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Abstract—This paper reports the main State-Of-The-Art algo-
rithmic enablers for compact Neural Network topology design,
while relying on basic numerical experiments. Embedding in-
sensor intelligence to perform inference tasks generally requires
a proper definition of a Neural Network architecture dedicated to
specific purposes under Hardware limitations. Hardware design
constraints known as power consumption, silicon surface, latency
and maximum clock frequency cap available resources related to
the topology, i.e., memory capacity and algorithmic complexity.
We propose to categorize into 4 types the algorithmic enablers
that force the hardware constraints as low as possible while
keeping the accuracy as high as possible. First, Dimensionality
Reduction (DR) is used to reduce memory needs thanks to
predefined, hardware-coded patterns. Secondly, low-precision
Quantization with Normalization (QN) can both simplify hard-
ware components as well as limiting overall data storage. Thirdly,
Connectivity Pruning (CP) involves an improvement against
over-fitting while limiting needless computations. Finally, during
the inference at the feed-forward pass, a Dynamical Selective
Execution (DSE) of topology parts can be performed to limit the
activation of the entire topology, therefore reducing the overall
power consumption.

Index Terms—Neural Network, Compressive Sensing, Random
Pruning, Quantized Neural Network, Dynamic Neural Network,
Hardware-Algorithm co-design.

I. INTRODUCTION

The recent wide popularity of Al is mainly due to astonish-
ing results of high-end algorithms. For instance, image classi-
fication based on Deep Neural Networks (DNN) ran on GPUs
can reach close or even beyond human-level efficiency in terms
of accuracy and speed [1] [2]. If appropriately designed, it
can take advantage of massively parallel computing [3] and/or
being optimized thanks to a specific high-level hardware
mapping [4] [5]. On the other hand, a current trend from
GPU providers is to push forward ML-dedicated hardware
platforms [6], promoting the deployment of Al on the edge,
for embedded systems. Indeed, low-power computing nodes
(~ W) now tend to be relevant for IoT targeted applications.

However, those cutting-edge systems can not be involved for
ultra-low power systems (< mW), in particular for always-on
functioning modes. In that context, various types of System-
on-Chips have been proposed in the literature, namely for
voice detectors [7], smart RF nodes [8] and image sensors
providing wake-up triggers [9]. Those prior works involve
near-sensor or in-sensor decision making. Note that one major
source of leverage to design efficient in-sensor processing is
to take carefully into account the raw data format provided
by embedded transducer nodes (i.e., mems microphones, RF

front-ends, pixels, ...). Up to a certain extent, it can also mo-
tivate to revisit how transducers work. For instance, Dynamic
Vision Sensors (DVS) [10] are claimed to tackle data com-
pression issues [11] while improving processing performances
by involving Spike Neural Networks (SNN) [12], benefiting
from intrinsic DVS-type scene feature extraction. Even if
not providing relevant proofs of its competitiveness for the
moment, it still opens novel research directions.

Apart from those *unconventional’ approaches, linear classi-
fiers working on canonical data are yet efficient for numerous
basic applications. As with linear DR, it only involves linear
operations thus allowing an easy hardware implementation.
However, it exhibits limited performances for advanced infer-
ence tasks, especially when data are not linearly describable.
Various workarounds have been developed to address this
non-linear manifold issue. A very popular one is the Kernel
Trick, enabling the introduction of a non-linear function in
most of linear frameworks. However, nowadays, a common
technique to involve non-linearity —with the least assumptions
on data structurality— is to use a Neural Network (NN).
Mathematically speaking, a formal definition of NN is a
composition of multiple linear and non-linear functions. We
can distinguish two classes of linear functions (matrix-to-
vector projections, convolutions) as well as two classes of
non-linear operator types (activation units, pooling routines).
The use of convolution layers (e.g., CNN) is motivated by a
reduction of the required memory combined with a better data
local structure analysis and a reduction of over-fitting issues.
In the case of Neural Networks, the non-linearity is basically
introduced by neuron activations which generally correspond
to one-dimensional functions. Otherwise pooling functions can
also benefit from non-linear operations as in the case of max-
pooling that pools data as its local maximum. Depending
on the definition of the output loss function, NNs show the
advantage of being versatile and being compatible with all
three main categories of machine learning tasks (classification,
regression and clustering) independently in supervised, non-
supervised and semi-supervised learning contexts.

II. ALGORITHMIC ENABLERS FOR NN-BASED EMBEDDED
MACHINE LEARNING INFERENCE TASKS

While most of Hardware accelerators dedicated to machine
learning are for generic tasks, ultra-low power systems with
embedded inference are generally designed to address very
specific ones. Highly-dedicated NN topology can thus be



designed to manage the issues related to resource-limited
hardware, in terms of silicon surface and power consumption.
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Fig. 1. Enablers for compact Neural Network topology design.

In this dual scope, the main goal when dealing with Neural
Network topology design is thus to find the best operating
point to reach the trade-off between accuracy of the inference
and the overall algorithmic complexity, while limiting the
effects of outliers and preventing against over-fitting. In other
words, it aims at finding the most compact topology while
preserving the best performances in terms of accuracy. To this
end, as depicted by Fig. 1, we identified 4 algorithmic enablers
to limit processing load of an NN feed-forward pass:

« Dimensionality Reduction (layer width)

o Quantization with Normalization (data dynamic range)

o Connectivity Pruning (sparsity of the projections)

o Dynamical Selective Execution (topology activations)

Those levers act on various types of hardware-related limi-
tations as #Computations that refers to the overall amount of
computational workload of the topology, #Memory accesses
that is the total number of accesses needed during the forward
pass execution, Memory size which is related to the overall
NN weight storage needs, Local memory needs (e.g., cache
memory) being induced by the number of nodes in the
topology and finally what we call Computational complexity
which is the complexity related to the node core-computations,
induced by both linear and non-linear operations.

A. Dimensionality Reduction (DR)

Dimensionality Reduction corresponds to the process of
reducing the size of the data while preserving its information
content for a certain targeted use. Typically, DR techniques
are massively employed for dataset inspection and easing
large data processing by reducing its dimensionality. In this
paper, Dimensionality Reduction largely refers to as feature
extraction. This operation can be performed via linear or
nonlinear, structured or unstructured, data-aware or data-
agnostic processing. In the context of hardware-limited Neural
Network topology design, this feature extraction stage should
not replace a standard projection layer if it is not related to a
significant hardware constraint relaxation. Indeed, the use of
DR is relevant if performed by optimized hardware structures
and thus not being issued from a learning stage, as trained

weights. One of the most well-known is ”pooling” that can be
implemented without complex hardware. Structured DR could
be performed using mathematical transforms too (i.e., Wavelet,
Fourier...), combined with subsampling done according to data
structure assumptions. However, those approaches still require
specific hardware to store or generate all transform coefficients
and to perform a high number of MACs.

Introduced in early 2010°, Compressive Sensing (CS) [13]
aims at providing techniques to compress signals while en-
abling its reconstruction via optimization algorithms [14],
this, under signal sparsity and sensing scheme versus sparsity
representation bases incoherence priors. Note that, recent
advances on CS reconstruction allows bypassing iterative
algorithms by using learned NNs [15]. Signal processing in
the compressed domain already presented in [16] allows to
leverage the prohibitive cost of recovery. Indeed, the Restricted
Isometry Property guarantees a preservation of Euclidean
distances in the CS domain enabling the use of traditional
Machine Learning algorithms. In that context, [17] investigates
inference performance limits with a universal compressive
measurement scheme. At the expense of relatively large Neural
Networks, [18], [19] and [20] propose to perform the inference
directly on compressed data, yet involving at least a layer with
the same size as the original image. To this end, they either
use a sensing matrix transpose projection or a learned fully
connected layer. In addition to classification applications, CS
also seems a good candidate to alleviate algorithm complexity
related to regression problems, as reported in [21] that deals
with spectrum occupancy sensing. The same applies for clus-
tering as presented in [22] where a variant of Compressive K-
Means (CKM) works with a 1-bit quantization. More recently,
even the famous Visual Question Answering (VQA) problem
has been efficiently addressed in [23], using CS measurements.
Finally, [24] depicts an image sensor architecture that directly
performs CS and inference in the focal plane benefiting from
DR to optimize overall digital hardware resources. As a direct
extension of these prior works, integrating a CS layer into a
CNN topology is expected to be useful in order to benefit
from both relevant first convolutional layers (learned kernel
filters) with a reduced size of the fully connected latest layers.
Besides, we want to stress that another way to take advantage
of CS has been developed in [25] where an already learned
topology is being compressed via CS, making assumptions
on the nature of the NN learned patterns. Apart from the
investigations on compressively sensed data for direct infer-
ence, Extreme Learning Machines (ELM) somehow works in
an equivalent fashion. Indeed, a basic ELM corresponds to
a single-hidden layer NN whose weights of the hidden layer
are not tuned [26], and randomly generated. In the direction
of CS, [27] proposes to prune useless neurons of the ELM
learned layer, therefore intrinsically performing DR. [28] [29]
present surveys of direct generalizations of ELMs, namely the
concatenation of basic ELMs composed of multiple layers with
learned weights. In addition, [30] revisits MLP-ELM topology
to replace the greedy deep learning strategy by unsupervised
ELM feature learning, being performed in a forward manner.



B. Connectivity Pruning (CP)

As for DR, Connectivity Pruning (CP) can be either learned
or not, structured or not. Learned pruning has been deeply in-
vestigated, mainly because of its interests in terms of memory
and its negligible impact on inference accuracy. To this end,
[31] presents a common 3-stage pruning strategy, learn, select-
prune and relearn. This “oversized-to-adequate connectivity
learning approach has the advantage of being simple and
generic, typically enabling a reduction by around a factor of
10 on the number of weights. On the contrary, [32] presents
a “small-to-adequate® topology learning approach they call
Continuous Growth and Pruning (CGaP). Indeed, they claim
that instead of starting from an over-parametrized NN, it
is more efficient to iteratively enlarge it until reaching an
asymptotic performance. On the other hand, [33] proposes
efficient representations for NN projection matrices thanks to
low-entropy statistics while replacing standard matrix sparse
representation for improved hardware mapping. This approach,
yet based on a specific coefficient coding and feed-forward
execution architecture, seems to enable up to x90 energy
savings without major accuracy loss. In the specific CNN
case, various pruning strategies also exist. We can mention
[34] whose goal is to cap the inter-band connectivity density
between consecutive conv. layers using their so-called group-
wise pruning to exhibit structured connectivity. Otherwise, still
in the scope of CNN, [35] presents a technique to directly
reduce the kernel filters redundancy using filter pruning. How-
ever, those previous works do not tend to reduce complexity
once and for all from the hardware point of view, because
of requiring specific learning and being dedicated to complex
inference problems aiming at being ran on a generic hardware.

The goal of [36] is yet to propose a hardware-aware pruning
in order to efficiently perform connectivity reduction with
a relevant compact hardware mapping. It compares sparse
patterns resulting from different weights pruning strategies,
evaluating how crossbar patterns enable dedicated hardware
designs with improved performances. Apart from structured
and learned pruning, as for the randomly based approach
of CS, [37] shows that random pruning strategy performs at
par with principled pruning strategies. Even if this statement
cannot be generalized for any inference problem, it still opens
a new path in terms of hardware design to optimize such
random connectivity as it has been shown relevant in the case
of CS. Finally, other works such as [38] do not only optimize
structured sparsity of weights but also their quantization by
limiting each weights to be a ternary value (i.e., {—1,0,+1}).

C. Quantization with Normalization (QN)

[39], [40] and [41] recently show that training quantized
NN (quantized weights and activations) can be efficiently per-
formed, without a large degradation of performances, thanks to
a dedicated training namely with proper batch normalizations.
One of the main trick of quantized learning is that a non-
quantized version of the coefficients is still used for the learn-
ing stage. They are used for weight updates during back propa-
gation steps while their quantized version are only used for the

forward pass. These works present extensive numerical exper-
iments, demonstrating the interest of using 1bit quantization
because of enabling ultra-light XOR computations. The state-
of-the-art training algorithm presented in [41] further involves
specific improvements based on NN regularization functions
and scaling parameters which are dedicated to binary weights
learning. In order to fully validate this learning strategy, [42]
compares a specific training approach involving quantization
with the direct use of the same topology whose weights are
quantized after a standard training. It demonstrates possible
trade-offs in terms of latency-vs-accuracy between floating
point and integer-only computations. Typically, [43] studies
the effect of the number of bits used to code the weights
on the NN performance, showing the asymptotic nature of
the NN accuracy for a given number of quantization levels.
Furthermore, [44] reviews Binary Neural Networks (BNN),
especially pointing out that BNN are often confused with
ternary-weighted NN. Both have advantages and drawbacks,
ternary weights indeed provide better accuracy by enabling
connections zeroing with a high level of compression and en-
abling simple hardware mapping, but still requiring somehow
2-bit per coefficient instead of a single one.

More generally, non-uniform (i.e., logarithmic) quantization
of weights has been investigated in [45]. A part from specific
topology training and without requiring full network retrain-
ing, [46] formulates the weights&activations quantization tasks
as a Minimum Mean Squared Error (MMSE) problem applied
to a pretrained NN. In order to further improve competitiveness
of BNNs compared to floating-points NNs, [47] proposes
an extended version of BNNs using Stochastic Computing.
Indeed, since hardware mapping is fixed (i.e., XNOR and pop-
count), stochastic computing can take advantage of it without
deep hardware design modifications. On the other hand, [48]
proposes to use “dithering® by distributing quantization around
neighboring layer input nodes.

D. Dynamically Selective Execution (DSE)

[49] gathers various Dynamically Selective Executions
(DSE) strategies for optimizing accuracy with respect to
efficiency. In particular, they list four topologies: low to high
precision, cascaded networks, chained graph and hierarchical
decision tree. The underlying idea is to adapt the NN topology
according to its application context, lowering the averaged
dynamic power consumption. Indeed, in the case of always-
on systems, [50] shows that a multi-level wake-up enables to
optimize ratios between power and event occurrence.

Apart from the NN-related literature and for a long time,
hierarchical inference has been deeply investigated [51]. For
instance, [52] presents an iterative decision-making approach
which is based on successive projections of CS measurements.
[53] presents a framework that enables the integration of both
input-dependent and resource-dependent dynamic inference
mechanisms applied to high-end CNN backbones. Typically,
they analytically demonstrate that FLOPS used for the CIFAR-
10 classification problem can be reduced by a factor of
more than 3. As for previous sections (DR, CP and QN),



various works start from an already learned topology in order
to enable DSE. Namely, [54] aims at partitioning existing
topology between the edge device and the cloud at the layer’s
granularity to relax average power consumption of IoT nodes.

III. NUMERICAL EXPERIMENTS

To illustrate previous statements, we carried out basic
numerical experiments on DR, CP and QN. For the sake
of simplicity and reproducibility, we considered the MNIST
classification problem, with the NN following topology:

layer type input output enabler figures
sample - 784 - -

DR 784 rd CS (a)d)(e)(f)
Con. layer rd rd CP, QN  (b)(c)(d)(e)(f)
ReLU rd rd QN (c)e)f)

Con. layer rd 32 CP, QN

(b)(c)(d)(e)(f)
Softsign 32 32 - -
Con. layer 32 10 - -
Softmax 10 10 - -

We thus have arbitrarily chosen this topology because
of its small size. It is learned using a Momentum based
Stochastic Gradient Descent combined with the algorithm
presented in [40] to deal with QN. Note that activation
functions are bypassed if QN involves a quantization <4bit
and the same quantization is applied to all layers (which is
not optimal). Fig. 2 reports curves of accuracy degradation
linked to different setups. DR is simply performed using CS
via a Rademacher projection (with a normalized matrix),
CP consists in randomly pruned connections (uniformly
distributed) and quantization is done with the same resolution
on both weights and activations. (a), (b) and (c) respectively
show the effect of DR, CP and QN on the classification
accuracy while being used independently. In that specific
MNIST case, a DR of 25% compression ratio (i.e., rd = 196)
with a CP of 50% and a QN of 5bit all represent proper
operating points for such a topology (even better than the
original one). But, while being combined (f), they can further
contribute to limit the overall hardware needs, with only very
limited impacts on the output inference results.

IV. DISCUSSION AND CONCLUSION

Recent Al-accelerators and smart sensors already follow
this trend. First, Compressive Sensing sensors tend to imple-
ment decision making [24] because of its light algorithmic
complexity due to intrinsic DR. Secondly, [55] and [56]
propose algorithmic training frameworks involving both CP
and QN. Moreover, the Binary CNN hardware accelerator of
[5] exhibits particularly remarkable operating points in terms
of energy-accuracy. [57] (2019) already implements both DSE
ternary quantization, whereas [58] (2017) only benefits from
zero-weight activation knowledge for its CNN. Indeed, the
proposed CMOS image sensor in [57] enables always-on Face
Detection for on-demand Face Recognition thanks to a hybrid
analog-digital CNN accelerator. In the specific case of binary
computing, unconventional hardware structures are thus once

again highlighted, for example with differential crosspoint
memristor arrays [59]. SRAM in-memory computing also
shows promising results [4] [50], typically for 1bit quantized
NN. In addition to binary and ternary quantization, logarithmic
quantization [60] can also relax hardware structures when
low precision quantization too much impacts the overall NN
accuracy. Other recent works implement DSE strategies [61]
while relying on upstream results as depicted in [62].

Two distinct types of inference-dedicated hardware can
thus be identified, first low-power edge-Al accelerator and
secondly smart sensors with embedded decision making. The
NN topology optimizations for both are of a highly different
nature because of not sharing all the same design constraints.
In particular, as detailed in this paper, two approaches have
been developed, either starting from an already learned NN
then reducing its complexity or retraining from scratch a
specifically-dedicated NN topology. Moreover, in a near fu-
ture, always-on sensor based systems will massively benefit
from algorithm-hardware co-design. Thanks to our intensive
literature study, we can conclude that next edge-Al devices
will most probably involve NN topologies taking advantage
of all the algorithmic enablers depicted in Fig. 1.
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