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Abstract. Guided Wave (GW) based Structural Health Monitoring (SHM) relies on the permanent integration of sensors 
on a structure to measure propagated guided waves and deduce information regarding its current structural health. GW 
imaging takes advantage of the GW measurements to establish a cartography of the health of the inspected structure, leading 
to the detection and the localization of the possibly present defects. Characterization of the defects from the obtained maps 
is often no directly possible, as the size and magnitude of the defect indication depends on a substantial number of 
parameters beyond the defect size, such as the wavelength of interrogation or the reflectivity of the flaw. So far, 
characterization of defect size through guided wave imaging in SHM context has therefore only been achieved in controlled 
environments for well-known flaws. This communication presents the use the GW-SHM simulation models developed at 
CEA-LIST to build a large database of GW imaging results and train a machine learning based inversion algorithm on it. 
Firstly, a training set accounting for various inspection parameters, e.g., frequency, flaw position and size is generated. 
Secondly, imaging algorithms are applied to each database sample and these images are used, in the so-called training 
phase, to build an inverse model with a supervised machine learning algorithm. In practice, this corresponds to fit a 
regressor (e.g., kernel ridge regressor, support vector regressor, Gaussian process regressor, etc.) on the set of 
signals/parameters pairs. To assess the performance of the inversion strategy, (i.e., the capability to retrieve flaw positions 
and/or dimensions), the inverse model is evaluated on new datasets (usually called test sets), which were generated 
independently from the training phase. The inversion results are analyzed with respect to accuracy and CPU time efficiency. 

INTRODUCTION 

Structural Health Monitoring (SHM) consists of permanently installing sensors onto or into a structure in order to 
continuously or periodically monitor its health in a non-destructive fashion. The main objective of SHM is to certify 
the health of the structure until the next maintenance operation. Guided Waves (GWs) are elastic waves guided by the 
structure in which they propagate and are a promising mean of interrogation to detect defects in plate-like structures.  
GW-based SHM (GW-SHM) has received significant interest from the scientific community and a very large number 
of in-lab GW-SHM prototypes have been documented.  

A common application of GW-SHM is through Guided Wave Imaging (GWI) aiming at creating images 
representing the health of the inspected structures, for example reported in [1], [2], [3], [4]. Most often GWI relies on 
an array of piezoelectric (PZT) transducers, each acting sequentially as emitter and receiver of GW in order to measure 
the propagated wave packets between every pair of sensors. Images obtained through GWI allow for a visual 
interpretation to detect and roughly locate the defects. In general however, the characterization (type and size) of the 
defect is not directly possible based on the images. 

In the recent years, machine learning (ML) algorithms are gaining the interest of the NDT&E research community 
as valuable tools to address challenging tasks such as automatic classification and regression [5]. In this paper, we 
focused our attention on the ML category known under the name of supervised learning [6] in order to invert a defect 
size based on images obtained through GWI. That is, with supervised learning we postulate the knowledge of input 
parameters (e.g., flaw(s) dimension(s), position(s), probe(s) geometrical parameter(s), etc.) and the associated 
inspection output/target signals. Starting from a sufficiently large collection of input parameters/output couples a 
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model targeting classification or regression tasks is fit on these data. This preliminary and possibly computationally 
expensive phase is known as training phase. Once the model is trained, starting from a set of “new” measurements, 
the ML algorithm enables almost real time predictions (i.e., it provides the set of input parameters which “are behind” 
the measured signals). This phase is also called on-line phase. In this paper, we study the performance of different 
classification and regression algorithms trained by employing CIVA SHM forward solver [7] where signals were post-
processed via the Excitelet algorithm [8]. Moreover, different excitation frequencies have been considered in order to 
assess the classification and regression performance at various inspection frequencies.  

GUIDED WAVE IMAGING 

Imaging process 

Guided Waves Imaging (GWI) is one of the most effective approaches to evaluate the integrity of a structure. A 
spatially distributed array of piezoelectric transducers is considered for both actuating and sensing the propagating 
guided waves. Collected signals are then processed by the defect imaging algorithm in order to construct a cartography, 
where each pixel is mapped to the corresponding elementary portion of the structure. The damage presence and 
location are deduced by analyzing the spatial intensity distribution of the cartography. However, the size of the defect 
is not directly proportional to the dimensions of the indication representing the defect on the cartography. 

 

 
 

Figure 1: Illustration of GWI methodology for defect cartography computation. GWs are excited and measured by the sparse 
grid of the PZTs distributed over the structure. 

 
A schematic of the GWI process is represented in Figure 1. The grid of pixels discretizes the region of interest of 

the studied specimen. In the current study, we use a baseline algorithm, named Excitelet, which attributes a global 
Damage Index (DI) value to each pixel. Exploiting the GW propagation specifications, it processes residual signals 
that are measured by each pair of piezo-electric transducers distributed over the structure. It is also assumed that the 
wavelength of the excited GW is of the same order of magnitude as the defect size in order to observe GW’s diffraction 
effects. Therefore, the residual signal, obtained as the difference between pristine and damaged states of the structure, 
contains echoes coming from the defect. 

Aforementioned, global DI value (1) is obtained as the sum of the local  (2) values computed for each PZT jth 
pair [8]. The latter is expressed via the modulus of a correlation coefficient between the experimental residual and 
theoretical signal propagated from the emitter to the point of interest and on to the receiver.  

 
                                                                        (1) 
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                                               (2) 

 
where  denotes damage index value for a pixel,   denotes the experimental residual 

signal and  denotes the theoretical signal for the corresponding PZT pair. The theoretical signal can be 
calculated as a convolution of an excitation function with the Green’s function (3) that describes the GW propagation 
in the structure of interest:  

 
                                          (3) 

 
where  denotes excitation function,  is the Green’s function,  and  denote the distances from an 

emitter to an observation point and to a receptor respectively. 

Database creation 

To apply ML methodologies, large datasets are required. In our case, it means that a large number of Excitelet 
images must be constructed and fed to the ML process, with varying parameters. As creating hundreds of experimental 
cases leads to a prohibitive cost, simulation was used to simulate the studied configuration. The CIVA software with 
the SHM package [9] was used in order to create a large database in a reasonable computation time. Typically for the 
studied aluminum panel with 8 transducers and a through hole, the whole process (simulation of the 8 guided wave 
propagation, extraction of the data, Excitelet application) took between 4 to 10 minutes, depending on the frequency, 
for each image. The validation of this software on a case similar to the one presented in this paper, as well as its 
performances were discussed in the companion paper [10]. 

MACHINE LEARNING BASED INVERSION 

Presentation of the configuration 

In the following subsection we detail a general framework adopted for training ML algorithms and testing their 
performances in the context of a SHM inspection problems for both classification and regression tasks. More into 
details, we assume that a sufficiently large set of labeled data are available either by employing synthetic signals or 
by employing directly experimental measurements. The test case considered for classification and regression tasks 
deals with an aluminum plane layer of size 600x600x3 mm3 flawed by a hole with a radius ranging from 2.5 mm up 
to 7.5 mm. We suppose that the flaw can take up any positions on the plate within a zone surrounded by eight evenly 
spaced piezoelectric sensors laying on a circumference having 300 mm in diameter (e.g., see Figure 2). Three different 
frequencies, e.g., 20 kHz, 40 kHz and 60 kHz have been considered in our simulations.                                \ 
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(a) (b) 

Figure 2. In (a) the studied configuration and in (b) an example of the numerical counterpart simulated via CIVA SHM 
module. 

 

Training phase 

In this paper, we perform the training phase by generating a database of synthetic signals based on CIVA SHM 
forward solver [10] then the signals are post-processed by using Excitelet algorithm [8] [4]. More into details, we have 
run CIVA SHM forward solver for different values of flaw position along x and y as well as different flaw radius. The 
three dimension parameters space have been sampled by collecting N=500 samples based on a Latin Hypercube 
Sampling (LHS) design. Then, the Excitelet algorithm has been applied to the synthetic signals in order to obtain the 
associated maps having size 600x600 pixels each. That is, we have built a database of 500x600x600 labelled data 
which we refer hereafter under the name of training set. In order to avoid the so-called curse-of-dimensionality 
problem, we extracted the most meaningful feature from the training set by employing the Principal Component 
Analysis (PCA) algorithms [2]. As a consequence the training set size shrunk down to a more suitable 500x10 set of 
real values, this procedure have been schematically shown in Figure 3a. Once the training set is created, one wants to 
fit (i.e., generate) a model on it able to perform a dedicated task. In this work, we focused our attention on both 
classification (C) and regression (M-1) tasks (see Fig. Figure 3b) as detailed in the next two subsections. 

 

 

 

(a) (b) 

Figure 3. Block diagram of (a) the training set generation phase and (b) the one associated to the model generation targeting 
classification or regression tasks. 

Classification 

As previously mentioned, we have considered that the training set generation phase provide a labelled set of data 
containing input parameters and extracted features. The extracted features have been obtained from a set of N sets of 
guided wave signals that have been post-processed with the Excitelet algorithm. Subsequentially, the obtained N maps 
have been treated with PCA algorithm in order to project these maps into a much lower dimensional space that 

050005-4

 22 April 2024 07:20:19



represents the space of reduced targets. The aforementioned chain of operations dealing with the creation of the 
training set is sketched in Figure 4. 

 

 
Figure 4. From left to right we sketch the set of operation we performed in the training phase targeting classification and 
regression tasks. On the left, we show the set of parameters generated via LHS design, which have been employed to feed 

CIVA SHM solver. In the middle, the maps obtained via Excitelet algorithm and the associated projected signals in the PCA 
space on the right.  

 
In this paper, we have focused our attention onto the classification algorithms known in the literature as Naïve 

Bayes (NB) and Support Vector Classification (SVC) [5] [11] [12]. The targeted classes were chosen with respect to 
the hole radius regardless of the position taken up by the hole in the metallic plate. The data labelled with Class 1 
represent all the hole with radius larger than 6.0 mm. Within the Class 2 we have gathered the holes having radius 
between 6.0 mm and 4.0 mm whereas the Class 3 defines all the holes having radius smaller than 4.0 mm. The SVC 
model with Gaussian kernel has been fit on the training set by employing a 5-folds cross validation procedure. 

In order to study the influence of the frequency on the classification accuracy, we tested both the algorithms at the 
frequencies of 20 kHz, 40 kHz and 60 kHz. For each frequency, a test set composed of 200 samples have been 
generated via LHS design and then simulated by using CIVA SHM solver. In Fig. 4, by employing confusion maps, 
we displayed the classification results obtained via NB and SVC classifiers. These results shown that the classifiers 
provide almost the same performance and that the classification accuracy degrade when the frequency increase.  
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20 kHz 40 kHz 60 kHz

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Classification results obtained at 20 kHz, 40 kHz and 60 kHz shown through (normalized) confusion matrices. Naïve 
Bayes classification results are shown in (a), (b) and (c) whereas the SVC results are displayed in (d), (e) and (f). 

Regression 

In order to train a regressor algorithm targeting inversion tasks, we generated a training set made of 500 samples 
based on LHS design, we applied PCA feature extraction on the Excitelet maps as shown in Fig. 4. To perform 
regression tasks aiming to retrieve flaw x and y positions and the hole radius values, we fit a Kernel Ridge Regression 
(KRR) regressor [6] on the training set. More in particular, a 5-folds cross validation stage has been employed to fit 
the KRR model with Gaussian kernel to the training set. Subsequentially, we tested the obtained results on a test set 
composed by 200 samples generated via LHS design. In Fig. 5 we shown prediction obtained via KRR regressor based 
on synthetic test set. By looking at the obtained prediction one can readily notice that the overall accuracy of KRR 
prediction is quite good concerning flaw x and y positions since the scattered plots fit well the 45° black solid line 
when the two highest frequencies are addressed. Slightly worst results have been obtained at 20 kHz though. 
Concerning the prediction of flaw radius, an opposite behavior was found since the best results are provided by the 
frequencies of 20 kHz and 40 kHz. 
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Figure 6. KRR predictions are shown via true vs. predicted curves. In (a), (b) and (c) KRR results are provided for flaw position 
in the x direction and in (d), (e) and (f) prediction associated to flaw positions along y are given at 20 kHz, 40 kHz and 60 kHz, 

respectively. In (g), (h) and (i) we displayed, in the order, KRR hole radius predictions for the three frequencies considered 
before. 

CONCLUSION 

This article presents the results of classification and inversion of a defect size based on data of Guided Wave 
Imaging. The database contains 500 images corresponding to the Excitelet algorithm applied to an aluminum panel 
drilled by a circular through-hole of various positions and diameters. Approximatively 350 images were used for the 
training while 150 were used to evaluate the quality of the classifier and regressor. Overall, the classification provides 
mitigated results, mainly because the classes of defect were arbitrarily determined and no true distinction existed 
between the classes. Future work on classification will include looking a very distinct classes, for example one class 
per number of defect in the inspected structure. On the regression side, the results were much more satisfying, for 
example the defect size was inverted with a mean absolute error of about 0.3 mm at 40 kHz, meaning that the approach 
is viable to inverse defect size. 
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