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Abstract

This paper proposes an effective treatment of hyperparameters in the Bayesian inference of a scalar field
from indirect observations. Obtaining the joint posterior distribution of the field and its hyperparameters
is challenging. The infinite dimensionality of the field requires a finite parametrization that usually involves
hyperparameters to reflect the limited prior knowledge. In the present work, we consider a Karhunen-Loève
(KL) decomposition for the random field and hyperparameters to account for the lack of prior knowledge
of its autocovariance function. The hyperparameters must be inferred. To efficiently sample jointly the
KL coordinates of the field and the autocovariance hyperparameters, we introduce a change of measure to
reformulate the joint posterior distribution into a hierarchical Bayesian form. The likelihood depends only on
the field’s coordinates in a fixed KL basis, with a prior conditioned on the hyperparameters. We exploit this
structure to derive an efficient Markov Chain Monte Carlo (MCMC) sampling scheme based on an adapted
Metropolis–Hasting algorithm. We rely on surrogate models (Polynomial Chaos expansions) of the forward
model predictions to further accelerate the MCMC sampling. A first application to a transient diffusion
problem shows that our method is consistent with other approaches based on a change of coordinates (Sraj
et al., 2016). A second application to a seismic traveltime tomography highlights the importance of inferring
the hyperparameters. A third application to a 2D anisotropic groundwater flow problem illustrates the
method on a more complex geometry.

Keywords: inverse problem, random fields, Karhunen–Loève decomposition, autocovariance function
hyperparameters, polynomial chaos expansion

1. Introduction

Inverse problems arise in many situations whenever one searches for information about a physical system
based on observations [1]. The Bayesian approach [2] is widely used to solve inverse problems in a probabilistic
framework and has been applied in various geophysical applications [3, 4, 5, 6, 7]. The Bayesian approach is
attractive because it requires a weak a priori on the unknown parameters and provides a full estimation of
the parameter distributions. In practice, Markov Chain Monte–Carlo (MCMC) methods provide algorithms
to sample from the posterior distribution [8]. MCMC methods require a considerable number of (generally
expensive) forward model evaluations, and the convergence of the sampling might be difficult to reach,
especially when dealing with a high-dimensional parameter space. The computational cost induced by the
sampling can be reduced using surrogate models, where the forward model predictions are replaced by fast
to evaluate approximations [9, 10, 4].

In this study, we are interested in the estimation of a scalar field through a set of indirect and noisy ob-
servations. Such inference problem is challenging because of the infinite dimensionality of the field. Previous
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works [9, 11] have already addressed this issue by means of Karhunen–Loève (KL) decomposition [12, 13, 14]
to obtain a finite dimensional parametrization of the field. The KL expansion represents a random field
using the eigenelements of its autocovariance function as a decomposition basis. The inference then consists
in identifying the KL coordinates in the basis of the dominant eigenmodes. In practice, the autocovariance
function depends on hyperparameters q that can be determined by optimizing a criterion such as the like-
lihood estimation [15], the leave-one-out error or by parametric estimation [16, 17]. Nevertheless, fixing a
value of the hyperparameters can lead to overconfident results. This motivated the development of methods
that jointly explore the parameters and hyperparameters spaces during the inverse problem solving. For
stationnary fields, it is straightforward to deal with variable variances, as it reduces to a scaling of the KL
coordinates [11, 18]. On the contrary, the other hyperparameters, like correlation length and exponent,
are more delicate to infer since they affect directly the KL basis, raising significant computational chal-
lenges [19]. Several methods [20, 21, 22] have been proposed to deal with the computational cost induced
by the eigenmodes basis q-dependency. In particular, [21] introduced a method based on a fixed reference
basis over the hyperparameters space. The reference basis is made of the dominant modes of the q-averaged
autocovariance function. The dependency on the hyperparameters is transferred to the coordinates through
a linear transformation called change of coordinates (CoC). This construction minimizes the q-averaged field
representation error. Despite the benefit of the reference basis, the CoC method is limited to cases where the
change of coordinates matrix is q-continuous [21, 23]. Indeed, the computation of this matrix is computation-
ally expensive since it requires solving an eigenvalue problem at each MCMC step. In addition, multiplicities
in the eigenvalues and crossing of the eigenbranches with changes of the hyperparameters makes it difficult
to ensure a smooth CoC as required by the MCMC samplers.

The aim of this paper is to introduce a new method to alleviate the difficulties of the CoC method by
transferring the q-dependency to the prior distribution of the field coordinates. In this approach, called
change of measure (CoM), the coordinates of the field follow a Gaussian distribution whose covariance
matrix depends smoothly on the hyperparameters and does not require to decompose the q-dependent
autocovariance function at each MCMC step. Another advantage of our formulation is that the posterior
distribution only depends on q through the prior distribution. To accelerate the MCMC sampling, we rely on
polynomial chaos (PC) surrogate models [24, 25, 26] for both model predictions and CoM derived quantities.

The paper is structured as follows. Section 2 presents the Bayesian framework and the field parametriza-
tion. Section 3 focuses on the derivation of the coordinates distribution in the CoM method, especially its
covariance matrix expression and the associated sampling procedure. Section 4 describes the PC surrogate
model used to replace the forward model, as well as the CoM derived quantities. The CoM method is com-
pared with the CoC method on a transient diffusion case in Section 5 and applied to a traveltime seismic
tomography problem in Section 6. Section 7 deals with the inference of a 2D anisotropic random field in a
groundwater flow application. Conclusions and perspectives are drawn in Section 8.

2. Bayesian field inference

We detail the Bayesian framework in Section 2.1, and then we present the dimension reduction technique
with the KL decomposition depending on hyperparameters in Section 2.2.

2.1. Bayes’ formulation
We are interested in the inference of a scalar field g ∈ G ⊂ L2(Ω) defined over a compact spatial domain

Ω ⊂ Rd, where d ∈ {1, 2, 3} is the dimension of the physical space. Denoting (Θ,S, P ) an abstract probability
space and θ ∈ Θ a particular random event, the field g is assumed to be a particular realization of a random
process G, that is g(x) = G(x, θ).

The definition of the inference problem relies on a set ofN indirect observations dobs ∈ RN , an observation
noise model, as well as a forward model M : g 7→ d that predict d for a given field g, where M is for instance
a system of PDEs. This relation is not invertible in general and cannot be used to obtain a closed-form
solution for g, such as g := M−1dobs composed with an observation operator. The inverse problem can
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be solved in several ways [1, 27] and we choose here the Bayesian approach, which characterizes the full
posterior distribution of g. According to the Bayes’ formula, the posterior distribution of the field g reads

πpost(g|dobs) ∝ L(dobs|g)πG(g), (1)

where L(dobs|g) denotes the likelihood of the observations given the field g and πG(g) its prior distribution.
The posterior can be sampled with MCMC methods. The two main difficulties to use the posterior distri-
bution (1) in practice are the infinite dimension of the field and the likelihood computation cost, based on
forward model evaluations at each MCMC step. This motivates the use of a dimension reduction technique
to approximate the field in a low dimensional space. Besides, the computational cost can be decreased with
surrogate models that replace the forward model predictions.

2.2. Dimension reduction of random fields
This section provides a parametrization of the field g along with its associated sample space G and its

prior probability distribution πG for the Bayesian inference. Several approaches are possible to obtain finite
dimensional representation of the field. The nodal representation relies on interpolation between values
defined at a finite set of points constituting a grid. This representation is particularly expensive when a
fine mesh is required to accomodate small scale features. Transdimensional approaches [28, 29, 30] have
been developed to mitigate this issue by iteratively optimizing the number of mesh cells. These approches
are however incompatible with the use of surrogate models since the field parametrization changes along
the MCMC steps. We choose instead a modal representation of the field [14, 31, 32, 33] which offers a
low-dimensional parametrization that is fixed during the inference.

Consider a random field G(x, θ) with mean µ : Ω 7→ R and autocovariance function k : Ω2 7→ R, defined
as

µ(x) := EΘ (G(x, ·)) and k(x,y) := EΘ ((G(x, ·)− µ(x)) (G(y, ·)− µ(y))) , (2)

where EΘ denotes the expectation. Without loss of generality, we set µ = 0 to alleviate notations. The
truncated KL expansion Gr of G writes

Gr(x, θ) :=

r∑

i=1

λ
1/2
i ui(x)ηi(θ), such that G(x, θ) = lim

r→∞
Gr(x, θ). (3)

The couples (ui, λi)i∈N∗ are the eigenfunctions and associated eigenvalues (sorted in descending order) of the
autocovariance function k, obtained by solving the Fredholm equation of the second kind,

∀x ∈ Ω, ∀i ∈ N∗,
∫

Ω

k(x,y)ui(y)dy = λiui(x). (4)

The KL decomposition is bi-orthonormal in the sense that the coordinates ηi = λ−1/2 〈G(θ), ui〉 are uncor-
related with unitary variance and the eigenfunctions ui are orthonormal with respect to the inner product
of L2(Ω),

E(ηiηj) = δi,j and 〈ui, uj〉Ω :=

∫

Ω

ui(x)uj(x)dx = δi,j . (5)

In addition, the truncated decomposition minimizes the representation error in the L2-sense [14]: Eθ
(
‖G−Gr‖L2(Ω)

)
=∑

i>r

λi. The inference problem (1) for Gr can be recast into an identification of the r-dimensional coordinates

vector η,
πpost(η|dobs) ∝ L(dobs|η)π(η). (6)

In the following, a Gaussian random process for the field is considered, and therefore η ∼ N (0, Ir).
The autocovariance function k may depend on some hyperparameters q ∈ H that are poorly known [20,

22]. In case of an uncertain correlation length, one can choose a small value of it, use a KL truncature with
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many modes and then apply model reduction techniques [34, 35]. Another solution consists in integrating
the hyperparameters in the inference problem. This yields

πpost (η, q |dobs ) ∝ L(dobs|η, q)π(η, q), (7)

where π(η, q) is the joint prior distribution of the KL coordinates and hyperparameters. The KL expansion
basis and the coordinates of the field G depend on the hyperparameters,

G(x, θ) '
r∑

i=1

λi(q)1/2ui(x, q)ηi(θ), with ηi(θ) =
〈
λi(q)−1/2ui(·, q), G(·, θ)

〉
Ω
. (8)

The estimation of the coordinates and hyperparameters in decomposition (8) faces several difficulties, at
the sampling stage as well as to construct surrogate models. First, the eigenelements must be computed at
each MCMC step. Further, the q-continuity of the field is not guaranteed due to the non uniqueness of the
eigenelements, particularly in the case of crossing eigenbranches [23]. To get rid of this dependency in the
field representation, [21] introduces a fixed reference basis to expand the field. The method proposed in this
work follows this idea by expressing the hyperparameter dependencies through the prior of the coordinates
in the reference basis.

3. Change of measure method

Sections 3.1 and 3.2 briefly describe the reference basis and the change of coordinates method used to
estimate the KL coordinates. Section 3.3 presents the novel approach, called CoM, that overcomes the
change of coordinates limitations. Section 3.4 details the log-posterior expression and the sampling strategy
for the CoM.

3.1. Reference basis
The motivation of using a reference basis is to eliminate the eigenfunctions q-dependency. Such basis

could be computed from the kernel k(·, ·, q) associated with a particular value of q, its mean value q = EH(q)
or from the kernel averaged over the hyperparameters domain H. We opt for the latter choice because it
minimizes the representation error of the field in average over q [21]. We denote k the averaged autocovariance
function,

∀x,y ∈ Ω, k(x,y) := EH(k(x,y, ·)) :=

∫

H
k(x,y, q)πH(q)dq, (9)

where πH denotes the hyperparameters prior. The reference eigenelements {ui, λi}i∈N∗ are obtained by
solving the eigenvalue problem for the reference kernel,

∀x ∈ Ω, ∀i ∈ N∗,
∫

Ω

k(x,y)ui(y)dy = λiui(x). (10)

The field approximation in the reference basis is

G(x, θ) ' Gr(x, θ) :=

r∑

i=1

λ
1/2

i ui(x)ξi(θ), with ξi(θ) =
〈
λ
−1/2

i ui, G(·, θ)
〉

Ω
(11)

The following sections propose two methods to use this parametrization of G in the inference of the coordi-
nates and hyperparameters joint distribution.
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3.2. Change of coordinates
In [21], the coordinates ξ are obtained by a transformation of the coordinates in the q-dependent basis

defined previously in Eq. (8),

Gr(x, θ) =

r∑

i=1

λi(q)1/2ui(x, q)ηi(θ) '
r∑

i=1

λ
1/2

i ui(x)ξi(θ, q). (12)

The two sets of coordinates ξ(θ, q) and η(θ) are related by the change of coordinates matrix B(q) defined
by

B(q)ij = λ
−1/2

i

〈
λj(q)1/2uj(·, q), ui

〉
Ω
, ξ(θ, q) = B(q)η(θ). (13)

The inference problem here writes

πpost (η, q |dobs ) ∝ L(dobs|η, q)π(η)πH(q), with η ∼ N (0, Ir). (14)

In this formulation, for fixed η, changing the hyperparameters modifies the coordinates in the reference basis
and thus the shape of the field. Therefore, changing the hyperparameter modifies the realization of the pro-
cess, which is not so natural. In addition, the posterior probability distribution of the coordinates η depends
on the hyperparameters: for each value of q, a different posterior distribution for η is sampled, which can
complicate the inference process. Moreover, the dependency of B on the eigenelements {ui(·, q), λi(q)}16i6r
requires to solve the eigenvalue problem (4) for each new value of q. In [21, 23] a surrogate model is built
for B(q). However, this strategy suffers from the numerical ambiguity of B(q) due to the choice of the
eigenvectors orientation and indexation [23]. These drawbacks lead to reformulate the field parametrization
thanks to a change of measure (CoM), where the hyperparameters values affects the prior of the proposed
field and not the field values themselves.

3.3. Change of measure
We propose to use directly the decomposition on the reference basis regardless of the choice of hyper-

parameters; transferring the dependency on hyperparameters to the distribution of the coordinates. The
inference problem has then the following general formulation,

πpost (ξ, q |dobs ) ∝ L(dobs|ξ)π(ξ|q)πH(q). (15)

This method therefore generalizes the handling of the autocovariance scaling in [11] to the other hyperpa-
rameters. Note that, unlike the CoC method, the likelihood is independent of q. The advantage is to work
with the reference coordinates ξ only, without using the q-dependent KL decomposition,

G
r
(x, ξ) =

r∑

i=1

λ
1/2

i ui(x)ξi, where ξ ∼ π(ξ|q). (16)

In this section, we derive the distribution for the ξ := (ξi)16i6r ∈ Ξ ⊂ Rr coordinates in order to best
represent G(x, θ). The statistics of the new coordinates ξ are deduced by projecting the field on the reference
basis. Assuming that G

r
(x, ξ) ' G(x, θ), then

〈
G
r
(·, ξ), ui

〉
Ω

= 〈G(·, θ), ui〉Ω and using Eq. (5) we obtain

λ
1/2

i ξi =

+∞∑

k=1

λk(q)1/2 〈uk(·, q), ui〉Ω ηk(θ), (17)

where the coordinates (ηk)k∈N∗ are standard normal variables. By construction, ξ is a multivariate Gaussian
random vector. It is clear that the ξi have zero mean,

EΘ(ξi) ' λ
−1/2

i

+∞∑

k=1

λk(q)1/2 〈uk(·, q), ui〉Ω EΘ(ηk) = 0. (18)
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The covariance between ξi and ξj is

EΘ(ξiξj) ' EΘ

((
λ
−1/2

i

+∞∑

k=1

λk(q)1/2 〈uk(·, q), ui〉Ω ηk
)(

λ
−1/2

j

+∞∑

k=1

λk(q)1/2 〈uk(·, q), uj〉Ω ηk
))

,

=
(
λiλj

)−1/2
+∞∑

k,k′=1

〈uk(·, q), ui〉Ω 〈uk′(·, q), uj〉Ω λk(q)1/2λk′(q)1/2EΘ (ηkηk′) ,

=
(
λiλj

)−1/2 〈〈k(·, ·, q), ui〉Ω , uj〉Ω , (19)

where the last line is obtained thanks to Mercer’s theorem [36]. The reference coordinates ξ follow a prior
normal distribution N (0,Σ(q)), where the covariance matrix Σ(q) ∈ Rr×r is defined by

∀1 6 i, j 6 r, ∀q ∈ H, Σ(q)ij = (λiλj)
−1/2

〈
〈k(·, ·, q), uj〉Ω , ui

〉
Ω
. (20)

The covariance of the coordinates ξ for a given q is obtained by projecting the q-dependent autocovariance
on the span of the r-dimensional reference basis. This covariance matrix is invertible if k(q) is positive
definite, which is the case in the following applications. However, note that the conditionning of Σ(q) can
be quite bad if r is very large.

The principles of the CoC and CoM methods are schematically represented on Fig. 1. For both methods,
the model predictions only depends on the coordinates ξ in the reference basis. The main advantage of
the CoM method is to split the posterior construction in two distincts parts: i) the computation of the
likelihood L(dobs|ξ) which is independent from the hyperparameters q and ii) the computation of the prior
probability distribution π(ξ|q)πH(q) with the covariance matrix Σ(q). As the covariance matrix Σ(q) only
depends on the reference eigenelements which are computed offline, its computation is less expensive than
the computation of B(q) which requires to solve an eigenvalue problem at each step. In addition, the
approximation of Σ(q) by a surrogate model benefits from the regularity of the q-dependent autocovariance
function. The CoM representation also provides a better physical interpretation in comparison with the CoC
one. Indeed, the CoM approach better distinguishes the coordinates from the hyperparameters, in the sense
that changing the hyperparameters does not modify the field realization but its probability.

Sampling
η

q B(q)

π(η)π(q)

ξ = B(q)η L
(
dobs|η, q

)

ppost
(
η, q|dobs

)

Sampling
ξ

q Σ(q)

ξ ∼ N (0,Σ(q))

π(ξ|q)π(q)

L
(
dobs|ξ

)

ppost
(
ξ, q|dobs

)

Figure 1: Workflow of the CoC (left) and the CoM (right) methods. The quantities that are specific to the method are indicated
in red.

3.4. MCMC for the change of measure
The logarithm of the posterior probability distribution is written as

log πpost(ξ, q|dobs) ∝ logL(dobs|ξ) + log π(ξ|q) + log πH(q). (21)

A Gaussian likelihood is considered, assuming a centered independent and identically distributed (i.i.d.)
observation noise, with variance σ2

ε : the noise level σε is the standard deviation of the observation noise
ε = dobs −M(ftrue) and is assumed to be i.i.d. Gaussian,

ε ∼ N (0, σ2
εIN ), (22)
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where IN is the identity matrix of size N . The likelihood writes

L(dobs|ξ) :=
1√

(2πσ2
ε)N

exp

(
− 1

2σ2
ε

‖dobs −M(ξ)‖2l2
)
. (23)

Other likelihood functions and error models can be used [37, 38]. Since ξ ∼ N (0,Σ(q)), the prior log-density
of the random vector ξ is

log π(ξ|q) ∝ −1

2

(
logdetΣ(q) + ξ(q)>Σ(q)−1ξ(q)

)
, (24)

where logdetΣ(q) := log (det [Σ(q)]). The noise level σε is estimated during the inference, assuming a Jeffreys
prior [39, 40, 41], πσε

(σε) ∝ 1/σε.
The CoM posterior has a hierarchical structure [42]. In particular, since π(ξ|q) can be highly sensitive to

q, it can be difficult to define a proposal structure suitable over the whole sampling space. The Metropolis–
Hastings (MH) algorithm, even in its adaptive version [43, 44], can be challenged by the CoM hierarchical
structure without a proposal distribution πtr depending on the current state of the chain (ξ(n), q(n)). Our
strategy to overcome this difficulty consists in sampling an auxiliary variable ξ independent from q, using
a fixed proposal structure and a q-dependent linear transformation to obtain ξ. Specifically, we consider
ξ ∼ N (0,Σξ) and set ξ through

ξ = Σ(q)1/2Σ
−1/2

ξ
ξ. (25)

At each MCMC step, the MH acceptance criterion is used. Denoting Y (n) = (ξ(n), q(n), σ
(n)
ε ) the current

state and Y ∗ = (ξ∗, q∗, σ∗ε ) the proposed one, the proposition is accepted with probability

pMH = min

(
πpost(Y

∗)πtr(Y
(n)|Y ∗)

πpost(Y
(n))πtr(Y

∗|Y (n))
, 1

)
, (26)

where πtr(Y |X) is the transition probability from X to Y . In our case, this transition probability is not
symmetric,

πtr(Y
(n)|Y ∗)

πtr(Y
∗|Y (n))

=

(
det Σ(q∗)

det Σ(q(n))

)1/2

. (27)

Note that det Σ(q) is computed for the prior, such that the evaluation of the transition probability ratio add
no computational cost. Further, as Σ(q), Σ(q)1/2 is independent of the indexation and orientation of the
eigenelements.

4. Accelerating sampling in the CoM framework

The Bayesian inference of G
r
(x, ξ) with ξ ∼ N (0,Σ(q)) requires the sampling of the r+ |q|-dimensional

space of (ξ, q) ∈ Ξ×H with a MCMC algorithm. As previously mentioned, one advantage of the CoM is that
the predictions, and therefore the likelihood, only depends on the coordinates ξ. In this section, we briefly
present PC expansions used to replace the set of forward model predictions. The coefficients and determinant
of the CoM matrix used to define the likelihood function are also approximated with PC expansions.

4.1. Polynomial chaos surrogates
Surrogate models are widely used in uncertainty propagation and Bayesian inference [45, 46]. We rely on

PC expansions [24, 25, 26] which have been used in various fields [11, 19, 4, 47, 48, 18, 49]. Let f be a second

order functional of a r-dimensional vector ζ with independent components such that pζ(y) =
r∑
i=1

pi(yi). The

PC expansion f̃ of f is a linear combination of polynomials in ζ,

f(ζ) ' f̃(ζ) =
∑

a∈A
faΨa(ζ), (28)
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where the PC basis functions {Ψa(ζ)}a∈A are multivariate orthogonal polynomials with respect to the density
of ζ, {fa}a∈A are deterministic PC coefficients and A is a set of multi-indexes. The PC basis functions are
the product of orthonormal univariate polynomials, Ψa=(a1,...ad)(ζ) = ΠiΨ

i
ai(ζi), where Ψi

ai is a polynomial
of degree ai in ζi. Several methods can be implemented to estimate the PC coefficients. In this work,
we use the pseudo spectral projection (PSP) method to approximate the projection coefficients {fa}a∈A of
f(ζ) [50, 51]. The PSP method relies on sequences of nested 1-dimensional discrete projection operators
into spaces of increasing polynomial degrees. The 1-d projections are sparsely tensorized, using the Smolyak
formula. The PSP yields sparse projection operators, free of internal aliasing for f ∈ Span{Ψa, a ∈ |A|},
where A depends on the composing sequences and their retained tensorizations. In practice, the PSP method
uses evaluations of f at the nodes ζ(l) of a sparse grid S = {ζ(k)}16k6NPSP

and computes the PC coefficients
fa through

∀a ∈ A, fa =

NPSP∑

k=1

Πakf(ζ(k)). (29)

The surrogate model accuracy is assessed by estimating the relative root mean squared error (RRMSE)
with a validation set of Nv samples Z =

{
ζ(i)
}

16i6Nv

drawn from pζ ,

RRMSE(f, f̃) =

√∑

ζ∈Z

∥∥∥f(ζ)− f̃(ζ)
∥∥∥

2

/
∑

ζ∈Z

‖f(ζ)‖2. (30)

4.2. Surrogate models for likelihood computation
As seen in Sections 3.3 and 3.4, the model predictions in the likelihood only depend on the coordinates of

the field ξ. Therefore, we construct a surrogate model of the prediction vector d(ξ) with the PSP method:

d(ξ) '
∑

a∈A
daΨa(ξ). (31)

Recall that the coordinates ξ follow N (0,Σ(q)) in the CoM method. To avoid the q-dependency of ξ, we
consider that ξ ∼ N (0, Ir) for the PC surrogate construction. This choice corresponds to a simple approx-
imation of the marginal coordinates distribution over the hyperparametric domain since EH (EΘ(ξ |q )) = 0
and EH(Σ(·)) = Ir from equations (10),(20). Note that this is not the true marginal coordinates distri-
bution, since the sum of Gaussian distributions is not Gaussian ( see AppendixA for more details). The
model predictions at the PSP points are computed by i) building the field associated with the PSP point

g(l)(x) =
r∑
i=1

λ
1/2

i ui(x)ξ
(l)
i , ii) solving the forward model with g(l) and evaluate d(l) = d(ξ(l)).

4.3. Surrogate models for prior computation
The CoM formulation and its sampling require the computation of Σ(q)−1, logdetΣ(q), and Σ(q)1/2 at

each step. We construct surrogate models of these three quantities to accelerate the MCMC sampling. To en-
sure that the approximated Σ(q)−1 is non negative, we approximate its square root. To ensure the positivity
of the Σ(q)−1 surrogate, we adopt the approach of [52] for the PC approximations of semi positive definite
operators in the context of domain decomposition methods for stochastic partial differential equations. The
approach is based on the spectral decomposition of Σ(q) in

Σ(q) = U(q)Λ(q)U(q)>, with U(q)U(q)> = U(q)>U(q) = Ir, (32)

and defines
Σ(q)±1/2 := U(q)Λ(q)±1/2U(q)>. (33)

The advantage of this approach is that the PSP approximation

Σ̃±1/2 =
∑

a∈A
Σ±1/2
a Ψa(q), with Σ±1/2

a =

NPSP∑

k=1

ΠakΣ(q(k))±1/2 (34)
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is not affected by the indexation and orientation of the Σ(q(k)) eigenelements at the different sparse grid
(SG) points. Finally, we use

Σ̃−1(q) := Σ̃−1/2Σ̃−1/2. (35)

In addition, the PSP approximation of logdetΣ(q) writes as

˜logdetΣ(q) =
∑

a∈A
laΨa(q), with la =

NPSP∑

k=1

ΠaklogdetΣ(q(k)). (36)

When the prior range is large and the number of modes r is high, the prior π(ξ|q) can become highly
stretched with respect to q. In that case, the PC approximation of the conditional law can be difficult and
requires a high PSP level. In practice, we adapt the PSP method level to ensure a RRMSE of less than
0.1% on the surrogates of Σ(q)−1 and logdetΣ(q). As for the surrogate predictions, the PC error should be
dominated by the observation error. This is verified a posteriori, and the analysis is led with a higher PSP
level if needed.

5. Application to a transient diffusion problem

In this section, the CoM method is applied to infer a diffusivity field in the one-dimensional transient
diffusion (TD) problem presented in [21]. This problem is summarized in Section 5.1, the behavior and
convergence of the PC surrogates of Σ±1/2 and logdetΣ are analysed in Section 5.2 and the inference results
are presented in Section 5.3, where a comparison with the CoC method is proposed.

5.1. Case presentation
The 1D TD equation writes

∀t ∈ (0, T = 0.05), x ∈ Ω = (0, 1),
∂U(x, t)

∂t
=

∂

∂x

(
ν(x)

∂U(x, t)

∂x

)
, (37)

with the boundary and initial conditions,

U(x = 0, t) = −1, U(x = 1, t) = 1, and U(x, t = 0) = 0. (38)

The field ν is such that 0 < ν(x) < +∞ almost everywhere in Ω, is unknown and to be inferred. For a
given ν, the transient diffusion equation is solved with a P1-finite element method in space and a second
order implicit time-integration scheme. The objective of the inference is to learn the diffusitivity field ν
from observations of U . The observations consist in N = Nx × Nt = 18 × 13 = 234 noisy evaluations of
U , uniformly distributed in space and time. They are obtained by solving Pb. (37) and then synthetically
corrupted by random independent Gaussian centered measurement noises ε ∼ N (0, σ2

ε := 0.01). For the
inference, we consider a priori a log-normal stationnary field ν, and then infer g := log ν using a Gaussian
prior with zero mean and with a squared exponential autocovariance function k(q),

∀(x,y) ∈ Ω2, q = {A, l} ∈ R2
+, k (x,y, q) := A exp

(
−‖x− y‖2 /(2l2)

)
, (39)

where A denotes the amplitude and l the correlation length. The prior distributions of these two hyperpa-
rameters are

A ∼ InvGamma(3, 1) and l ∼ log-U(0.1, 0.7). (40)

The decomposition in the reference basis shown in Eq. (11)leads to the following approximation,

gtrue ' gkl(ξ) = G
r
(·, ξ), with ξi =

〈
λ
−1/2

i ui, gtrue

〉
Ω
. (41)

The number of coordinates r is set equal to 8 and captures 99.8% of the field prior variance.
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r l− l+
∑r
i=1 λi/

∑+∞
i=1 λi

∥∥Σ(q)−1
∥∥
l2+

RRMSE(Σ(l)−1)

8 0.1 0.7 99.8% 6.7×103 1.0×10−3

8 0.05 0.7 97.1% 3.3×104 6.4×10−3

8 0.1 0.9 99.8% 1.1×104 1.5×10−3

6 0.1 0.7 99.0% 6.4×103 4.5×10−4

Table 1: TD case - Quantities of interest for different numbers of coordinates and prior ranges. RRMSE is computed for PC
order equal to 15.

5.2. Behavior of the change of measure
The aim of this section is to analyze the behavior of the CoM’s surrogates for the TD case. It focuses on

the analysis of Σ(q) and its derived quantities Σ±1/2(q) and logdetΣ(q) when l varies, since the A-dependency
is reduced to a multiplicative factor.

The eigenvalues of the covariance for different correlation lengths are plotted on Fig. 2: the higher the
correlation length, the faster the decay. In particular, for large correlation lengths, the information of the l-
dependent basis is concentrated in the few first modes. The spectrum of the averaged covariance (i.e. leading
to the reference basis) is intermediate. Figures 3 and 4 show how changes in l affect the prior coordinates ξ.
Figure 3 reports the diagonal coefficients Σii(q) for three values of l: the higher the correlation length, the
smaller the variance of the last coordinates. A coordinate variance is close to zero when the associated mode
is irrelevant for the approximation of the prior field. Figure 4 shows the resulting 90% confidence interval
for ξ6 and ξ8 and two values of l, highlighting the strong dependency of Σ(q) on l. The CoM induces a high
sensitivity of the ξ prior distribution to l. Tab. 1 highlights the influence of the prior range and the number
of coordinates on the eigenvalues and covariance matrix of the CoM method. Two conclusions can be drawn:
i) diminishing r increases the error on the field prior, and diminishing l− builds a reference basis that is closer
to small correlation length bases, each effect increasing the truncation error and ii) increasing the distance
between l− and l+ or the number of terms r yields a higher l2-norm. The numerical invertibility of the
covariance matrix is compromised when the hyperparameter space or the number of coordinates is too large.
Finally, the RRMSE of Σ1/2,Σ−1 and logdetΣ are plotted on Fig. 5 for different PC order and number of
terms. For r = 8, a PC order of 15 ensures that the error is below 0.1% for the three quantities. A Tikhonov
regularization is implemented in order to prevent numerical instability when increasing the number of terms.

5.3. Inference results
We test the CoM for two different true log-diffusivity fields, namely i) a sinusoidal profile: gsin(x) =

sin(2πx) and ii) a step function: gstep(x) =

{
−1/2, if x < 0.5,
1/2 else . The projections of the true fields in
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Figure 6: TD case - True diffusivity fields gtrue and their projections gkl. (left) gsin, (right) gstep

the reference basis (Eq. (41)) are shown on Fig. 6. As expected, the field gsin is well approximated in
the reference basis whereas the field gstep is considerably smoothed and presents oscillations, because this
non-smooth field is not a likely realization from the prior.

We use the MCMC presented in Section 3.4 to sample the posterior distribution. The CoC method
introduced in Section 3.2 is also implemented for validation purposes. The proposal matrix is adapted
each 2.5×104 steps during a burning phase of 2.5×105 steps, then 1×106 steps are used to sample the
posterior distribution. This choice leads to a multi effective sample size [53] around 10, 000 for both CoM
and CoC methods. We start the analysis by examining the field coordinates. The marginal posterior
distributions of five coordinates are plotted on Fig. 7 for the gsin field. For the comparison, the CoC
samples (η, q) are translated into samples of ξ using the CoC ξ = B(q)η. The ξ marginal prior distribution

π(ξ) =

∫

H
π(ξ|q)πH(q)dq is also plotted as reference. We observe that the two methods yield similar results,

with the posterior distributions for the first 5 coordinates centered on the best projections of the true field.
The other coordinates are less informed by the observations. The noise level posterior distribution is peaked
around the true value.

Figure 8 presents the posterior distributions confidence intervals of the inferred fields. The mean, median,
maximum a posteriori (MAP) as well as the 1%-99% and 5%-95% quantiles are plotted. The MAP corre-
sponds here to the chain sample maximizing the posterior distribution. As for the coordinates estimations,
the results of the two methods are very close for gsin and gstep. Note that the gsin medians are shifted
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relatively to the true field, this gap is reduced when decreasing the noise level (see Fig 9 where σε is set to
0.02). Figure 9 assesses the convergence of the CoM inference result with respect to the PC order for the
forward model, the number of coordinates and the PC order for the CoM prior quantities. Capturing the
stochastic nonlinearities of the forward model is crucial (left figure) while the median field appears to be less
sensitive to the approximation of the CoM prior quantities (middle figure). It is clear that a too low number
of coordinates is detrimental to the field inference (right figure).

6. Application to seismic tomography

The CoM method is applied to a seismic tomography (ST) problem based on the propagation of the
P-waves in the first kilometer of the Earth’s crust. After introducing the test case in Section 6.1, the results
are presented in Section 6.2. Results for different field shapes are presented in Section 6.3. Section 6.4
provides a comparison with inference results with fixed hyperparameters.

6.1. Case presentation
We consider the inference of a 2D continuous seismic velocity field v from observations of traveltimes

between known sources and receivers. The observation vector dobs corresponds to the 5 sources and 23
receivers depicted in Fig. 10, such that the dimension of dobs is N = 115. The forward model is the eikonal
equation [54] that relates the traveltimes map ts(x) from a source at x = s to the velocity field v,

|∇ts(x)|2 =
1

v2(x)
, with ts(s) = 0 (42)

where x ∈ Ω is the spatial position. The quantities are expressed with SI units: t ∼ [s], x ∼ [m] and
v ∼ [m · s−1]. The observations dobs are synthetically generated by solving Eq. (42) with v = vtrue and
corrupting the traveltimes with an i.i.d. additive noise having a centered Gaussian distribution with standard
deviation equal to σε = 0.002 ∼ [s],

dobs = dtrue + ε, ε = N (0, σ2
εIN ). (43)

12



0.0 0.2 0.4 0.6 0.8 1.0
Spatial domain x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

g(
x)

True field
Median
Q01-99%
Q05-95%
MAP

0.0 0.2 0.4 0.6 0.8 1.0
Spatial domain x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

g(
x)

True field
Median
Q01-99%
Q05-95%
MAP

0.0 0.2 0.4 0.6 0.8 1.0
Spatial domain x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

g(
x)

True field
Median
Q01-99%
Q05-95%
MAP

0.0 0.2 0.4 0.6 0.8 1.0
Spatial domain x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

g(
x)

True field
Median
Q01-99%
Q05-95%
MAP
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For the sources-receivers geometry and the true field we consider, the noise is around 1% of the true times.
In this work, vtrue : Ω → R+ is adapted from [55] and depends only on the vertical coordinate. We again
consider a log-normal prior distribution:

v(x) = exp(g(x)), g ∼ N (c, k), k(x,y) = A exp

(
−‖x− y‖2

2l2

)
, (44)

where c ∈ R is a constant trend to infer. The field g(x) writes

g(x) = c+

r∑

i=1

λ
1/2

i ui(x)ξi, (45)

with (ui, λi)16i6r the eigenelements of EH(k). In that case, the forward model surrogate depends on the
coordinates ξ and on the constant trend c. A priori, the constant trend is independent from the coordinates
and from the other hyperparameters, leading to the following expression for the posterior distribution

πpost(ξ, q, c, σε) ∝ L(dobs|ξ, q, c, σε)π(ξ|q, c, σε)π(q, c, σε)

∝ 1√
(2πσ2

ε)N
exp



−
∥∥∥dobs − d(ξ, c)

∥∥∥
2

l2

2σ2
ε


× 1√

(2π)r |Σ(q)|
exp

(
−ξ>Σ(q)−1ξ

2

)

× π(c)πH(q)πσε(σε)

The prior distributions of the constant trend and the two hyperparameters are

c ∼ U(6.9, 8.1), A ∼ InvGamma(21, 1) and l ∼ U(10, 100). (46)

These priors have been chosen to generate a large set of plausible velocity fields, see Fig. 10 (left). The
number of reduced coordinates is r = 20; it accounts for 96.8% of the prior variance and allows building
accurate and tractable surrogate models with sparse grids. For r = 20, the best approximation of vtrue,

vrbest(x) = exp

(
cb +

r∑

i=1

λ
1/2

i ui(x)vi

)
,

where cb is the spatial mean of log vtrue and the coordinates vi result from the projection of log vtrue − cb on
the reference basis as done in Eq. (11). This approximation yields to low relative mean squared errors

‖vtrue − vrbest‖ / ‖vtrue‖ ' 2% and ‖d(vtrue)− d(vrbest)‖ / ‖d(vtrue)‖ ' 0.1%. (47)

In other words, the component of log vtrue that is orthogonal to the span of the reduced basis has only a
weak impact on the traveltimes.

6.2. Inference results
A PC order of 15 have been selected for the surrogate model of A±1/2Σ±1/2(l) and r logA + logdetΣ(l)

ensuring a RRMSE around 10−3. Regarding the traveltimes, a level 3 sparse grid with 15, 135 points
(dimension r + 1 = 21), requiring 75, 675 solves of the eikonal equation (42) because of the 5 sources, has
been used with a RRMSE of 1%.

With the surrogate, a MCMC chain burn-in of 106 steps is performed, where the (r + 4)2 MCMC
covariance proposal is adapted every 5×104 steps. The acceptance rate is converging around 24% at the end
of the burn-in. After the burn-in, 5×106 steps are performed. The analysis shows an effective sample size
around 6, 000 using the method proposed in [53]. Figure 11 depicts the posterior marginal histograms of the
coordinates together with their respective prior. The first coordinates, except for ξ1, are rather well inferred

14



with narrow distributions containing the projection coordinates while the last coordinates stay near their
prior. The posterior of the constant trend concentrates. The first coordinate ξ1 and the constant trend c
are difficult to distinguish since u1 is nearly constant. This explains why the first coordinate is not peaked
in contrast to ξ2−10. The posterior of the hyperparameters are also plotted on Fig. 11. We remark that the
observations are weakly informative for the prior variance whose posterior distribution remains close to its
prior. The posterior distribution of the correlation length is more concentrated in the middle of the prior
range and is asymetrical with a higher probability for low values. The fact that the posterior distribution
of l is not peaked highlights the interest of exploring the hyperparameters space to propose a large variety
of plausible fields. Furthermore, we computed the probability of the true log field to be a Gaussian process
realization with autocovariance function k(q). The best hyperparameters couple is (0.04, 28) which is broadly
consistent with the posterior distributions in spite of the noise level, that can affect these best values [31].
The noise level σε is correctly inferred with a distribution peaking at 1.8ms with a standard deviation of
0.1ms, consistent with the true value of 2ms.
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Figure 10: ST case - Distribution of the velocity field f prior (left) and posterior (right).

We now present our procedure to obtain the posterior distribution of the velocity field. To take into
account the uncertainty due to the truncation, we add the K next terms in the approximation as done
in [17]. A priori,

g(x) = c+

r∑

i=1

λ
1/2

i ui(x)ξi +

r+K∑

i=r+1

λ
1/2

i ui(x)Xi, (48)

with the R := r +K coordinates (ξ,X) ∼ N (0,Σ(q)), where Σ(q) ∈ RR×R is defined as in Eq. (20) and is
partitioned as follows

Σ(q) =

(
Σrr(q) ΣrK(q)
ΣKr(q) ΣKK(q)

)
. (49)

Thus, X|ξ ∼ N (µ,Σ(q)), where

µ = ΣKr(q)Σrr(q)−1ξ and Σ(q) = ΣKK(q)− ΣKr(q)Σrr(q)−1ΣrK(q). (50)

In practice, we use R = r+K = 20+60 = 80. Since generatingX knowing ξ and q requires the construction
of ΣKr(q) and ΣKK(q) and the decomposition of Σ(q), the cost can be significant. Subsamples of the
MCMC chains are extracted and their velocity field are generated randomly. In practice, one sample over
100 is selected. The median, MAP and two quantiles range of the field posterior and prior distributions are
represented on Fig. 10. The MAP is the sample from the chain that maximizes the likelihood. The median
and the MAP globally capture the main variations of the true field. The confidence intervals are quite tight
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Figure 11: ST case - Marginal posterior distributions of some coordinates ξ and (hyper)parameters. Best projection coordinates
are gkl coordinates (sparse noised observations not taken into account).

(especially at the top of the domain) and remain consistent with the true field. Larger uncertainties remains
at the bottom of the domain because of the lack of observations there.

6.3. Comparison for different fields
To evaluate the robustness of the CoM method, we repeat the inference for two versions of vtrue: i) vLW

obtained by smoothing vtrue to remove short wavelengths, and ii) vSW obtained by perturbing vtrue with
short wavelengths. Posterior fields and correlation lengths distributions are shown on Fig. 12. The posterior
uncertainties depend on the wavelengths of the field: they are rather smooth and tight for vLW and less regular
and larger for vSW. This behaviour is consistent with the modified true field shapes. Further, the correlation
length distributions are impacted in a coherent way: the small correlation lengths are much less likely for
vLW than for vSW whereas for vSW the whole prior range remains plausible. Clearly, vSW is more difficult to
infer than vLW because of its broader range of samples profile. The inference of short wavelengths structures
would require a denser arrangement of sources and receivers and possibly more information observations
with incidence angle at arrival and/or full waveform analysis.

6.4. Comparison with fixed hyperparameters inference
To assess the interest of the CoM method, we point out the limitations of using bases with fixed correlation

lengths to infer vLW and vSW. Two bases with different correlation lengths are built, i) l = 10 to capture short
wavelengths, and ii) l = 80 to focus on long wavelengths. For the two bases, an inference is led considering
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(a) Posterior field distribution for vLW
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(b) Posterior corr.length distribution for vLW
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(c) Posterior field distribution for vSW
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(d) Posterior corr.length distribution for vSW

Figure 12: ST case - Inference results for two fields with various wavelengths. Posterior distributions are obtained adding
K = 60 terms after the inference.

only the standard deviation noise σε, the constant trend c and the amplitude A as hyperparameters, and
inferring the coordinates in the basis parametrized with l = 10 or l = 80, with a standard Gaussian prior.

Figure 13 displays the posterior field confidence interval obtained by summing r = 20 (and K = 60)
coordinates. We see that a larger correlation length reduces the posterior uncertainties where the true
field is well correlated. However, large l values are unable to capture the small structures of vSW. On the
contrary, smaller correlation lengths can account for small structures of vSW but without reducing much the
prior uncertainties. This result can be explained by the unsufficient information to learn the short wavelength
features and the number of terms r = 20 used. Comparing Fig. 12 and Fig. 13 shows the importance of
allowing the inference of the covariance hyperparameters, since the hyperparameters choice is impacting the
posterior distribution a lot. In turn, the exploration of the hyperparameters space encountered in the CoM
method improves the estimation of the field.

7. Application to a 2D groundwater flow problem

The CoM method is finally applied to a two-dimensional case with more hyperparameters to illustrate
the approach’s feasibility on a more realistic problem. The proposed test case introduced in Section 7.1 is a
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Figure 13: ST case - Posterior field distribution for different field and inference bases. r = 20, K = 60 coordinates are added
after the inference.

source-sink groundwater flow problem inspired from [34]. The inference results discussed in Section 7.2 show
that the CoM method is able to deal with a parametrization adapted for anisotropic permeability fields.

7.1. Case presentation
A steady-state groundwater flow problem with impermeable boundary condition is considered,





−∇ · (κ(x)∇u(x)) = f(x), x ∈ Ω = [0, 1]2,

∇u(x) · n = 0, x ∈ ∂Ω\0,
u(0) = 0,

(51)

where u is the pressure field and κ is the permeability field. We set u(0) = 0 to ensure the well-posedness
of the problem. The right-hand side term f , plotted in Fig. 14 (left), consists of a source in the top-left
corner and a sink in the bottom-right corner, with rates following a squared-exponential shape centered on
the corners and having a characteristic width of 0.1. Given a realization of κ, the forward problem is solved
by the P2 triangular finite element method using a mesh generated using [56].

The objective is to infer the permeability field κ. The prior of log κ is a Gaussian distribution with an
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Figure 14: Case presentation: (left) Source term f , (middle) True log-field log κtrue, (right) True solution utrue. Black circles
are observation locations.
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Figure 15: Few samples log κ.

anisotropic squared exponential autocovariance function,

log κ ∼ N (0, k) with





k(x,y) = A exp

(−(x− y)>K(x− y)

2

)
, ∀ x,y ∈ Ω,

K = R(θ)

(
1/l21 0

0 1/l22

)
R(θ)>,

(52)

where R(θ) denotes the 2D rotation matrix with orientation θ and l1 and l2 are the two correlation lengths
characterizing the anisotropy. The four autocovariance hyperparameters priors are

A ∼ IG(3, 14), l1 ∼ U(0.1, 0.6), l2 ∼ U(0.1, 0.6), θ ∼ U(0, π/2). (53)

The true field κtrue used to generate the observations is a particular realization of the random process
described in Eq. (52) with {A?, l?1, l?2, θ?} = {1.3, 0.4, 0.15, π/3}. This realization is shown in the center
plot of Fig. 14, along with its associated pressure field utrue (right plot) computed with a fine uniform
triangulation of the domain with 27, 763 elements. The observations correspond to the pressure field utrue

measured over a uniform grid of 6× 6 sensors (see Fig. 14). An i.i.d. Gaussian noise of standard deviation
σε = 0.02 (around 1% of the average magnitude of the true values) is added to play the role of measurement
errors.

The truncated KL decomposition used for the inference has r = 20 modes which capture 97% of the prior
variance. The inference uses a coarser mesh composed of 7, 875 elements to introduce a model error term.
Using this parametrization, some samples of log κ drawn from its prior are shown in Fig. 15 to highlight the
rich structure of the a priori.
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Figure 16: Marginal distributions of kernel hyperparameters (left to right) first and second correlation lengths l1, l2, orientation
θ, amplitude A, noise level σε
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Figure 17: (second plot) MAP (third plot) mean and (fourth plot) standard deviation of the posterior log κ distribution. The
true log-field is recalled (first plot) in order to facilitate the comparison.

7.2. Results
The parameters to infer are r = 20 reduced coordinates, the amplitude A, the two correlation lengths l1

and l2, the orientation θ as well as the noise standard deviation σε, leading to a sampling space of dimension
25. As for the previous test cases, PC surrogates are built for Σ(q)±1/2/A±1/2 and logdetΣ(q)−r logA where
q = {l1, l2, θ} (see Section 4.3). A RRMSE lower than 1% is achieved with a 12th order PC expansion (total
degree truncation) fitted using a Latin hypercube sampling of size 1, 000. The P2 finite element method used
to solve Pb. (51) is fast enough to not require the use of a forward model surrogate.

The posterior marginals of the five hyperparameters are reported in Fig. 16. The marginal of the orien-
tation peaks around π/3 while the marginal of the two correlation lengths are distinct. The extent of the
marginal of A is sensibly reduced compared to its prior distribution. These marginals are somehow consistent
with the particular values of hyperparameters used for generating the true field. Finally, the marginal of
the noise level shows likely values slightly higher than the value used for generating the observations, as
expected due to a non-vanishing model error induced by using a coarser mesh and a truncation of the field
representation for the inference.

Figure 17 shows the true log field (first plot), its MAP estimate (second plot), posterior mean (third
plot), and standard deviation (fourth plot). It is seen that the MAP and the posterior mean field are close
to the true field. Further, the posterior uncertainty, as measured by the standard deviation, is higher in the
corners far from the observations and the injection and pumping areas.

To highlight the benefit of using a parametrized prior, we compared the inferred fields with two other
approaches based on an isotropic covariance (l1 = l2, no orientation). The first relies on the CoM method
with parameters {A, l} and the second uses a KL parametrization with a fixed correlation length l = 0.3 and
amplitude A = 1.5. In all cases, we use r = 20 reduced coordinates in the inference. We assess the inference
quality by reporting the posterior distribution of the norm of the difference between the inferred log-fields
and the true log-field. These distribbutions, reported in Fig. 18, show that a richer parametrization of the
prior significantly reduces the posterior distance to the true field. The error on the MAP estimates, shown
with the vertical lines, exhibits consistent behavior. These results demonstrate the importance of effectively
treating hyperparameters to enable more general priors.
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8. Conclusion

In this paper, we developed and implemented a novel approach to efficiently deal with hyperparameters
in Bayesian inference of Gaussian fields. Specifically, the approach relies on a representation of the field
in a fixed reduced basis, carefully selected, and the prior’s covariance of the reduced coordinates is seen
as a function of the hyperparameters. The cornerstone of our approach is a change of measure designed
to avoid the dependency of the likelihood on the hyperparameters. From a methodological viewpoint, the
change of measure yields a posterior that depends smoothly on the hyperparameters and reduced coordinates,
compared to alternative approaches such as the change of coordinates which can exhibit discontinuities.

This smoothness enables to use surrogate models to decrease the computational cost of the MCMC
sampling. In practice, the CoM results in a hierarchical Bayes formulation with a closed-form expression
for the hyperparameters-dependent prior: it allows the efficient sampling of the joint distribution with
an auxiliary variable. The method was demonstrated on three test cases with various complexities and
geometries. The numerical experiments demonstrate that the hyperparameters space exploration is i) highly
valuable because it provides a better estimation of the field uncertainties and ii) computationally tractable
thanks to the CoM formulation combined with surrogate models.

Further works should focus on the extension of CoM methods to non-Gaussian random processes with
possibly non stationnary prior autocovariance functions. In that case, the change of measure formulation
needs to be generalized to account for possible non Gaussian dependencies in the priors. For seismic to-
mography applications, it would be interesting to add other types of observations, such as the direction of
propagation, the maximum amplitude or even the full waveform, to improve the estimation of the reduced
coordinates with higher indices. More generally, the extension to three-dimensional cases is not conceptually
limited by the CoM method but by the number of KL modes required to accurately represent the field of
interest. Current work focuses on the development of adaptive dimension reduction techniques to tackle this
issue.
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AppendixA. Marginal distribution of the coordinates

In Section 4, the approximation ξ ∼ N (0, Ir) is used for the PC surrogate construction. This choice is
justified in the following. The conditional distribution of the coordinates ξ according to the hyperparameters
q writes

ξ|q ∼ N (0,Σ(q)) := N0(q), q ∼ πH (A.1)

The marginal distribution of the coordinates ξ over the hyperparametric domain is a compound probability
distribution. Note that this distribution has no reason to be Gaussian and its exact shape depends on the
distribution of the hyperparameters. Here, we want to find the normal distribution N1(µ,C) such that it
approximates the best ξ|q. That is to say, we want N1 to be the closest normal distribution in average along
q for a given distance. The Kullback–Leibler divergence between two multivariate Gaussian distribution is

2DKL(N0(q)||N1) = µ>C−1µ+ Tr(C−1Σ(q))− log
det(Σ(q))

det(C)
− r, (A.2)

where r is the dimension. Denoting Σ the expectation of Σ(q) with respect to q, we have

Σij =

∫

H
Σ(q)ijπH(q)dq

(20)
= (λiλj)

−1/2

〈〈∫

H
k(q)πH(q)dq, ui

〉
, uj

〉
(9)
= (λiλj)

−1/2
〈〈
k, ui

〉
, uj
〉 (10)

= δij .

(A.3)
By linearity and using Eq. (A.3), we get

EH(Tr(C−1Σ(q))) = Tr(C−1EH(Σ(q))) = Tr(C−1Σ) = Tr(C−1). (A.4)

So, the q-averaged Kullback–Leibler divergence simplifies as

EH(2DKL(N0(q)||N1)) = µ>C−1µ+ Tr(C−1) + log det(C)− EH(log det(Σ(q)))− r. (A.5)

Since C is symmetric positive definite, µ is set to zero to minimize the divergence. The covariance C∗
minimizes therefore

C∗ = argmin
C∈Sr

+

[
Tr(C−1) + log det(C)

]
, (A.6)

where Sr+ denotes the set of the symmetric positive definite matrices of size r× r. Furthermore, C ∈ Sr+ can
be decomposed

C = QLQ−1, (A.7)

with Q an unitary matrix and L a positive diagonal matrix. Then,

log det(C) =

r∑

i=1

logLii and Tr(C−1) = Tr(QL−1Q−1) =

r∑

i=1

L−1
ii (A.8)

The minimization consists in finding the positive diagonal elements of L, L∗11, . . . , L
∗
rr such that

L∗11, . . . , L
∗
rr = argmin

L11,...,Lrr

[
r∑

i=1

L−1
ii + logLii

]
. (A.9)

It is a sum of positive terms whose minimum is achieved when all the terms are minimal. It corresponds to
Lii = 1 for i = 1, . . . , r, leading to

C∗ = QL∗Q−1 = QIrQ
−1 = Ir (A.10)

To conclude, the normal distribution that minimizes the q-averaged Kullback–Leibler divergence to N0(q)
is N (0, Ir).
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