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Abstract. Model-based sensitivity analysis is crucial in quantifying which
input variability parameter is important for nondestructive testing (NDT)
systems. In this work, neural networks (NN) and convolutional NN (CNN)
are shown to be computationally efficient at making model prediction for
NDT systems, when compared to models such as polynomial chaos ex-
pansions, Kriging and polynomial chaos Kriging (PC-Kriging). Three dif-
ferent ultrasonic benchmark cases are considered. NN outperform these
three models for all the cases, while CNN outperformed these three mod-
els for two of the three cases. For the third case, it performed as well
as PC-Kriging. NN required 48, 56 and 35 high-fidelity model evalua-
tions, respectively, for the three cases to reach within 1% accuracy of the
physics model. CNN required 35, 56 and 56 high-fidelity model evalua-
tions, respectively, for the same three cases.

Keywords: Nondestructive testing · Sensitivity analysis · Metamodel-
ing · Neural networks · Convolutional neural networks.

1 Introduction

The process of testing, inspecting or evaluating assemblies or components for
discontinuities or damages without affecting the the serviceability of the part
is known as nondestructive testing (NDT) [1]. Various NDT methods, such as
electromagnetic testing [2] and ultrasonic testing (UT) [3], have been developed
and used in different engineering fields such as automobile manufacturing, in-
service inspection of aircraft and wind turbines.

To quantify the effect of the different variability parameters on the model
responses from NDT systems, sensitivity analysis (SA) [4] can be utilized. SA
can be local [5]or global [6]. Local SA focuses on quantifying the effects of small
perturbations near an input space value on the model response. Global SA is
used to quantify the effects of the input variability on the output responses. For
this study, global SA based on Sobol’ indices [7] is used.
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Traditional NDT measurements have relied heavily on experimental meth-
ods. These methods, however, are time-consuming and costly. To speed up this
process, various physics-based NDT models, such as finite element methods [8]
and boundary element methods [9], have been developed. Unfortunately, for SA,
a large number of model evaluations are required in order to propagate the
random input uncertainties to the model responses. This results in high compu-
tational cost, which renders SA for NDT systems challenging to complete within
a required time frame.

To overcome the computational burden, metamodeling methods [10] can
be used. These models replace the time-consuming, but accurate high-fidelity
physics-based models with a computationally efficient one. Metamodeling meth-
ods can be broadly categorized in two classes: data-fit methods [11] and multi-
fidelity methods [12]. In data-fit methods, a response surface is fit through the
evaluated model responses at sampled high-fidelity data points. Multifidelity
metamodeling reduces the computational burden by using information from two
or more fidelities. Low-fidelity data can be used to provide the cost function
trend to high-fidelity data.

In this work, two data-fit methods, namely neural nerworks (NN) [13] and
convolutional NN (CNN) [14] are used as a part of model-based SA for three UT
benchmark cases. The results from this case is compared to Kriging [15], least-
angle regression (LARS) [16] based polynomial chaos expansions (PCE) [17]
and polynomial chaos-based Kriging (PC-Kriging) [18]. Model-based SA can
be used as a precursor to experimental testing, as it would provide important
information on which input variability parameters are most crucial for NDT.
This would result in a reduction of the total number of physical experiments
that need to be performed, hence saving time and cost.

The paper is organised as follows. The next section introduces the method
used to construct the NN and CNN as well perform SA. These algorithms are
then applied to the three UT benchmark cases in the following section. The final
section concludes the paper and provides suggestions for future work.

2 Methods

This section details the construction of the NN and CNN as well as the SA. The
Keras [20] wrapper with Tensorflow [21] is used in this study to construct the
NN and CNN. The following subsections describe the workflow, the sampling
plan, the NN and CNN architectures, as well as SA using Sobol’ indices.

2.1 Workflow

The model-based SA flowchart is shown in Fig. 1. The process starts by sampling
for the training data. At these sample points, the high-fidelity physics-based
model responses are observed from which the metamodel is constructed. This
metamodel is then validated using a separate testing set. If the required accuracy
is not met, resampling is done with a higher number of training points. Once
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Fig. 1: Flowchart for the model-based sensitivity analysis

the required accuracy is met, the model-based SA is performed. The following
subsections describe each step of the algorithm in Fig.1.

2.2 Sampling Plan

The first step in the model-based SA involves sampling. In order to capture
the trend of the model responses, sampling needs to be performed at a fixed
combinations of the input variability parameters. The training data in this study
is generated using Latin Hypercube sampling (LHS) [10], while the testing data
is generated using Monte Carlo sampling (MCS) [22]. The training data is first
generated using ten data points, which is increased during resampling until the
required accuracy is met. The testing data is fixed to 1,000 points.

2.3 Neural Networks

Figure 2 depicts a NN [13] with an input layer with three inputs, one hidden
layer with “n” neurons, and an output layer. A NN is constructed through linear
combination of inputs followed by nonlinear transformations through activation
functions. Each neuron has an activation function given by

zj = a
(∑3

i=1
ωijxi

)
, (1)

where a is the activation function and ωij is the weight between the ith input
layer and jth neuron in the hidden layer. Here, the maximum value of i is three
as there are three inputs to the NN. x and z are the input values and outputs
of the neurons respectively. The NN output prediction is given by

ŷ =
∑n

i=1
ηizi, (2)
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Fig. 2: Depiction of the neural network structure

where ηi is the weight between the ith neuron in the hidden layer and the output
layer. To obtain the weights, a minimization problem is solved with a gradient-
based algorithm. The cost function used is the mean squared error (MSE), given
by

MSE =
∑Nt

i=1
(ŷ(i) − y(i))2/Nt, (3)

where the physics-based model observation are given by y. Nt is the total number
of testing data points. For this study, the following hyperparameters are used:
hyperbolic tangent activation function, 50 neurons in the hidden layer and to-
tal number of epochs (iterations) of 10,000. The Nesterov-accelerated Adaptive
Moment Estimation [23] stochastic gradient descent algorithm with a batch size
of 20, learning rate of 0.01 and momentum rate of 0.99 are also used. Details
of these terms can be found in Goodfellow et al. [13]. In general, there is no
rule-of-thumb on how to setup the NN architecture and its hyperparameters.
This was done using trial and error in this work.

2.4 Convolutional Neural Networks

Figure 3 shows the CNN architecture used this in study. The input layer has
been replaced by an input grid of size 3 × 1. CNN was originally developed to
work on images [14], where each grid location contains the pixel value. For this
study, the pixel values used are the variability parameters values, scaled to have
values between zero and one. A kernel of size 1×1 passes over this grid from top
to bottom. During this process the convolutional operation is preformed. The
convolutional operation here is the product of the input and the value of the
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Fig. 3: Flowchart for the model-based sensitivity analysis

kernel. The resulting value in the convolutional feature map layer is given by

ci = a
(
εxi

)
, (4)

where c is the value in the feature map, a is the activation function, ε is the
value of the kernel and x is the input value. This layer is then connected to the
hidden layer, which is similar to that of the standard NN. The output of the
hidden layer is given by

zj = a
(∑3

i=1
ωijci

)
. (5)

The weight between the ith grid location of the convolutional feature maps layer
and jth neuron in the hidden layer is ωij . The CNN output prediction ŷ is same
as (2). The hyperparameters used for this study, in the case of CNN, are the
same as those of the NN, except for the batch size and the number of neurons
in the hidden layer. These values are set to 10 and 100, respectively.

2.5 Validation

The root mean squared error (RMSE), given by

RMSE =
√
MSE, (6)

and the normalized RMSE (NRMSE), given by

NRMSE = RMSE/(max(y)−min(y)), (7)
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are used to validate the metamodel in this work. The maximum and minimum
model observation of the testing points are given by max(y) and min (y), respec-
tively. An RMSE less than or equal to 1%σtesting (standard deviation of testing
points) is taken as the acceptable global accuracy criterion in this work.

2.6 Model-Based Sensitivity Analysis

Variance-based Sobol’ indices [6] are used in this work. To determine by how
much each variability parameter affects the model response. In this work, MCS
is used to estimate these indices.

Given a black-box model,

M(X) = f(X), (8)

where X is the input vector of m random variables. This equation can be de-
composed as

M(X) = f0 +
m∑
i=1

fi(Xi) +
m∑
i<j

fi,j(Xi, Xj) + ...+ f1,2,...,m(X1, X2, ..., Xm), (9)

where f0 is a constant, and fi is a function of Xi. The functional decomposition
terms are orthogonal, which can then be decomposed in terms of conditional
expected values

f0 = E(M(X)), (10)

fi(Xi) = E(M(X)|Xi)− f0, (11)

fi,j(Xi, Xj) = E(M |Xi, Xj)− f0 − fi(Xi)− fj(Xj), (12)

and so on. The variance of (9) is then

Var(M(X)) =
m∑
i=1

Vi +
m∑
i<j

Vi,j + ...+ V1,2,...,m, (13)

where
Vi = VarXi(EX∼i(M(X)|Xi)), (14)

Vi,j = VarXi,j
(EX∼i,j

(M(X)|Xi, Xj))− Vi − Vj , (15)

and so on, where X∼i notation denotes the set of all variables except Xi.
The main effect indices, given by the first-order Sobol’ indices are

Si =
Vi

Var(M(X))
. (16)

The total-order indices, given by the total-effect Sobol’ indices are

STi
=

EX∼i
(VarXi

(M(X)|X∼i))

Var(M(X))
= 1− VarX∼i

(EXi
(M(X)|X∼i))

Var(M(X))
. (17)
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3 Numerical Examples

The model-based SA using NN and CNN used in this paper are demonstrated on
three UT benchmark cases. These metamodels are compared to PCE, Kriging
and PC-Kriging. The computational cost is computed as the total number of
training samples required to reach the desired accuracy.

3.1 Problem Setup

Three benchmark cases developed by the World Federal Nondestructive Eval-
uation Center [24] are used in this work. The three cases are the spherically-
void-defect case under focused transducer (Case 1), spherically-void-defect cases
under planar transducer (Case 2), and the spherically-inclusion-defect case under
focused transducer (Case 3).

The setup of the UT system is shown in Fig 4. The variability parameters
for Cases 1 and 3 are the probe angle (θ), the x location of the probe (xp) and
the F -number (F ). The F -number is the focal length divided by the diameter of
the transducer. For Case 2, the F -number is replaced with the y location of the
probe (yp). For all the cases θ and xp have the normal distribution N(0 deg, 0.52

deg2) and uniform distribution U(0 mm, 1mm), respectively. F has a U(13,15)
and U(8,10) for Case 1 and 3, respectively. yp has a distribution U(0 mm, 1mm).
A summary of the variability parameter is given in Table 1.

Fig. 4: Setup of the ultrasonic testing system for the benchmark cases

Table 1: The variability parameters used in the numerical examples
Parameters Case 1 Case 2 Case 3

θ (deg) N(0, 0.52) N(0, 0.52) N(0, 0.52)
xp (mm) U(0, 1) U(0, 1) U(0, 1)
yp (mm) N/A U(0, 1) N/A
F U(13, 15) N/A U(8, 10)
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The Thomspon Grey model [25] is used to predict the voltage wave forms
at the receiver, while the multi-Gaussian beam model [26] evaluates the velocity
diffraction coefficient. Separation of variables [27] is then used to calculate the
scattering amplitude, which results in a closed-form expression. For this study,
the transducer has a center frequency of 5 MHz. The fused quartz block has a
density of 2,000 kg/m3, a longitudinal wave speed of 5,969.4 m/s and a shear
wave speed of 3,774.1 m/s. For more information about the models, refer to Du
et al. [28].

3.2 Results

The NN and CNN model used in this study are compared to the PCE [17],
Kriging [15] and PC-Kriging [18] metamodels. To measure the global accuracy,
RMSE and NRMSE metrics are used. This is done at the defect size (a) of 0.5
mm. The number of training points used to generate the metamodel is increased
until the desired accuracy of 1%σtesting is reached. Once this accuracy is reached,
the model is retrained on data for different defect size and the accuracies mea-
sured again. Note that the same number of training points are used to measure
accuracy at different defect sizes.

Figures 5(a), 6(a) and 7(a) show the RMSE for all the metamodels for an
increasing number of training points, for Cases 1, 2 and 3, respectively. In Case
1, both NN and CNN outperform the remaining metamodels. CNN, however,
required only 35 training points, compared to 48 for NN (Table 2). For Case 2,
both CNN and NN require the same number of training data to reach the desired
accuracy and outperform all the other metamodels (Table 3). Table 4, shows
that NN outperforms all the other training models, however, CNN performs as
well as the PC-Kriging model. Figures 5(b), 6(b) and 7(b) show that all the
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Fig. 5: Case 1 setup and model validation: (a) RMSE (a = 0.5 mm), (b) NRMSE
with respect to defect size
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Fig. 6: Case 2 setup and model validation: (a) RMSE (a = 0.5 mm), (b) NRMSE
with respect to defect size
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Fig. 7: Case 3 setup and model validation: (a) RMSE (a = 0.5 mm), (b) NRMSE
with respect to defect size

metamodels fall within the desired accuracy for the NRMSE for all the defect
sizes and all the cases.

Table 2: Case 1 computational cost
Model Per defect size Total

Kriging 1,000 5,000
PCE 120 600
PC-Kriging 56 280
NN 48 240
CNN 35 175
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Table 3: Case 2 computational cost
Model Per defect size Total

Kriging 800 4,000
PCE 455 2,275
PCK 84 420
NN 56 280
CNN 56 280

Table 4: Case 3 computational cost
Model Per defect size Total

Kriging 800 4,000
PCE 120 600
PCK 56 280
NN 35 175
CNN 56 280

SA plots for the three cases are shown in Figs. 8 to 10. 75,000 MCS were
used to perform the physics-based model evaluations to obtain the sensitivity
information for each of the three cases. This serves as the baseline to compare
the metamodeling results. In the case of the PCE metamodel, its coefficients can
be used to provide the 1st and total order Sobol’ indices [28]. For the remaining
metamodels, 75,000 MCS points were used to provide satisfactory results for
the SA for each of the cases. Figures 8 and 10 show that the F -number has
negligible effect on the model response and can be neglected while setting up
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Fig. 8: Case 1 sensitivity analysis: (a) 1st-order Sobol’ indices, (b) Total-order
Sobol’ indices
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Fig. 9: Case 2 sensitivity analysis: (a) 1st-order Sobol’ indices, (b) Total-order
Sobol’ indices
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Fig. 10: Case 3 sensitivity analysis: (a) 1st-order Sobol’ indices; (b) Total-order
Sobol’ indices

the NDT experiments. For Case 2, yp is small enough to be ignored, as shown
in Fig. 9.

4 Conclusion

In this work, NN and CNN are used to perform model-based SA for three dif-
ferent UT benchmark cases. These metamodels are compared to other data-fit
metamodels, namely, PCE, Kriging and PC-Kriging. NN is shown to outperform
these three metamodeling methods for all the UT benchmark cases in terms of
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number of training points required to reach an accuracy of 1%σtesting. CNN out-
performs NN for Case 1, performs equally well for Case 2 as NN, and performs
similarly to PC-Kriging for Case 3.

The SA shows that NN and CNN match the physics-based model results well.
The F -number and yp are shown to be of no importance while measuring the
model response and can be neglected for experimental NDT. The remaining two
parameters, xp and θ, are important and cannot be ignored during experimen-
tal measurements. This study shows how machine learning algorithms, such as
NN and CNN, can be used to perform accurate and fast SA for NDT systems.
This help decide which variable parameters should be used for NDT using ex-
perimental methods, resulting in time and cost savings. Future work will include
problems with high number of variability parameters, which require significantly
more data to reach the desired accuracy.
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