strategy is performed in 
conjunction with a regression model based on SVR. The 
methodology developed in this paper can be 
straightforwardly applied to other multi-physics approaches 
in the NDT framework, such as the coupling between ECT 
and infrared thermography testing for instance. Moreover, 
time domain UT raw signal could be also considered in the 
future to increase the performance from the accuracy point 
of. As a last point, improvements of the proposed OSF-PLS 
sampling procedure can be done by frame the sampling 
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schema in a semi-supervised paradigm for which clustering, 
Gaussian mixture models, kernel density estimation etc. can 
be employed instead a metric based on the iterative 
calculation of distance between extracted features.  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. NME vs. SNR representation for crack (a) length lc, (b) ligament 
δc and (c) angular position c estimation for N = 216, J = 20, M = 1000 
through ECT, UT and ECT-UT data. 

 
The outcomes of this approach consists in an higher 

efficiency in the training set generation phase (use of cluster 
calculation possible) and the possibility to treat very large 
signals such as time domain signals in UT, ground 
penetrating radar or x-ray tomography for instance. 
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