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A mixed spatial-spectral eddy-current formulation
for pieces with one symmetry axis
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Abstract—A combination of the mesh-based finite integration
technique with a modal expansion is proposed for the solution
of the eddy-current induction problem in geometries involving
work-pieces with translational or rotational symmetry and an
arbitrary three-dimensional current excitation. The solution is
expanded in a series of modes along the symmetry axis, and
the thus reduced Helmholtz equation is discretised and solved
independently for each mode in the transversal plane. Finally,
the impedance variation of the eddy-current probe is evaluated
by means of the reciprocity theorem. The main advantage of the
proposed decomposition relies on the use of a two-dimensional
instead of three-dimensional grid with the consequent reduction
of the numerical noise, and the smaller size of the resulting linear
system, which allows the simultaneous treatment of different
sources.

Index Terms—Nondestructive testing, eddy currents, finite
difference methods, modal analysis.

I. INTRODUCTION

EDDY-current fields are well localised around the driving
inductor, which allows us to restrict the analysis in the

vicinity of the sources, and consequently neglect, to a good
approximation, what lies beyond. In eddy-current applications,
in particular, this feature has been largely exploited in order to
develop fast, semi-analytical solutions that apply to canonical
geometries, which resemble, or at least locally approximate
to a good extend, the specimen under consideration. The
origin of these works lies to the seminal articles of Dodd
and Deeds, who developed modal solutions for a number of
infinite planar and cylindrical multilayer structures [1], [2].
Recent works, based on the truncation of the computational
domain, have extended the applicability of the modal approach
providing solution to canonical geometries which involved
discontinuities. Theodoulidis and Bowler derived in [3] the
solution near a half-space edge, and in [4] the analysis is
extended to take into account thin cracks emanating from
the edge. In [5]–[7] the similar problem of the fastener
hole, with and without defect, is tackled. Combining modal
expansions in different coordinate systems, more complex
geometries, consisting of a number of different canonical parts
can be tackled, such as an infinitely long pipe embedded in
a conducting substrate [8], or a buried hollow sphere [9],
[10]. An important advantage of these approaches, beside
their speed, is that they can provide explicit expressions of
the Green dyadic operator, which applied as dedicated kernel
in an integral equation formulation provides a very efficient
and precise computation of the eddy-current response of small
defects [4], [7].

In the modal approach referred to above, the development
basis is constructed in the spectral domain, which has to
be an eigenbasis of the Helmholtz operator, in at least one
subdomain of the structure, in order to obtain a sparse system
matrix (or partially sparse when mode-matching comes into
play). Such a basis cannot be constructed in the general case
except for a number of canonical geometries like the ones
treated in the above cited works. In the more general case, one
has to work instead directly in the spatial domain, introducing
a discrete basis of local elements, where however the demand
of diagonalisation of the Helmholtz operator is abandoned.
This is the case in volume-mesh-based methods like the finite
element method (FEM) [11]–[14] or the dinite differences
(FD) / finite integration technique (FIT) [15]–[18], where
sparsity (yet not diagonality) is maintained for the three spatial
directions. Alternatively, one can scarify the sparsity in favour
of dimensionality reduction by restricting the basis support on
the geometry interfaces and employing an analytical free-space
operator to provide the solution inside the piece volume. This
approach yields the family of the boundary elements method
(BEM) [19], which can be interesting when where are dealing
with piece-wise homogeneous materials with relatively smooth
interfaces. The constrain of piecewise homogeneity can be
relaxed though if a volume-mesh in the interior of the non-
homogeneous conducting/magnetic pieces is employed [20]–
[25].

The present work is positioned between the two extreme
cases, namely between configurations involving solely canon-
ical pieces and those with completely arbitrary geometries.
More precisely, we shall consider pieces presenting trans-
lational or rotational symmetry and arbitrary profile on the
transversal (to the symmetry axis) plane. We shall make
instead no particular assumption concerning the form of the
excitation current. The analysis will be restricted to the low
frequency regime, i.e., it is valid only in the quasi-static limit
of the full Maxwell equations. It turns out that the problems
satisfying the above assumptions are neither two-dimensional
nor purely three-dimensional since the pieces present an axis
of invariance the source field being three-dimensional. We
shall thus refer to this problem from this point forth as the
2.5 dimensional problem.

Taking advantage of the geometry invariance along the third
dimension, the solution is expanded in a modal basis along
that axis, decoupling the initial 3D problem to a number of
independent 2D problems, one for each mode. The calculation
of the field profile for each of the modes is carried out via a
FIT discretisation scheme on the transversal plane. The idea of
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modal decomposition has already been applied for calculations
in source-free waveguides and resonant cavities [26]. Herein,
this principle is extended in order to take into account arbitrary
sources. The introduction of current sources in the discreti-
sation scheme is significantly simplified by decomposing the
field in the air in a free-space source term and a scattering term
and expressing the former by means of an equivalent current
distribution on a closed surface according to the Huygens
principle [27]. Finally, the variation of the eddy-current probe
impedance, a measurement of practical interest, can be easily
obtained by application of the reciprocity theorem [28].

The interest in applying the proposed indirect analysis is
twofold. Reducing the spatial discretisation from 3D to 2D is
very beneficial in terms of the mesh simplicity and the thereto
related numerical noise. Meanwhile, the decomposition of the
initial 3D problem to a number of separate 2D problems of
much smaller size allows the application of direct solvers for
the inversion of the resulting algebraic system of equation,
which proves to be an important advantage when the problem
has to be solved for a number of different excitations such as
the case of a moving (scanning) coil. This feature is partic-
ularly interesting for addressing eddy-current non-destructive
evaluation situations, where a complete scan of the sensing coil
above the inspected specimen has to be taken into account. In
addition, the problem becomes easily parallelizable since each
mode is independent from all the others.

The paper is organised as follows. The FIT-modal formu-
lation is derived in section II. The necessary gauging of the
curl-curl equation is also examined in order to cope with the
indefiniteness of the operator in air regions. In section III,
the source term is constructed on the basis of the induction
equivalent theorem. The calculation of the impedance variation
during to the presence of the piece is given in section IV.
Finally, the results obtained with the proposed formulation are
compared against reference semi-analytical solutions as well
as experimental data in section V. The article is concluded
with a discussion on the results and the possible extensions of
this work.

II. MIXED FIT-MODAL FORMULATION IN GEOMETRIES
WITH TRANSLATIONAL OR ROTATIONAL INVARIANCE

A. The Maxwell grid equations

In the classical FIT formulation, Maxwell’s equations are
discretised in a pair of mutually orthogonal, staggered grids,
referred to as primary grid G and dual grid G̃, respectively,
leading to a system of matrix equations, the so-called Maxwell
grid equations [15]. Assuming harmonic excitation of the form
ejωt, where ω is the angular frequency, and considering linear
materials, the latter admit the following form [16], [17], [27]:

C⌢e = −jω
⌢⌢

b −
⌢⌢

jm (1)

C̃
⌢

h = jω
⌢⌢

d +
⌢⌢

j e (2)

S̃
⌢⌢

d = qe (3)

S
⌢⌢

b = 0 (4)

where ⌢e ,
⌢

h are column vectors composed by the electric and
magnetic field integrals along the primary and dual grid edges,

whereas
⌢⌢

d and
⌢⌢

b stand for the electric and magnetic flux
across the primary and dual grid facets, respectively. Similarly,
⌢⌢

j e and
⌢⌢

jm stand for the discretised electric and magnetic
current fluxes across the primary and dual grid facets, and qe

are the corresponding electric charges contained in the primary
grid cells. The reason for including the non-physical magnetic
current term

⌢⌢

jm in the Maxwell equations will become clear
at a latter point, where we shall separate the source field term
from the rest of the solution [27].

The C, C̃ matrices stand for the curl operator in the primary
and dual grid space, respectively. They are interrelated via
the duality property C̃ = CT . In the same fashion, S and S̃
matrices form the corresponding discrete div operators acting
upon the two grid-related variables, and which retain the
topological structure of their continuous counterparts, namely

SC = 0. (5)

The analogous relation exists also for the dual-grid operators.
It proves useful to introduce also the discrete grad operator

G, which satisfies the corresponding vector identity

CG = 0. (6)

Notice that S and G are related via G = −S̃T . The identity
expressed by (6) guaranties a divergence free magnetic induc-
tion when no magnetic free charges exist in the computational
domain as it can be easily shown by direct application in (4)
for qm = 0.

The above described numerical scheme is completed by
introducing the constitutive material relations, which in the
discrete space of the dual grid system read

⌢⌢

d = Mε
⌢e (7)

⌢⌢

b = Mµ
⌢

h (8)
⌢⌢

j ec = Mκ
⌢e (9)

where
⌢⌢

j ec gives for the eddy-current contribution to the total
electric current term

⌢⌢

j e, and the diagonal matrices Mε, Mµ

and Mκ stand for the electric permittivity, magnetic perme-
ability and electric conductivity matrices respectively. For a
detailed description of their structure and their construction
the reader is referred to [16], [17].

From this point forward, we shall consider the quasi-static
limit of the Maxwell equations, i.e. the frequency will be
assumed sufficiently low in order to ignore the displacement
current term jω

⌢⌢

d.

B. Modal Expansion of the Solution Along the Direction of
Symmetry

Let us consider a configuration consisting of a translation-
ally or rotationally symmetric work-piece and an arbitrary,
current distribution. The two cases are conveniently addressed
in the context of the FIT discretisation scheme by a Cartesian
and a cylindrical grid system, respectively. The two grid
systems and the corresponding allocation schemes for the
electric ⌢e and magnetic fields

⌢

h are shown in Fig. 2. The
corresponding fluxes

⌢⌢

d,
⌢⌢

b and currents
⌢⌢

j e,
⌢⌢

jm are allocated
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Fig. 1. FIT dual grid system for the two considered coordinate systems: (a)
Cartesian and (b) cylindrical.

in the same positions with the electric and magnetic fields
respectively.

Let y and ϕ be the axis of invariance for the translationally
and rotationally symmetric case, respectively. In order to better
exploit the isomorphism of the transversal plane for the two
grid systems, namely the x − z plane for the Cartesian and
ρ−z plane for the cylindrical one, a generic coordinate system
(u, v, w) is introduced, which is defined in the following way.
Let w be the symmetry axis in both cases. u and v are
assigned to the remaining two axes in a way that they satisfy
the right hand rule, namely û × v̂ = ŵ (and the thereupon
cyclic permutations), where û, v̂, ŵ stand for the unit vectors
in u, v and w direction, respectively. Hence we obtain the
transformation rule, (x, y, z) → (u,−w, v) for the Cartesian
system and (ρ, ϕ, z) → (u,−w, v) for the cylindrical one.
Using the thus defined coordinate system, the same relations
will apply hereafter indistinguishably for the two symmetries.

Following the common practice in low-frequency applica-
tions, we shall assume that the induced field is negligible at
sufficient distances from the source, and hence we shall trun-
cate the computational domain at ±L in case of the Cartesian
system, using a perfectly electric conductor (PEC) or perfectly
magnetic conductor (PMC) condition. The use of either PEC
of PMC termination implies periodicity of the solution along
the truncation direction, which, given L sufficiently large, does

not introduce significant aliasing in the region of interest. The
truncation limit L is determined based on geometrical criteria,
the conductivity of the piece and the inspection frequency;
thorough studies on their estimation exist in the literature [3],
and thus their values will be considered as known in this
work. For the cylindrical case, the periodicity of the solution
is naturally imposed ϕ = 2π boundary [5], [6], [9].

Making use of the above periodicity and taking into account
the invariance of the geometry along w, we can expand all state
variables in terms of an exponential Fourier series along that
direction as follows:

x(u, v, w) =

∞∑
n=−∞

xn(u, v) e
jκnw, (10)

with κn = nπ/L for translational and κn = n for rotational
symmetry, respectively. Practically, the above sum is limited to
a finite number of modes N , which depends upon the details of
the configuration. In most cases, (10) converges rapidly, thus
a number of modes of few tens delivers a very satisfactory
precision [3], [5]–[9].

C. Discretisation on the transversal plane

We apply the (10) expansion to the FIT state variables
⌢e,

⌢

h,
⌢⌢

b,
⌢⌢

j e and
⌢⌢

jm, and we derive the Maxwell grid equations
on a FIT grid doublet {G, G̃} consisting of a single cell along
the w direction, centred at w = 0 (cf. Fig. 2). Note here, that
the variation along the w direction is taken into account be
means of (10), the finite cell size ∆w along the w direction,
is merely used for mathematical convenience and numerical
stability.

Let us consider the calculation of the state variables at an
arbitrary cell i, whose u−w plane section is shown in Fig. 2.
For the sake of brevity we shall restrict the analysis to the ⌢e ,

⌢⌢

b
variables only. The same calculations apply for the remaining
variables

⌢

h,
⌢⌢

j e and
⌢⌢

jm.
From the geometry of the grids and the FIT allocation

system it is clear that the ⌢eu,i,
⌢ev,i and

⌢⌢

bw,i elements need to
be calculated at w = −∆w/2, which yields for these variables{

⌢eu,v;i(−∆w/2)
⌢⌢

bw;i(−∆w/2)

}
=

∞∑
n=−∞

{
⌢eu,v;in
⌢⌢

bw;in

}
exp(−jκn∆w/2) .

(11)
The ew;i element is integrated along the [−∆w/2,∆w/2]
integral, which means

⌢ew;i(0) =

∞∑
n=−∞

ew;in

∆w/2∫
−∆w/2

ejκnwdw

=

∞∑
n=−∞

ew;in∆wsinc(κnw) (12)

In the same fashion we obtain for the
⌢⌢

bu;in,
⌢⌢

b v;in fluxes{ ⌢⌢

bu;i(0)
⌢⌢

b v;i(0)

}
=

∞∑
n=−∞


∫

∆vi

bu;n(v) dv∫
∆vi

bv;n(u) du

∆wsinc(κnw)

(13)
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with ∆v;i∆w, ∆u;i∆w standing for the respective facets areas.
Note that the metric of the grid is implicitly taken into account
via the integration along the corresponding grid elements.
Hence, in the case of a cylindrical grid, the u integrals are
carried out along the corresponding arcs ui∆w (recall that
the w coordinate in the cylindrical coordinate system is the
azimuthal angle ϕ).

⌢⌢

bu;i

⌢⌢

b v;i

⌢⌢

bw,i

⌢ew;i

⌢ev;i

u

w

v

∆w/2

−∆w/2

∆w/2

−∆w/2

⌢eu;i

⌢⌢

bw,i
⌢eu;i

⌢ev;i

⌢⌢

b v;i
⌢⌢

bu;i

⌢ew;i

Fig. 2. Grid section on the u−w plane for the two coordinate systems. The
⌢eu,

⌢e v and
⌢⌢
bw elements are calculated at the ±∆w/2 positions whereas

⌢ew,
⌢⌢
bu and

⌢⌢
bv need to be integrated in the [−∆w/2,∆w/2] interval. i

stands for the cell index.

In order to comply with the ordinary FIT conventions, we
define

⌢ew;in := xw;in∆w (14)

and

⌢⌢

b t;in :=


∫

∆vi

bu;n(v) dv∫
∆vi

bv;n(u) du

∆w. (15)

Notice that the thus defined integrated state variables differ
from their exact values, which are obtained after multiplication
with the sinc(κ∆w/2) term. The reason for this definition
(which has however no impact to the accuracy of the method)
is the elimination of the sinc(.) terms from the discrete
equations. Once the values of the integrated variables are
known, we can obtain at any moment the exact value by
restoring the sinc term.

Using the above conventions, the Maxwell grid equations
take the following form in the spatial-spectral domain

(Ct + jαnJ)
⌢e = −jω

⌢⌢

b −
⌢⌢

jm (16)(
C̃t + jαnJ

)
⌢

h =
⌢⌢

j e (17)(
S̃t + jαnE

)
⌢⌢

d = qe (18)

(St + jαnE)
⌢⌢

b = 0 (19)

with αn = κn∆w. Ct and St stand for the transversal curl
and div primary gird operators, given by

Ct =

 0 0 Pv

0 0 −Pu

−Pv Pu 0

 (20)

and

St =
(
Pu Pv 0

)
(21)

whereas J and E are unit matrices

J =

 0 −I 0
I 0 0
0 0 0

 (22)

and

E =
(
0 0 I

)
(23)

and Pu,v sub-matrices stand for the discrete differentiation
operators along the two coordinate axes of the u − v plane.
Their detailed expressions are given in [17]. The corresponding
relations for the dual-grid matrices are obtained by applying
the duality principle given above. Since the spatial dependence
along the normal w axis has been absorbed by the modal
expansion terms, there is no need to refer to the initial single
w-cell 3D grid, the planar grid system depicted in Fig. 3 being
more appropriate for the analysis.

⌢⌢

bu

⌢⌢

bv

⌢⌢

bw

u

v

⌢ew
⌢eu

⌢ev

Fig. 3. Two dimensional grid on the u − v plane after application of the
modal expressions.

Eliminating
⌢

h,
⌢⌢

b from the Maxwell grid equations (16),(17)
taking into account the constitutive relations (8),(9) yields the
following discrete curl-curl equation for the mode n

(An + jωMκ)
⌢en = −jω

⌢⌢

j e,n −
(
C̃t + jαnJ

)
M−1

µ

⌢⌢

jm,n.

(24)

with

An = C̃tM
−1
µ Ct + jαn

(
C̃tM

−1
µ J+ JM−1

µ Ct

)
− α2

nJM
−1
µ J. (25)

It is interesting to derive the explicit formulations of the
different matrix terms in the curl-curl equation (24) in order to
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get insight to the physical interpretation of the different terms.
Hence, one can show

C̃tM
−1
µ Ct

=

 PT
v MwPv −PT

v MwPu 0
−PT

uMwPv PT
uMwPu 0

0 0 PT
v MuPv +PT

uMvPu


(26)

C̃tMνJ+JMνCt =

 0 0 MvPu

0 0 MuPv

PT
uMv PT

v Mu 0

 (27)

and

JMuJ = −

 Mv 0 0
0 Mu 0
0 0 0

 . (28)

where Mu,Mv and Mw are the submatrices of the inverse
magnetic permeability (reluctivity) matrix along the u, v and
w directions, respectively. The two non-zero clusters lumped
around the main matrix diagonal in (26) and (28) stand for the
TEw and TMw parts of the curl-curl operator. The TEw and
TMw solutions are coupled via the (27) submatrix. Clearly for
an = 0, the two solutions are independent, which reproduces
the theoretical result of the TEw and TMw uncoupling in the
2D case.

D. Gauging

When applied to non-conducting regions, (24) leads to not
unique solutions since any term of the form −Gψ, with ψ an
arbitrary scalar potential, belongs to the null-space of the curl-
curl operator, as it can be easily verified using the identity (6).
This is a well known issue in low-frequency electromagnetic
problems, and a number of different gauging strategies has
been proposed in the literature to address it, the tree-cotree
formulation being a well established techniques [21], [29].
Yet, the matrix structure of the FIT discretisation scheme
offers a simple way of gauging, based on the subtraction of a
rotational-free operator, which offers the additional advantage
of a direct physical interpretation [30]. A more elaborated
scheme, better suited for the quasi-static regime, has been
proposed Clemens et al. [31], [32] for the FIT formulation,
where a similar approach with the one proposed by Bossavit
for the FEM method [33] is adopted. It is interesting to note
the that in the air regions, the previous approach reduce to a
regularisation term similar to the one proposed by Biro and
Preis [34].

In this work, a simplified version of the regularisation matrix
of [31], [32] has been used, in the sense that the gauging matrix
is restricted in the air-regions (which makes it also equivalent
with that of [34]) and by the substitution of the scaling matrix
M2 by a scalar coefficient equal to its minimum value, namely

r

µ0ε20 maxDṼ

MεGS̃Mε (29)

with DṼ standing for the diagonal matrix of the dual cells
volumes and r being an optional relaxation factor (in this
work we set r = 1). Note that the 1/µ0ε

2
0 factor scales the

matrix values to the free-space reluctivity (in accordance with

[34] and [31], [32]), the Mε term on the left realises the
mapping of electric voltages to the electric flux density and
hence assures the metric consistency, and the Mε factor on
the left restores the symmetry of the matrix. Finally the cell
volume factor balances the gauge term metric with that of the
curl-curl matrix.

Substituting (21) taking into account the definition of G,
the grad-div operator GS̃ can be decomposed in three terms
in the same fashion with curl-curl operator

GS̃ = −S̃T
t S̃t − jαn

(
S̃T
t E+ET S̃t

)
− α2

nE
TE (30)

with the submatrices GtS̃t, GtE+ET S̃t and ETE given by

S̃T
t S̃t =

 PuP
T
u PuP

T
v 0

PvP
T
u PvP

T
v 0

0 0 0

 (31)

S̃T
t E−ET S̃t =

 0 0 Pu

0 0 Pv

PT
u PT

v 0

 (32)

and

ETE =

 0 0 0
0 0 0
0 0 −I

 . (33)

III. MODELLING OF THE SOURCES: APPLICATION OF THE
EQUIVALENCE THEOREM

According to our basic hypothesis, the current sources are
arbitrary, with the only restriction that they must be solenoidal,
i.e. they must satisfy the condition

∇ · Js = 0 (34)

or equivalently in the FIT basis

S̃
⌢⌢

j s = 0 (35)

in order to be consistent with the magneto-quasi-static approx-
imation.

In reality, the current sources involved in the majority of
practical eddy current applications are coils of several shapes,
which are allowed to change position and orientation during
a scan. The straight forward approach to handle the excitation
currents is to project the (known) current density Js in the
expansion basis (10) along the w axis, and to discretize the
thus obtained cross-sectional density Jn for each mode in
order to obtain the excitation vectors

⌢⌢

j e,n. Nevertheless, this
approach is cumbersome and the accuracy of the current
discretisation is dependent on the grid refinement at the coils
location and for every scan position. In other words, we are
facing again the same problem we wish to alleviate from the
very beginning of this approach, namely the strong dependence
from the grid resolution.

A more elegant and efficient approach which allows us to
relax the constrains for the grid resolution is to transform the
initial problem into an equivalent one, where the excitation
sources bear a simpler geometrical form, conformal to the
symmetry of the piece. This approach is based on the equiv-
alence principle, in particular, the formulation known as the
induction equivalent [35]. The quintessence of the theorem
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Js

(a)

(b)

n
Je Jm

∂V

Fig. 4. Construction of the equivalent problem: (a) original configuration, (b)
equivalent problem with electric and magnetic surface currents. The boundary
surface is indicated by the dotted line, and is assumed to be closing in the
infinity.

consists in the introduction of a fictitious closed boundary
∂V , which entirely encloses the conducting piece, and the sub-
sequent replacement of the initial volumetric electric current
source by surface electric and a surface magnetic sources on
∂V . The new problem is equivalent with the original one in the
interior of the boundary ∂V , which will be called henceforth
as the Huygens surface for brevity. A schematic representation
of the equivalence principle is shown in Fig. 4.

Let E0 and H0 be, the electric and magnetic field induced
by the current source in the absence of the work-piece. The
equivalent sources are then defined via the relations

Je = n×H0 (36)
Jm = −n×E0, (37)

n being the outwards pointing unit normal to ∂V . For the
sake of simplicity, we shall consider only the first equation
for a Huygens surface normal to the v axis, at v = vs. The
analysis for the u axis and the magnetic current density is
analogous. The equivalent electric current density obtain by
the application of the definition relation (36) reads Je,u(u, v)

Je,v(u, v)
Je,w(u, v)

 =

 Hw(u, vs)
0

−Hu(u, vs)

 δ(v − vS) (38)

where it is recalled that all the quantities are understood as
the projections of the corresponding spatial functions to the
mode ejκnw. The delta function on the right hand side of
the equation stems from the fact that the equivalent current
distribution has by definition zero thickness. In order to obtain
from (38) the respective FIT state variables, one needs to
integrate both sides over the corresponding dual grid facets
crossed by the equivalent current

⌢⌢

j e,u
⌢⌢

j e,v
⌢⌢

j e,w

 =

 ⌢

hw

0
−⌢

hu

 . (39)

It should be noticed that in the derivation of the above relation
the delta function removes the integration along v, whereas the

⌢⌢

j e

⌢⌢

jm

⌢e1

⌢⌢

jm

(a)

(b)

⌢⌢

j e

⌢e2
⌢e4

⌢e3 +
⌢e0

⌢

h2
⌢

h4

⌢

h1

⌢

h3 +
⌢

h0

Fig. 5. Realisation of the equivalent sources formulation in the FIT grid:
(a) electric and magnetic current distributions on the surfaces associated with
the primary and dual grid respectively, (b) application of the Faraday and
Ampere laws in a primary and a dual grid cell intersected by the corresponding
boundary surfaces.

remaining integral along the tangential direction yields the FIT
magnetic voltage variables

⌢

h. Repeating the same procedure
for the other components and for both different orientations
of the Huygens surface, (36),(37) can be written in a matrix
form

⌢⌢

j e = N
⌢

h0 (40)
⌢⌢

jm = −N⌢e0, (41)

with the matrix operator N being defined as

N =

 0 0 sv
0 0 −su

−sv su 0

 (42)

with su = diag [sgn(ni · û)], ni being the normal to the
Huygens surface vector at the ith grid point.

The above definition of the equivalent currents has been
based on the classical theory of the induction equivalent for
the continuous case [35]. The same relation can be also derived
by considering the Maxwell grid equations locally, at a cell
level. Let us consider for example the shaded primary cell in
Fig. 5. Application of the Faraday’s law in this cell yields

⌢e1 +
⌢e2 − (⌢e3 +

⌢e0)− ⌢e4 = −
⌢⌢

jm (43)

where we have split the total electric field at the upper part of
the cell to the source field contribution in the free space ⌢e0
and the scattered field contribution ⌢e3. Bringing the source
field term in the right hand side and taking into account the
Huygens’ surface orientation sv = 1, we obtain

⌢e1 +
⌢e2 − ⌢e3 − ⌢e4 = −

⌢⌢

jm + sv
⌢e0. (44)
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Repeating the same procedure for all the cells crossing the
Huygens surface and taking into account both possible orien-
tations of the latter we arrive at the following relation

C⌢e = −
⌢⌢

jm +N⌢e0. (45)

In the same fashion we obtain for the Ampère’s law

C̃
⌢

h =
⌢⌢

j e −N
⌢

h0. (46)

Comparison of (45),(46) with (1),(2) yields the equivalent
currents definition of (40),(41).

An additional advantage of the above approach is that ⌢e0

and
⌢

h0, being the electric and magnetic field in the free space,
are obtained by direct application of the Biot-Savart’s integral.
This integral can be evaluated semi-analytically for coils of
arbitrarily complex shapes via a modal approach as shown in
[36].

IV. CALCULATION OF THE IMPEDANCE VARIATION

A scalar observable of great importance for non-destructive
testing (NDT) applications is the variation of the self Z (in
cases of single coil measurements) or mutual impedance M
(for driver pick-up configurations) owing to the presence of
structural anomalies in the geometry of the inspected work-
piece. These anomalies can are related to material defects such
as corrosion pitting or cracking or to variations in the piece
profile as edges corners, holes etc.

Let us consider a two-coil driver-pickup configuration. The
mutual impedance of the two coils can be written as

M(uc, vc) =M0 +∆M(uc, vc) (47)

where M0 is the mutual impedance value in the free space
and ∆M stands for the variation due to the presence of the
piece. Notice that the latter depends on the coils position
(uc, vc) (both coils are considered to be mounted on a rigid
probe and hence their position is described by a single pair of
coordinates). The calculation of ∆M can be carried out in a
very efficient way via the reciprocity theorem, which for the
case of a two coils configuration reads [28]:

∆M12 =
1

µ0I1I2

∮
∂V

[E0 ×B−E×B0] · ndS (48)

where E0,B0 is the electric field and the magnetic flux density
induced by the first coil in the free space, when it is fed with
harmonic current equal to I1 (I2 = 0), E,B stand for the field
solution of the problem in the presence of the piece when only
the second coil is excited with current I2 (I1 = 0), and ∂V is
any closed boundary that encloses the conducting work-piece
(but not the probe). The unit vector n stands for the outwards
normal to the surface ∂V as in the previous section. Choosing
the ∂V boundary to be the same with the Huygens surface 1

and applying the circular shift rule of the scalar triple product,
(48) can be written as

∆M =
1

µ0I1I2

∮
∂V

[(n×E0) ·B+ (n×B0) ·E] dS, (49)

1In fact to avoid numerical issues, it is safer to consider an integration
surface one grid cell apart from the Huygens’ surface.

which taking into account the equivalent current definition
relations (36),(37) becomes

∆M = − 1

I1I2

∮
∂V

(M ·H− J ·E) dS. (50)

Application of (50) into FIT grid space and taking into account
the decomposition along the w direction (10) yields

∆M = − 1

µ0I1I2

N∑
n=−N

(
⌢⌢

jm,−n · ⌢

hn −
⌢⌢

j e,−n · ⌢en

)
, (51)

where ⌢en,
⌢

hn are the electric and magnetic grid voltages
obtained for the mode n, respectively, and

⌢⌢

j e,−n,
⌢⌢

jm,−n

stand for the equivalent electric and magnetic currents at the
Huygens’ surface for the mode −n. The above equation is
nothing more than the Parserval’s theorem in the discrete
FIT solution space. Notice that although in theory one has to
consider an infinity of modes, the above sum involves modes
up to N , following the truncation criterion discussed in section
II.

V. NUMERICAL RESULTS

A. Comparison with reference results and performance studies

The numerical performance of the proposed formulation is
tested by solving the problem of the eddy current inspection
of a conducting piece near a discontinuity. Two different
configurations are considered, which correspond to the two
symmetries of interest: an infinitely long plate edge (with
translational symmetry) and a cylindrical borehole (rotation-
ally symmetric).

The first inspection scenario is depicted in Fig. 6. The
considered configuration is the same with the one examined
in [3], whose results were taken as a reference. The piece
is considered infinite along the parallel to the edge direction,
and its thickness is assumed several times greater than the skin
depth at the operating frequency in order that the interaction of
the induced currents with the lower interface to be negligible.

(a)

h

σ, µ0

ρi

ℓxc

ρo

y

O

(b)

Fig. 6. Plate edge inspection with a cylindrical coil: (a) 3D view (b) cross-
section.
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The piece conductivity is taken equal to σ = 35.4 MS/m
and is assumed non-magnetic. The coil inner and outer radius
is ρi = 5 mm and ρo = 10 mm, respectively, its length is
h = 5 mm and is wound with N = 2500 turns. The coil
is moving parallel to the piece surface at a constant lift-off
equal to 2 mm. The inspection is carried out at frequency
equal to f = 1 kHz, which upon application of the relation
δ = 1/

√
πfµ0σ for the skin depth in a half-space, with µ0

standing for the permeability of the free space, yields δ =
2.675 mm. The piece thickness is taken equal to 10 mm, which
makes approximately 4 times the skin depth value, hence it
satisfies the half-space approximation.

The results for the probe impedance variation ∆Z = Z −
jX0, where Z is the coil impedance and X0 stands for the
free-space reactance, obtained using the presented approach,
are compared with the semi-analytical calculations presented
in [3] and with 3D FEM simulations carried out using the
COMSOL platform [37]. The comparison for the real and
imaginary part of ∆Z as a function of the coil displacement xc
are shown in Fig. 7. For the sake of numerical convenience,
both results have been normalised with X0, which for the
given coil geometry and inspection frequency is equal to
X0 = 500.51 Ω.

Fig. 7. Real ∆R and imaginary part ∆X of the coil impedance variation
as a function of its xc position (scan displacement). The solid line stands
for the results obtained using the presented mixed spatial-spectral approach
(referred to as FIT 2.5D), whereas the doted line represents the semi-analytical
(reference) solution. Both results are normalised by the coil free space
reactance X0.

For the specific example, a discretisation with 178705 gird
nodes and 10 modes along the symmetry axis has been

applied. The total calculation for a number of 30 scanning
positions reached 351 s, which makes coarsely 12 s per scan
point in an average PC with an Intel(R) Core(TM) i7-8850H
processor at 2.6 GHz and 32 GB of RAM. For comparison,
the corresponding computational time for the 3D FEM solution
reached 3925 s in total, which yields 131 s per position. The
FEM mesh comprised 516353 degrees of freedom.

It should be noticed at this point that the reduced size of
the FIT system of (24), consequence of restricting the spatial
discretisation in the transversal u − v plane, allows us to
apply direct inversion via LU decomposition. The benefit of
addressing to direct solver is that one can treat more than
one scan points simultaneously. It is recalled here that each
scan point requires the solution of a new numerical problem
since the source term at the right hand side is different. This
is a particularly important feature for applications involving
moving sources as is the case of eddy current nondestructive
simulations. A second advantage of this decomposition, in
combination with the indirect modelling approach of the
sources via the application of the Huygens principle, is that
there is no need to re-mesh the problem for each coil position.
The source is always represented by the equivalent current
distribution on the Huygens surface, which itself does not
move. Practically, there is an upper limit concerning the
number of scan points that can be treated simultaneously,
which is dictated by the available memory.

The second problem deals with the eddy current testing of
a cylindrical hole in a conducting non-magnetic half-space,
as shown in Fig. 8. The geometry of the piece is this time
rotationally symmetric. The considered configuration is the
one proposed in [38]. The piece conductivity is taken equal
to σ = 24.36 MS/m. The coil dimensions in this case are
ρi = 6.95 mm, ρo = 9.35 mm and h = 6.7 mm and its number
of turns is N = 335. The coil scans the tube at a constant radial
position equal to ρc = 5.63 mm with its axis being normal to
the tube walls. The inspection frequency is f = 10 kHz, which
implies a skin depth equal to δ = 0.32 mm. As underlined
in the previous example, the thickness of the conducting part
along the radial direction should be taken several times greater
than δ in order to satisfy the assumption of an infinitely
thick piece. For the present calculation, the piece thickness
was taken equal to 80 mm, which largely satisfies the above
constrain.

The comparison of the calculated probe impedance variation
∆Z with the experimental results provided in [38] is given
in Fig. 9. Both results are normalised with respect to the
free space reactance, which for the given inspection frequency
reads X0 = 110.08 Ω.

The numerical results of Fig. 9 were obtained using the
same computer with the previous example. The spatial mesh
consisted of 2.8 105 nodes and 15 modes were considered for
the spectral representation in the azimuthal variation. The total
calculation time for 15 scanning positions was 832 s.

B. Computational cost

The overall computational burden of the solution (if we
neglect the time needed for the computation of the material
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(a)

σ, µ0

ρi

z

ρo

h

ρc

zc

(b)

Fig. 8. Plate edge inspection with a cylindrical coil: (a) 3D view (b) cross-
section.

matrices and the system assembly) is mainly determined by
the number of nodes in the discretisation u − v plane, 3Nd,
the number of modes along the symmetry axis, Nm, and
the number of right-hand-side vectors (i.e. the number of
independent sources and/or the positions in the case of a
moving source), Ns.

Since the solution for each mode is independent from an-
other, the computational time scales linearly with the number
of considered modes, Nm, if the system is inverted using
a single-core machine. Passing the system to a CPU/GPU
parallel architecture, a speed-up equal to the number of parallel
processes, with a theoretical maximum the number of modes,
Nm, can be achieved.

The scaling with respect to the other two parameters, namely
the nodes of the 2D grid, Nd, and the number of sources,
Ns, is determined by the corresponding scaling factors for the
LU decomposition for sparse systems, and it is less trivial to
determine theoretically since it depends to a number of factors,
among them on implementation details. We can use the known
formulas for a full systems in order to set an upper limit of
the computational time of the method and use this formula as
a guideline for the derivation of an heuristic approximation
based on numerical experiments.

Assuming thus that the system was full, the computational
time per mode would be given by the following formula

Tsim/Tf = 2/3N3
d + 2N2

dNs (52)

where the first term gives the number of operations for the
system factorisation, the second term is the respective number
for the forward and backward substitution and Tf stands for
the CPU time per flop, which is machine dependent. Based on
this relation, we may anticipate that the real computational cost

Fig. 9. Calculated results for the real and imaginary part of the coil impedance
variation along the scan line vs. measurements. The solid line represents the
numerical results obtained with the proposed approach (FIT 2.5) whereas then
circular marks stand for the measurements.

for the system at hand should admit an exponential dependence
of the general form

Tsim/Tf = aNα
d + bNβ

dNs (53)

with a, b constants and α, β exponents that need to be de-
termined, and for which we expect to lie in the intervals
1 ≤ α < 3 and 1 ≤ α < 2. In order to proceed to an
estimation of their specific values, the first problem of the
previous section, i.e. the scanning coil over the half-space
edge, has been solved for a different number of grid nodes
and the computational time needed for the system inversion
has been measured (the CPU time needed for the construction
of the system and the post-processing is not taken into account
here). The corresponding plots for different grid sizes and
different numbers of coil positions is shown in Fig. 11. The
computational time is a linear function of Ns, as expected. All
computations have been carried out for a constant number of
modes Nm = 10.

Calculating the best linear fit to the different datasets, and
assuming the dependence of (54), we can associate the the
constant term of the fitted polynomials to aNα

d , whereas
the linear term coefficients are associated to the bNβ

d . The
variation of the two coefficients versus Nd in logarithmic scale
is shown in

The slope of the two lines in the logarithmic scale will
yield the sought approximation of the α and β exponents. We
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Fig. 10. Simulation time as function of the number of scan positions for
a number of different grid resolutions. The time scales almost linearly with
the size of the problem as the linear fit results confirm (dashed lines). The
considered number of modes is Nm=10.

Fig. 11. Coefficients of the fitted polynomial for the curves of Fig. 11 as
function of the grid size Nd. The dotted line stands for the best polynomial
fit in the logarithmic space.

thus finally obtain for the computational cost the following
approximation

Tsim/Tf =
(
aN1.14

d + bN1.16
d Ns

)
Nm. (54)

It must be underlined that the above procedure has been
entirely based on a particular example, and it can by no means
claim being a rigorous and general method for the derivation
of the scaling of the computational time with the solution
parameters. It can merely serve as an indicator of the true
behaviour. It should be however noticed that a similar trend
has been observed for other cases as well. The main conclusion
of this study is that the dependence of the computational time
is almost linear to the size of the 2D mesh Nd and proportional
to Ns and Nm.

VI. DISCUSSION

A mixed spatial-spectral technique was proposed for the
solution of the eddy-current induction problem in geome-
tries employing symmetrical work-pieces and arbitrary current
sources. The restriction of the spatial discretisation in the
transversal to the symmetry axis plane u − v, in conjunction
with the indirect description of the sources via the equivalence

theorem provides an efficient numerical scheme with reduced
size. Consequently, LU-based direct solvers can be used for
the inversion of the linear system obtained by the application
of the spatial grid for a given mode, which allows the
simultaneous treatment of different coil positions.

Recalling that local deviations of the material properties
from their nominal values (e.g. material defects) can be also
expressed in terms of electric and magnetic current sources via
the volume equivalence theorem [35], the proposed approach
could be extended in order to treat geometries with such
anomalies. This is the main idea exploited in the volume
integral method [39].
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