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Abstract. In the context of Guided Wave-based Structural Health Mon-
itoring (GW-SHM), ultrasonic elastic waves are used to detect damages
in structures by comparing the acquired signals with those from a defect-
free structure. However, the high sensitivity of GWs to environmental
and operational conditions limits the validity of such references. Notably,
variabilities between multiple specimens are often significant from the
GWs perspective. These variabilities are particularly important in com-
posites and are due to sensor positioning, sensor coupling and material
variability. This communication presents a baseline-free approach using
physics-enhanced Machine Learning (ML) for enhanced robustness. To
ensure the coverage of these variabilities the approach is validated on
multiple Carbon-fiber-reinforced polymers (CFRP) panels. The method-
ology relies on feature extraction from raw GW signals and training clas-
sification algorithms (e.g., kernel machines, neural networks). To make
the classifier learn inter-specimen variabilities, an experimental database
of 45 impacted composite panels is used. Half of them are used to pro-
vide pristine data, and the rest to provide damaged data so that the same
sample is either in the training or test set, but never in both. Good clas-
sification performance is obtained, demonstrating that the classifier has
successfully learnt to recognize defect signatures despite the variability
linked to the multiple specimens and instrumentations.

Keywords: Guided Waves based SHM - Baseline-free approach -
Machine learning - Material and instrumentation variabilities - CFRP

1 Introduction

In Guided Wave-based Structural Health Monitoring (GW-SHM) GWs are used
for defect identification in plate-like structures and pipes. Interaction of GWs
with a defect modifies the signals and these changes can be identified by com-
paring the current signal with a reference one, i.e. the signal acquired prior to
defect creation.
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GWs are not just sensitive to defects but also to material properties, Environ-
mental and Operational Conditions (EOC). The presence of these variabilities
makes baseline dependency for defect identification ineffective in many applica-
tions [1]. The literature offers a few baseline correction methods which solely
focus on temperature effect compensation. Optimal Baseline Selection (OBS)
[2], in which residual signal amplitude is minimized until an optimal baseline is
selected from the pool of baselines. In a technique called Baseline Signal Stretch
(BSS) proposed by A.J. Croxford et al. [3], the current signal is stretched until
it matches with the baseline. For OBS a big pool of baselines is required which is
not practical, whereas BSS alters the frequency content of the signal and is not
effective for higher temperatures [1]. There are several methods such as, Dynamic
Time Warping (DTW) [4] and OBS+BSS [5], but their main focus is tempera-
ture compensation alone. As other EOCs also affect the signals simultaneously,
these approaches become ineffective [1].

To overcome the baseline dependency, baseline-free approaches have been
proposed. Time reversibility of lamb waves [6], transfer impedance of transducers
[7], cross-correlation analysis proposed by Alem et al. [8] and other baseline
free methods are listed in [1]. The baseline-free techniques utilize mainly signal
amplitude, and because EOCs also modify the amplitude of the signal, these
techniques become less effective [1].

In recent times, usage of machine learning (ML) and deep learning (DL)
is increasing in defect detection and localisation in GW-SHM. Miorelli et al.
employed post-processed GW-imaging (GWI) to train kernel machines [9], but
GWI requires a baseline to obtain the residual state. Schnurr et al. [10] worked on
detection of temperature affected signals using standard classifiers and features,
however the temperature effect was compensated by means of OBS and BSS.
Rautela et al. [11] showed good classification performance on composite panel
using 1D Convolutional Neural Network (CNN). The before-mentioned works
depend on baselines and do not present the study of robustness of the developed
methodology with respect to multiple identical structures.

ML-based approaches pave the way for baseline-free detection and also can
enable the diagnosis of identical structures when trained by considering intra-
specimen and inter-specimen variabilities. These are the uncertainties present in
single and multiple identical structures, such as sensor coupling, sensor position,
and material properties. Therefore, our focus in this study is to address these
variabilities by considering multiple CFRP panels and using standard supervised
ML approaches augmented by effective feature engineering process.

The following sections of the paper discusses the experimental set up and
data-set used. Third section describes the signal preprocessing. Section 4 explains
AutoRegression (AR) which is used for extracting features from raw signals. The
final two sections present the results obtained by standard ML classifiers and
conclusion respectively.



2 Experimental Setup

The experimental set up consists of 45 CFRP plates. Each of the plates is instru-
mented with 6 piezoelectric sensors distributed over a 150 mm radius circle, one
sample instrumented plate is shown in Fig. la. In this experiment, delamination
type defects are induced by means of impacting each plate with a 16 mm radius
steel head and no second impact was allowed. All the 45 coupons are impacted
with different energy levels between 3J and 15J at different locations (within
circle defined by the sensor network) and an average delamination size rang-
ing from 9.5 mm to 27.5mm. GW were generated by using a 2 cycle tone burst
waveform and at 4 different excitation frequencies namely, 40 kHz, 60 kHz, 80
kHz and 100 kHz. Signal acquisition was carried out by exciting the transducers
in round robin fashion, thereby acquiring 30 signals per coupon at a sampling
frequency of 5 MHz.
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Fig. 1. (a) Instrumented plate with delamination at the center, (b) 5 sample signals
corresponding to path 14 of different coupons recorded at 40 kHz

Signal acquisition was first completed on 45 pristine coupons. Later, defect
signals were recorded after defect creation. To illustrate the complexity in the
signals caused by inter-specimen variability, 5 sample signals of shortened length
measured at 40 kHz frequency corresponding to 5 different coupons are shown
in Fig. 1. As shown in Fig. 1b, the pristine signals contain variations and do not
overlap. This implies the presence of some factors influencing the GW, despite
the absence of flaw. These changes can be attributed to the presence of inter-
specimen and intra-specimen (variabilities present within one structure) variabil-
ities, which are listed in Table 1. Furthermore, these variabilities not just affect
pristine signals but also signals acquired on damaged coupons as illustrated in
Fig. 1b. The presence of these variabilities mask the changes due to defect and
hence makes defect identification a challenging task.



Table 1. List of intra-specimen and inter-specimen variabilities with level of influence

Variability Intra-specimen variability | Inter-specimen variability
Measurement noise | Present (more effect) Present (more effect)
Sensor positioning Present (less effect) Present (more effect)
Sensor coupling Present (less effect) Present (more effect)
Defect size and shape | Present (more effect) Present (more effect)
Material properties | Absent Present

3 Signal Processing and Data Preparation

3.1 Labeling Process: Path Identification

Before using signals for ML processes, it is important to make sure that each of
the signals are labeled appropriately. E.g., defect located at the center as shown
in Fig. 1a, the adjacent paths (i.e., 1-2, 2-3, 3—4 etc.) might not carry significant
defect information. Whereas, direct paths (defect lies between two sensors) (i.e.,
1-4, 2-5, 3-6) can carry significant amount of defect information. Such paths
need to be labeled as pristine and defect respectively.

The labeling process contains few signal processing steps. Firstly, the signals
are filtered using Butterworth bandpass filter of order 7 with the bandpass of
20 kHz and 2 * f, (excitation frequency). Then the filtered signals are windowed
using physics of the GWs, i.e., length of the window which is decided based on
the Time of Flight (TOF) of the A0 mode and the path. TOF can be calculated
based on Eq. (1).

D,
TOFp = —/—— 1
BTN W
where D; is the distance between transducer pairs and C;‘O (fe) is the group
velocity of Ayp mode as a function of the f.. The group velocities are taken from
the dispersion diagram.

To identify the paths within defect coupons containing insignificant or no
defect information, pristine and defect signals of the same coupons are consid-
ered. These signals are processed and are compared based on Root Mean Squared
Error (RMSD) as Damage Index (DI), as it can quantify overall changes in the
signals [12]. It is calculated based on Eq. (2).
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where, S, and Sy are pristine and damaged signals respectively. (S, —Sy) is the
residual signal, and n is the number of time samples in a signal.
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After having defined the processes required, all the paths in defect coupons
are compared with the corresponding paths in pristine coupons. RMSD is cal-
culated of each path in a defect coupon. As shown in Fig. 2, direct paths 1-4,
2-5 and 3-6 result in higher DI than non-direct paths. High DIs imply that the
corresponding paths carry significant defect information and can be labeled as
defect, where as low DIs signify that the paths are carrying insignificant defect
information and hence can be labeled as pristine.
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Fig. 2. DI vs paths, for a defect located at the center of the plate

Similar to Fig. 2, plots of DI vs. paths corresponding to coupons with vary-
ing defect locations are studied. As a result threshold of 0.1 is chosen, which
separates high DI (the result of direct paths) and just lower DI (the result of
defect placed slightly away from direct paths) from low DI (the result of defect’s
presence away from the direct path).

3.2 Disassociating Coupon Connection Between Pristine
and Damaged States

As explained in Sect. 2, each one of the coupons has corresponding pristine and
damaged states. Before feeding the signals to the ML algorithms, the variance
in these two states is further increased by incorporating inter-specimen variabil-
ities, i.e., by dividing 45 coupons into two sets. From 1-22 copouns, only pristine
signals are considered. Defect signals are considered from 23-45 coupons only.
This step ensures that, none of the pristine or defect signals of same coupon
appear neither in training nor in test set; moreover this helps in testing the
robustness of ML algorithms. Note, that traditional approaches relying on base-
line subtraction such as GWI [13] fail when considering a reference state and a
damage state from distinct samples due to the aforementioned inter-specimen
variabilities.



4 Defect Detection Methodology

Existing approaches for GW based damage identification involve using raw GW
signals to train Convolutional NN (CNN) [11], Principle Component Analysis
(PCA) for feature extraction from post processed GW signals and training the
extracted features using SVM [9]. In vibration-based SHM, AutoRegression (AR)
is used for extracting effective damage features from raw signals under the influ-
ence of EOC [14]. Therefore, in this study simple AR modelling technique is
used for extracting features. However other modelling techniques such as AR
Moving Average (ARMA), AR Integrated Moving Average (ARIMA) methods
are available, but AR model has been used in this study for its simplicity interms
of implementation.

4.1 Feature Extraction Using Autoregression

After identifying significant and insignificant defect information carrying paths
within defect coupons (i.e., path identification), defect signatures masked under
the inter-specimen variability are extracted using AR.

AR is a linear combination of preceding values in a sequence [15], a p‘* order
AR model can be represented mathematically as shown in Eq. 3.

y(t) = Z@y(t — i)+ e (3)

where, y; is the current observation, y(t — ¢) is the lag/past value, @; is the AR
model parameter and ¢; is the white noise term.

Number of past values required are estimated by using suitable information
criterion such as, Akaike Information Criteria (AIC) [16]. Computed as,

AIC =2k —2log(L) (4)

where k is the number of model parameters estimated and £ is the maximum
likelihood of the model with k parameters.

A model order of 30 is estimated based on AIC. AR model of order 30 is
then fit on all the signals which results in 30 AR features each per signal. Out
of 30 features, 3 features showing maximum discrimination between pristine and
defect distributions are shown in Fig.3 in terms of scatter plot matrix, which
shows the pairwise dependencies of features. Along the diagonal are the his-
tograms of same pristine and defect AR feature pairs, which show some amount
of separation. Kernel Density Estimation (KDE) plots on the off-diagonal, which
show the density estimation of distributions of two different AR features pairs.
Referring to Fig. 3 it is clear that, histograms and KDE plots show some amount
of discrimination. Means that, AR modelling is able to extract some meaningful
defect information masked under the effect of variabilities. This discrimination
in features can be exploited using ML algorithms. ML-based classification is
described in the following section.
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Fig. 3. Scatter plot matrix of first 3 selected features

4.2 Classification

To perform ML-based classification, four different families of classifiers have been
considered. The consideration of these four families is to study the effectiveness
of each of them in learning the encoding generated by AR. These four classifiers
are briefly explained below.

Naive Bayes (NB) classifier. It is based on Bayes theorem, which states
that the probability of occurrence of an event could be related to the prior
information of the event. A sample A is classified as P class B if and only if
p(B = P|A) > p(B = N|A) [17]

Support Vector Machines (SVM). SVM handles a classification task by
building a decision boundary (known as hard margin) and tries to maximize
the width (soft margin) between two classes. Training samples which are
closest to the decision boundary are called as the support vectors [18]. The
decision boundaries can be drawn using linear or non-linear kernels depending
on the complexity of the training data.

Random Forest (RF). It is an ensemble learning method which contains more
than one decision trees. Each of the tree gets independent and randomly
sampled samples with same distribution. The final prediction of RF is the
combined votes of each of the trees [19].

Deep Neural Network (DNN). It consists of multiple hidden layers along
with an input and output layer. The hidden layers contain the information
about the inputs in terms of weights. These weights are optimized by mini-
mizing the cost function based on the back propagation algorithm [20].



5 Experimental Validation Results

5.1 Data Requirement Study

The goal here is to choose the best ML model given an algorithm. To find the
best model, a trade-off between training samples and AR features is required.
For this 5 different train and validation sets with increasing training samples,
i.e., (88,221, 443, 664, 886) and validation samples, i.e., (22, 56, 111, 167, 222)
are considered, and AR features from 4 to 28 in step of 6, i.e., (4, 10, 16, 22,
28) are considered. For SVM, ‘rbf’ kernel is used with regularization parameter
C and kernel coefficient ~ chosen from 10%¢ € (—1,7) and 107,y € (1,-7)
respectively. On each train set and AR features, best ML model from the range of
hyper-parameters is selected using Gridsearch Cross Validation (CV) technique.

Naive Bayes SVM

(a) Naive Bayes (b) SVM

Fig. 4. Learning curves as a function of training samples and AR features.

Figure4 shows the learning curve of NB and SVM classifier on train size
and AR features. From Fig.4a and Fig.4b it can be observed that, CV score
converges at 600 train samples and 16 AR features for NB, and at 800 train
samples and 20 AR features for SVM respectively. Based on the convergence
study of one simple and a sophisticated classifier, training samples of 886 with
20 AR features have been picked to train all the classifiers listed in the previous
section and have been tested on the held out test-set.

5.2 Performance Comparison

Figure5 present the Receiver Operating Characteristics (ROC) Curve on the
test-set. It contains ROC curves of NB, SVM, Random Forest and DNN along
with the estimated Area Under the Curve (AUC). It can be observed that the
AUC of NB is 0.89 and for rest of the classifiers it is between 0.91 and 0.92. Such
value shows that the classifiers have successfully learned the features related to
the damage in the signals and most signals are well-classified.
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Fig. 5. ROC curves of all classifiers comparing their performances.

6 Conclusion and Perspective

In this work a baseline-free damage detection approach based on ML applied
to CFRP measurement data is presented. The classifiers were trained and the
performance was assessed on measurement data with inter-specimen variability.
To ensure learning the inter-specimen variabilities, distinct samples have been
used to learn the pristine state and the damage states. AUC of the order 91%
was obtained for all classifiers, implying that, all the classifiers except for NB are
equally good in learning to distinguish pristine from defect state in the presence
of variabilities. Among SVM, Random Forest and DNN, SVM takes less time
for training and testing the model. Also in terms of model complexity, SVM
requires fewer hyper-parameters; therefore SVM is a better choice on this data
set than others. The high AUC value means that the classification is correct for
most signals but there is still room for improvement.
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