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A B S T R A C T

Background: DNA methylation alterations are early events in tumorigenesis and important

in the regulation of gene expression in cancer cells. Lung cancer patients have in general

a poor prognosis, and a deeper insight into the epigenetic landscape in lung adenocarci-

noma tumors and its prognostic implications is needed.
Results: We determined whole-genome DNA methylation profiles of 164 fresh frozen lung

adenocarcinoma samples and 19 samples of matched normal lung tissue using the Illu-

mina Infinium 450K array. A large number of differentially methylated CpGs in lung

adenocarcinoma tissue were identified, and specific methylation profiles were observed in

tumors with mutations in the EGFR-, KRAS- or TP53 genes and according to the patients’

smoking status. The methylation levels were correlated with gene expression and both

positive and negative correlations were seen. Methylation profiles of the tumor samples
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identified subtypes of tumors with distinct prognosis, including one subtype enriched for

TP53 mutant tumors. A prognostic index based on the methylation levels of 33 CpGs was

established, and was significantly associated with prognosis in the univariate analysis

using an independent cohort of lung adenocarcinoma patients from The Cancer Genome

Atlas project. CpGs in the HOX B and HOX C gene clusters were represented in the prog-

nostic signature.
Conclusions: Methylation differences mirror biologically important features in the etiology of

lung adenocarcinomas and influence prognosis.

ª 2015 The Authors. Published by Elsevier B.V. on behalf of Federation of European

Biochemical Societies. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction To address these issues, we have performed a genome-wide
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Lung cancer is one of the most frequent cancers and the lead-

ing cause of cancer-related deaths in the world (Jemal et al.,

2011). The discoveries of treatable genetic alterations, like

the EGFR-mutations and ALK-EML4 translocations, have

furthered our understanding, and provided new treatment al-

ternatives for lung cancer patients with metastatic disease

(Politi and Herbst, 2015). Mutations in the EGFR-, KRAS- and

TP53 genes are important in lung cancer biology and increased

understanding of the molecular alterations associated with

themutation profiles in lung cancer tumors is needed. Despite

this new biological knowledge and improvements in diagnos-

tics, surgery, and radiotherapy, the numbers of patients with

relapse after curative treatment are high. It would be of great

value to have a better prognostic molecular signature to guide

clinicians in considerations about adjuvant treatment.

Epigenetic changes in tumor tissue are involved in the path-

ogenesis of lung cancer (Heller et al., 2010) and are important

regulators that affect both gene activation and gene silencing.

DNA methylation is the covalent addition of a methyl group to

the 5th carbon of the cytosine base within the cytosine-

guanine (CpG)-dinucleotide in theDNA.This is shown tochange

the chromatin structure and affect the binding of transcription

factors toDNA,andmaythus regulate the transcriptionofgenes

(Heller et al., 2013; Ndlovu et al., 2011; Selamat et al., 2012).

DNA methylation levels of a number of genes have been

found altered in lung cancer tissue (Heller et al., 2013; Lokk

et al., 2012; Mor�an et al., 2012; Pfeifer and Rauch, 2009). Studies

have identified genes that have different methylation levels

according to the histology of the lung cancer tissue (Lokk

et al., 2012;Mor�an et al., 2012), and genes that are differentially

methylated between tumors from smokers and never-

smokers (Lokk et al., 2012; Selamat et al., 2012). Little is known

about how the methylation of genes differs between lung ad-

enocarcinomas with different mutation status of the EGFR-,

KRAS- and TP53 genes. DNA methylation profiling has also

confirmed the existence of epigenetic subtypes in cancers

(Karlsson et al., 2014; Shinjo et al., 2012). Other studies have

identified single candidate genes or sets of genes where DNA

methylation may be linked with prognosis in NSCLC (Brock

et al., 2008; Sandoval et al., 2013).

The majority of research on DNA methylation in lung can-

cer has so far included a limited number of samples or genes,

focused on CpGs in the promoter regions and mostly lacks

mRNA expression data, mutation status and survival data.
methylation study including 164 lung adenocarcinoma tissue

samples and 19 matched normal lung tissue samples. Using

the Illumina Infinium HumanMethylation450 BeadChip plat-

form we investigated the differentially methylated CpGs in

lung adenocarcinoma tumors and methylation changes spe-

cific to tumors from never-smoking patients, and in tumors

with mutations in the EGFR-, KRAS- or TP53 gene. By using

the Agilent 60K mRNA expression microarray, we analyzed

themRNA expression of 121 of the lung adenocarcinoma sam-

ples and performed correlation analysis to reveal how mRNA

expression may be influenced by DNA methylation. Last, we

wanted to identify a prognostic index based on the DNA

methylation levels that could separate the patients into

groups with good or poor prognosis.
2. Material and methods

2.1. Patients and tissue samples

Participants in this study were patients with operable lung

cancer tumors submitted to the cardiothoracic surgery

department at Oslo University Hospital-Rikshospitalet, Nor-

way, from 2006 to 2011. None of the patients included had

received chemotherapy or radiotherapy prior to surgery. 164

lung adenocarcinoma samples and 19 matched normal lung

tissue samples remained for further analyses after patholog-

ical re-examination and preprocessing of the methylation

data. Further information about the patients and the handling

of the tissue are described in the Supplementary file. The proj-

ect was approved by the institutional review board and

regional ethics committee (S-05307). All patients included

received oral and written information and signed a written

consent before entering the project. A separate cohort of pa-

tients from The Cancer Genome Atlas (TCGA) project (“The

Cancer Genome Atlas,” n.d.) was used for validation of the

prognostic index. DNAmethylation data was available in a to-

tal of 450 tumor specimens at the time of analysis, but detailed

follow-up information was only available for 244 patients and

thus included in the survival-analysis. For these patients, mu-

tation status of EGFR, KRAS and TP53 was either not available,

or only available for very few samples. The main characteris-

tics of the patients included in the final analysis and the vali-

dation cohort are listed in Table 1.
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Table 1 e Patient characteristics and clinicopathological data for
included cohorts.

Discovery
cohort

Validation
cohort TCGA

Tumor Normal
lung

All
samples

Samples
included in
the survival-

analysis

n ¼ 164 n ¼ 19 n ¼ 450 n ¼ 244

Age (years):

Median: 65 57 66 67

Range: 39e84 47e79 33e88 33e86

Sex:

Females 91 10 230 130

Males: 73 9 194 114

NA: 26

Smoking history:

Current/former: 143 14 347 197

Never: 21 5 64 34

NA: 39 13

KRAS mutation status:

KRAS mutation: 53 16 9

KRAS wt: 101 35 25

KRAS not

tested/unknown:

10 399 210

EGFR mutation status:

EGFR mutation: 20 19 15

EGFR wt: 141 49 32

EGFR not

tested/unknown:

3 382 197

TP53 mutation status:

TP53 mutation: 58 Unknown Unknown

TP53 wt: 93 Unknown Unknown

TP53 not

tested/unknown:

13 Unknown Unknown

Stage:

Ia: 44 109 65

Ib: 49 123 68

IIa: 27 42 22

IIb: 13 62 37

IIIa: 29 60 37

IIIb: 9 5

IV: 2 18 9

NA: 27 1

Adjuvant chemotherapy or radiation:

Yes: 51 Unknown

No: 113 Unknown

Patient

outcome (PFS)a:

n ¼ 162 n ¼ 244

Event 63 78

No event: 99 166

Follow up time (months):

Mean: 42.3 16.7

Median: 44 13.7

Range: 2e99 2e88.4

a PFS: Progression free survival.
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2.2. DNA methylation and mRNA expression data

DNA methylation status of tumor tissue and normal lung tis-

sue was established using Illumina Infinium HumanMethyla-

tion450 BeadChips that cover 485,764 cytosine positions of the

human genome. Preprocessing and normalization involved
o

steps of probe filtering, color bias correction, background sub-

traction and subset quantile normalization as previously

described (Touleimat and Tost, 2012). After preprocessing of

the data 456,946 probes and 164 tumor samples and 19 normal

lung samples were included.

The bioinformatic analyses were performed using two

different datasets. The first dataset includedmethylation levels

of all probes that remained after the preprocessing step. The

second dataset, the “gene region collapsed” methylation data-

set, was constructed to reduce the dimensions of the methyl-

ation data and to focus the analyses on regions that are most

relevant for gene function. In this dataset, we used the median

methylation levels of all CpGs mapped to one of the six subre-

gions in the gene. The subregions are located 1) between 1500

and 200 base pairs upstream of transcription start site (TSS),

2) between 200 bp upstream of TSS to the TSS, 3) in the

50UTR, 4) in the first exon, 5) in the gene body or 6) in the

30UTR. The intergenic CpGs were not included in this dataset.

The “gene region collapsed” dataset included 79,000 targets.

The rawdata and normalized data are available inGene Expres-

sion Omnibus (GEO) with accession number GSE66836. Tech-

nical validation of the methylation data was performed by

pyrosequencing of 11 selected probes in 162 tumor samples

and 18 normal lung tissue samples (Supplementary file).

A subset of the lung adenocarcinoma samples (n¼ 121) had

mRNA expression data available. The mRNA expression was

assessed using gene expression microarrays from Agilent

technologies (SurePrint G3 human GE, 8 � 60 K)

(Supplementary file). The mRNA expression data is available

in GEO with accession number GSE66863.

2.3. Statistical analyses

All statistical analyses were performed using the R computing

framework (R Core Team, 2014) and the R-script is added as a

supplementary text file (Lung_450k_publication.txt).

2.3.1. Hierarchical clustering
Unsupervised hierarchical clustering was performed using the

DNA methylation levels of the 1000 most variable gene re-

gions. The distance matrix was calculated using Pearson cor-

relation and average linkage was applied. The differences in

the distribution of the clinical and molecular variables be-

tween the different clusters were analyzed using Chi-square

test and Fisher’s exact test when appropriate. Log-rank test

and KaplaneMeier curves were used to test the clusters asso-

ciation with time to progression, and a multivariate Cox

regressionmodel was applied to adjust for known clinical vari-

ables. A p-value< 0.05 was considered statistically significant.

2.3.2. Differentially methylated genes between groups
SignificanceAnalysis ofMicroarrays (SAM) (Tusher et al., 2001)

using standardizedWilcoxon rank statistics was performed to

identify differentially methylated probes between the identi-

fied clusters and between lung adenocarcinoma samples and

normal lung tissue samples. The analyses were performed us-

ing the SAM function, R package samr (Tibshirani R, Chu G,

Balasubramanian N, n.d.) with 100 permutations. We first

applied the SAM analysis between all lung adenocarcinoma

samples and all normal lung tissue samples (unpaired SAM
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icense
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list), and then only to the paired lung adenocarcinoma tissue

and the normal lung tissue samples (paired SAM list). The

methylation probes significantly altered in both the paired-

and unpaired SAM analyses were used for further analysis

(overlapping SAM list). The same steps as above were per-

formed on the “gene region collapsed” methylation dataset.

SAM analyses were applied to study differentially methylated

CpGs between tumor tissue from never-smokers and

smokers/former smokers, and between mutated and wild

type tumors of the EGFR, KRAS and TP53 genes. To identify

differentially methylated gene regions between the identified

clusters, multiclass SAMwas applied, and the significant gene

regions were associated with the different clusters by identi-

fying the cluster with the median methylation level furthest

from the other clusters (calculatedwith subtraction of theme-

dian methylation level for each cluster from the median

methylation levels across all clusters). Methylation differ-

ences with FDR q-value smaller than 0.01 (1%) and difference

between the median methylation levels in the two groups

more than 0.2 (20%) were considered statistically significant.

2.3.3. Integration of mRNA expression
The association betweenDNAmethylation andmRNA expres-

sion was investigated by two approaches: 1) DNAmethylation

level of each “gene region” was compared with the expression

of the corresponding gene. DNA methylation level and gene

expression was tested for non-zero correlation using Pearson

correlation (R function corr.test). 2) DNA methylation level of a

CpG and gene expression were tested for non-zero correlation

using Pearson correlation if a CpG was within 100 kb of TSS of

a gene. The function eMap1 in the R package eMap (SunW, n.d.)

was applied for this analysis. A multiple-comparison correc-

tionwas performed for both analyses using Bonferroni correc-

tion, and a corrected p-value <0.05 was considered as

statistically significant. A negative correlation between DNA

methylation and gene expression refers to the situationwhere

increasedmethylation level is associated with decreased gene

expression (or opposite), while a positive correlation refers to

the situation where increased methylation level is associated

with increased gene expression (or opposite).

2.3.4. Ingenuity Pathway Analysis
The datawas analyzed using Ingenuity Pathway Analysis (IPA,

http://www.ingenuity.com/). Core analyses were assessed to

find the level of representation of our selected genes in

already defined canonical pathways. The significance of the

association between our defined gene lists and the molecular

functions, diseases and canonical pathways are calculated us-

ing Fisher’s exact test and the association with the canonical

pathways are corrected for multiple testing by using a

Benjamini-Hochberg approach.

2.3.5. Prognostic index
Time to progressionwas calculated from the date of surgery to

the date of diagnosis of relapse, distant metastasis or lung

cancer death. Two patients in the discovery cohort had single

distant metastasis at the time of surgery (stage IV) and were

excluded from the survival analysis.

Lasso regression analysis presents a weighted approach

indicating how well a set of predictors predicts progression-
free survival (Bøvelstad et al., 2007; Tibshirani, 1996). The

analysis was performed using a set of methylation probes

filtered by the correlation to mRNA expression (nominal p-

value < 0.05) and the variation in the methylation levels for

each probe (interquartile range > 0.1 (10%)).

Patients were divided into high and low risk groups accord-

ing to the following index for patient i:

indexi ¼
Xn

g¼1

bg$Xgi

where g is the target (CpG or gene), n is the number of targets,

bg is the Lasso coefficient for target g and Xgi is the methyl-

ation value for target g in patient i. The patients were divided

into two groups based on the mean prognostic index; those

with prognostic index below the mean (low index) and those

with prognostic index above the mean (high index). The two

groups were tested with log-rank analysis and KaplaneMeier

curves.

Log-rank tests were performed to identify clinicopatholog-

ical factors (sex, stage, age at surgery, adjuvant chemo-

therapy, smoking status and EGFR-, KRAS- and TP53

mutational status) with significant influence on progression-

free survival using the functions Surv, survfit and survdiff (R

package survival (Therneau T, n.d.)).

A Cox regression model was applied for multivariate sur-

vival analysis using the function coxph (R package survival

(Therneau T, n.d.)). Factors included in themultivariatemodel

were stage, age at surgery, adjuvant chemotherapy, smoking

status and the prognostic index. A p-value < 0.05 was consid-

ered as statistically significant. Both univariate and multivar-

iate analyses were also performed in the validation cohort.
3. Results

Genome-wide DNA methylation profiles using the Illumina

Infinium 450K array were obtained for 164 lung adenocarci-

noma samples and 19 matched normal lung tissue samples.

The tumor samples were tested for mutations in the EGFR-,

KRAS- and TP53 genes and 20 tumors harbored EGFR muta-

tions (12.4%), KRAS and TP53 mutations were found in 53

(34.4%) and 58 (38.4%) tumors, respectively. All of the patients

with EGFR-mutated tumors were never or former smokers

while only 3 patients with KRAS-mutated tumors and 8 pa-

tients with tumors with mutation in the TP53 gene were

never-smokers. EGFR- and KRAS-mutations were mutually

exclusive. Nine tumors had both EGFRmutation andmutation

in the TP53 gene and 12 of the KRAS-mutated tumors also con-

tained a TP53 mutation. Pyrosequencing was performed as

technical validation, and this data showed good concordance

with the array results especially when the difference between

the median methylation levels between groups were more

than 20% (Supplementary Table 1).
3.1. Hierarchical cluster analysis

Unsupervised hierarchical clustering of the 164 lung adeno-

carcinoma samples using the most variable gene regions

separated the tumors into three main clusters (Figure 1A).
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Figure 2 e This column plot shows the numbers of hypermethylated

and hypomethylated gene regions between lung adenocarcinoma

samples and normal lung tissue samples. Both the hyper- and

hypomethylated gene regions are located in all gene regions. This plot

is based on the results from the “gene region collapsed” dataset.
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Cluster 1 was enriched for TP53 mutated tumors (p < 0.001)

and cluster 2 was enriched for tumors from never-smokers

(p < 0.001). All tumors in cluster 3 were from smokers/former

smokers and this cluster had significantly fewer EGFR

mutated tumors (p ¼ 0.031). Sex and KRAS mutation status

were evenly distributed in the three clusters. Tumor stage

was not significantly enriched in any cluster (p ¼ 0.064), but

there was a trend towards a higher proportion of early-stage

tumors in cluster 2. To identify gene regions accounting for

the epigenetic differences between the three clusters we per-

formed multiclass SAM analysis. This analysis revealed 3440

differentially methylated gene regions between the clusters

(Supplementary Table 2). Cluster 1 included 1641 differentially

methylated gene regions that in the pathway analysis were

associated with the TREM 1 signaling pathway (BH-corrected

p-value¼ 0.031). 958 of the gene regionswere hypomethylated

and 683 gene regions were hypermethylated compared with

the other clusters. 647 gene regions (331 hypomethylated

and 316 hypermethylated) were associated with cluster 2

and these genes were significantly associated with granulo-

cyte and agranulocyte adhesion and diapedesis (BH-corrected

p-value ¼ 0.003). The aryl hydrocarbon receptor signaling

pathway (BH-corrected p-value ¼ 0.007) were significantly

associated with the 1152 gene regions in cluster 3. In this clus-

ter 583 gene regions were hypomethylated and 569 were

hypermethylated. Results from IPA with corresponding p-

values are listed up in Supplementary Table 3. Log-rank test

and KaplaneMeier curves revealed that patients with tumors

in cluster 2 had a better prognosis and patients with tumors in

cluster 1 had the worst prognosis (p-value ¼ 0.014) (Figure 1B).

This was still significant after adjusting for clinical variables in

the multivariate analysis (Supplementary Table 4).
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3.2. Methylation differences in lung adenocarcinoma
tissue and normal lung tissue

The paired and unpaired analyses between lung adenocarci-

noma tissue and normal lung tissue revealed that themethyl-

ation in lung adenocarcinomas was radically changed from

normal lung tissue with altered methylation in 14,530 CpGs

representing 5148 unique genes. This constitutes 3% of the

CpG probes on the array. 59.7% of the differentially methyl-

ated CpGs were hypermethylated (8670 probes representing

3492 genes) and 40.3%were hypomethylated (5860 probes rep-

resenting 2062 genes) in the lung adenocarcinoma tissue sam-

ples. Of the identified CpGs, 7082 CpGs representing 2921

genes were significantly differentially methylated also in the

TCGA data cohort (Benjamini-Hochberg-corrected p-

value < 0.05) (Supplementary Table 5).

SAM was also applied to the “gene region collapsed”

methylation dataset comparing the differentially methylated

gene regions between the lung adenocarcinoma tissue and

the normal lung tissue. This analysis revealed 1222 differen-

tially methylated gene regions, representing 1120 unique

genes. 718 gene regions were hypermethylated (representing

666 unique genes) and 504 gene regions were hypomethylated

(representing 467 unique genes). Both the hypermethylated

and hypomethylated loci were distributed in all gene regions

(Figure 2).
Some of the hypermethylated CpGs in tumor tissue were

localized in cancer related genes like Transforming growth

factor ß (TGFß) and Insuline-like Growth Factor 2(IGF2) and

some have previously been reported as hypermethylated in

lung cancer tissue such as the HOX gene clusters (Lokk

et al., 2012; Rauch et al., 2007). Immunmodulating genes

such as the CCL genes (Chemokine (ceC motif) Ligand 3, 4, 8,

11 and 13, 14, 15, 26) and interleukins (IL21R, IL28B, IL2RA,

IL31RA, IL6 and IL4I1) were identified as hypomethylated. To

investigate the molecular and cellular functions of the genes

differentially methylated in lung adenocarcinoma tissue, we

performed a core analysis using the results from the “gene re-

gion collapsed” data in the Ingenuity Pathway Analysis (IPA).

The differentiallymethylated genes between lung adenocarci-

noma tissue and normal lung tissue were significantly associ-

ated with cell-to-cell signaling and interaction and cellular

movement and transport. Sub-analysis with the hypermethy-

lated genes was associated with gene expression, cellular

growth and proliferation, and the hypomethylated genes

were significantly associated with biological functions like in-

flammatory response and inflammatory disease. The top ca-

nonical pathways for the hypomethylated genes were

“granulocyte and agranulocyte adhesion and diapedesis”.
3.3. Methylation patterns in lung adenocarcinomas
associated with clinical variables and mutation status of the
tumor

We identified 225 CpGs differentially methylated between

tumors from never-smokers and smokers/former smokers

(Supplementary Table 6). All CpGs were hypermethylated

in the tumors from the smokers/former smokers. The 225

CpGs represented 147 unique genes. LGALS4 was the top

differentially methylated gene and had a strong correlation

with the mRNA expression (Supplementary Figure 1).
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Table 2 e DNA methylation probes included in the prognostic
index.

Probe Xa Gene Regionb

M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 3 3 0e3 4 3336

 18780261, 2016, 2, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1016/j.m

olonc.2015.10.021 by C
E

A
 N

ational, W
iley O

nline L
ibrary on [18/04/2024]. See th
Forty-two of the differentially methylated genes were cancer

associated according to the IPA analysis. The association be-

tween methylation level and smoking status of these CpGs

was also investigated in the TCGA. None of the CpGs were

significantly differentially methylated in the TCGA data;

however, almost all CpGs were observed with a small in-

crease in methylation level in tumors from smokers/former

smokers.

454 CpGs were differentially methylated between the

EGFR-mutated and EGFR wild type tumors, representing 275

unique genes (Supplementary Table 7). Most of the differen-

tially methylated CpGs were hypermethylated in the EGFR-

mutant tumors with 436 CpGs hypermethylated and only 18

CpGs hypomethylated in the EGFR-mutant lung adenocarci-

nomas. Core analyses in IPA show that the two top canonical

pathways of these genes are EIF2 signaling and the mTOR

pathway. Only EIF2 signaling pathway remained significant

after multiple testing corrections.

The SAM analysis of the KRAS-mutated tumors compared

with KRASwild type tumors identified only 2 CpGs, represent-

ing PFDN1 and MAEA that both were hypomethylated in the

KRAS-mutated tumors (Supplementary Table 8).

A total of 2375 CpGs (representing 834 unique genes) were

differentially methylated between TP53-mutated and TP53

wild type tumors. 85.3% (2026) of the CpGs were hypomethy-

lated and 14.7% (349) were hypermethylated in the TP53-

mutated tumors (Supplementary Table 9).
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3.4. Correlation with mRNA expression

The correlation between DNA methylation level and mRNA

expression was examined by Pearson correlation analyses.

Significant association between gene expression and DNA

methylation was identified for 978 gene regions representing

737 unique genes. Methylation level of 671(68.6%) gene regions

was negatively correlated to 520 unique genes while
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Figure 3 e Significant correlations between the median DNA

methylation levels of gene regions and mRNA expression. This plot

shows both the negative and positive correlations and location of the

methylated regions. This plot is based on the results from the “gene

region collapsed” dataset.
methylation level of 307 (31.4%) gene regions was positively

correlated to 245 unique genes. All analyzed associations are

shown in Supplementary Table 10. Negative correlations be-

tween gene expression and DNAmethylationweremost often

found in loci located in the promoter region, while positive

correlations were most often found in loci outside promoter

regions (Figure 3).

The correlation analyses of gene expression levels and

methylation level of single CpGs within 100 kb of TSS iden-

tified that the methylation level of 4465 CpGs was correlated

to gene expression with a Bonferroni corrected p-value of

<0.05, representing 1070 unique genes. In this analysis the

methylation levels of 2347 CpGs (435 unique genes) were

observed with a negative correlation and 2118 CpGs (716

unique genes) were observed with a positive correlation.

The negative correlations were located at all distances be-

tween �100 kb and þ100 kb from TSS, but were enriched

close to the TSS. The positive correlations were evenly

distributed across the whole area analyzed (Supplementary

Figure 2).
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a Lasso coefficient (positive coefficient reflects that a high methyl-

ation level is associated with adverse prognosis).

b CpG location relative to the gene.
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3.5. Prognostic index

In order to identify a smaller number of CpGs associated with

time to progression a Lasso approachwas applied. The dataset

was filtered by correlation with mRNA expression and varia-

tion in the methylation levels so that 76,478 probes remained

in the analysis. Using this method we identified a signature of

33 CpGs associated with time to progression (Table 2). The

prognostic index for each patient was based on the estimated

coefficients (X) from the signature and themethylation values

of the 33 probes in each lung adenocarcinoma sample.

Usinga log-rank test,we identified that thepatientswith low

prognostic index had a significant better prognosis than the pa-

tients with a high prognostic index (p-value < 2.2 � 10�16;

Figure 4A).

Univariate survival analysis was performed on different

clinical variables. In addition to the prognostic index,

stage was significantly associated with time to progression

(p ¼ 0.003) (Supplementary Table 11).

Multivariate survival analysis was performed using Cox

regression to study the influence of known prognostic factors.

The prognostic index remained significantly associated with

time to progression after adjusting for clinical variables (p-

value ¼ 1.02 � 10�13; Supplementary Table 12).

To validate the prognostic index we used a separate cohort

of patients with lung adenocarcinoma tumors from The Can-

cer GenomeAtlas (TCGA) project (“The Cancer GenomeAtlas,”

n.d.). In this cohort the patients with low prognostic index had

a significantly better prognosis than the patients with

high prognostic index (p-value ¼ 0.0269) (Figure 4B and

Supplementary Table 13), but did not reach significance in

the multivariate analysis (p-value ¼ 0.107) (Supplementary

Table 14). None of the clinical parameters were significantly

associated to prognosis in the multivariate model in the

TCGA cohort.

The probes in the prognostic signature were correlatedwith

the mRNA expression of 51 genes listed in Supplementary
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Figure 4 e A) KaplaneMeier curves of patients with high or low prognost

dichotomized to high or low index based on the median value. Low progn

(p [ 2.2 3 10L16). B) KaplaneMeier curves of patients with high or low

significantly associated with better prognosis (p [ 0.0269).
Table 15. The CpGs in the prognostic index had both positive

and negative correlation with the mRNA expression. Some of

the CpGs were correlated to a number of genes, like the CpG

located in the HOXB7 gene that were positively correlated

with the expression of HOXB2, B5, B6, B8, and B9, and the

CpG located in HOXC4 that had a positive correlation with

HOXC4, C5, C6, C8, C9, C10, and C12.
m

4. Discussion

Epigenetic alterations are important in carcinogenesis, and

increased knowledge about the impact in lung cancer can

shed light on biological aspects with potential clinical applica-

tion. We have identified clusters of patients based on the tu-

mor’s DNA methylation with different prognosis, and found

a substantial amount of differentially methylated CpGs be-

tween lung adenocarcinoma tissue and normal lung tissue.

Differential DNA methylation between tumors from smokers

and never-smokers, and tumor tissues with different EGFR-,

KRAS- and TP53 mutational status were also identified. By

correlating the DNA methylation levels with mRNA expres-

sion levels we identified genes that may be regulated by

DNA methylation. The mRNA expression was both positively

and negatively correlated with the DNA methylation levels,

demonstrating the complexity of the DNAmethylation regula-

tion. We also report a prognostic index based on the DNA

methylation levels of 33 CpGs associated with time to progres-

sion of the disease.

The hierarchical cluster analysis based on methylation

values of themost variable gene regions of the lung adenocar-

cinomas revealed three different clusters (Figure 1A). The

different clusters were associated with genes that affected

different molecular pathways, and interestingly differentially

methylated genes in cluster 1 were associated with the “The

triggering receptor expressed on myeloid cells 1 (TREM1)

signaling pathway”. TREM 1 belongs to the Immunoglobulin
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ic index in the discovery cohort. The prognostic index values were

ostic index was significantly associated with better prognosis

prognostic index in the TCGA cohort. Low prognostic index was
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(Ig) family of cell surface receptors and is known to amplify

immunological responses and is an important mediator of

septic shock (Bouchon et al., 2001; Colonna and Facchetti,

2003). NSCLC tumors have been shown to have high expres-

sion of TREM 1, and this has also been linked to poor survival

(Ho et al., 2008; Yuan et al., 2014). Differentially methylated

genes in cluster 3 were linked to the aryl hydrocarbon receptor

signaling pathway. This pathway is induced by polycyclic aro-

matic hydrocarbons (PAH), a component in cigarette smoke,

and this pathway has been linked to cigarette smoke-

induced lung cancer (Tsay et al., 2013). All patients with tu-

mors in cluster 3 were smokers/former smokers, and DNA

methylation may be a mechanism to alter this important

pathway in carcinogenesis. Patients with tumors in different

clusters had significantly different prognosis, with more ad-

vantageous prognosis with a 5-year progression-free survival

of 72% for patients in cluster 2 (Figure 1B). This cluster was

enriched with tumors from never-smoking patients and it

was a trend towards more early stage tumors which may

affect the prognostic value, although it remained significant

after adjusting for this in the multivariate analysis

(Supplementary Table 4). Others have also reported subtypes

based on DNA methylation (Karlsson et al., 2014), and the re-

sults presented here support the existence of clinically rele-

vant subgroups of adenocarcinomas with prognostic impact.

We identified a substantial difference in DNA methylation

between the lung adenocarcinoma tissue and normal lung tis-

sue, with a considerable amount of CpGs that were hypome-

thylated. The majority of these CpGs were validated in the

TCGA cohort. Identifying specific differentially methylated

CpGs may reveal promising candidate molecular markers for

diagnostic tests and possible targets for epigenetic therapy

(Carvalho et al., 2012). Lung cancer patients have a poor prog-

nosis, mainly because the disease is diagnosed in late stages

due to its late presentation of symptoms. Biomarkers based

on DNA methylation can be relatively easily accessible in bio-

logical materials such as serum, bronchial brushings, and

bronchoalveolar lavage (BAL) samples, and it is quite stable

and insensitive to handling in the laboratory (Laird, 2003).

DNA methylation is an early event in cancer development

and thus well suited as cancer biomarker (Fleischer et al.,

2014), either alone or combined with other diagnostic ap-

proaches like CT scan or PET imaging.

Earlier reports comparing DNAmethylation levels between

lung tumors and normal lung tissue hasmainly focused on re-

gions located in the promoter area of genes (Lokk et al., 2012;

Mansfield et al., 2014; Mor�an et al., 2012; Pfeifer and Rauch,

2009; Rauch et al., 2008; Selamat et al., 2012). In the present

study, we identified a large number of hypermethylated

CpGs located in the gene body and 30UTR as well as in inter-

genic areas. Some of these genes with hypermethylated

CpGs are of special interest in cancer development. The RB1

gene was the first tumor suppressor gene identified and is

one of the key regulators of entry into cell division. CpGs

located in the RB1 gene were significantly hypermethylated

in lung adenocarcinoma tissue in our study and this may be

an important regulatory mechanism of this important tumor

suppressor gene (Di Fiore et al., 2013). CpGs in the TGFß gene

family were also frequently hypermethylated in lung adeno-

carcinoma tissue in our study. These genes are often
upregulated in cancer and believed to be involved in metasta-

tic formation and resistance to radiotherapy (Ahn et al., 2014),

we did however not find correlation with mRNA expression in

our data. The IGF2 gene was also hypermethylated in lung

adenocarcinoma tissue. DNA methylation was positively

correlated with mRNA expression, and this gene has previ-

ously been reported overexpressed in many cancers

(Livingstone, 2013). DNA methylation may be an important

regulatory mechanism of this gene.

DNA hypomethylation is thought to contribute to oncogen-

esis by induction of genomic instability and activation of

proto-oncogenes. Cancer specific DNA hypomethylation of in-

dividual CpGs are less studied, and most of the early tech-

niques were designed to detect only hypermethylated

regions (Jovanovic et al., 2010). Hypomethylated regions in

squamous cell carcinomas often occur at repetitive sequences

(Rauch et al., 2008). In our data, a large amount of hypomethy-

lated genes were associated with immune response, such as

chemokines and interleukins. Inflammatory response was

one of the most relevant biological functions in the IPA anal-

ysis, and the top canonical pathway was “granulocyte and

agranulocyte adhesion and diapedesis”, which was also asso-

ciated with cluster 2. Inflammation and immune signaling

have previously been reported regulated by epigenetic events

in other cancer types (Farkas et al., 2013; Fleischer et al., 2014),

but it has not been linked with DNA methylation in lung can-

cer tumors to our knowledge. Extravasation of leukocytes and

tumor cells may be important events in metastasis formation

(Strell and Entschladen, 2008), and it would be of great interest

for further studies. The methylation changes associated with

immune signaling may reflect immune signaling by tumor

cells or occur in infiltrating non-tumor cells and is highly

interesting considering the great progress made in immu-

nology and immunotherapy in cancer.

Smoking is a well-known risk factor for lung cancer devel-

opment and hypermethylation may be involved in tobacco

smoke-induced lung carcinogenesis (Lyn-Cook et al., 2014;

Toyooka et al., 2003). It is estimated that 10e25% of all patients

with lung cancer are never-smokers (Couraud et al., 2012), and

their tumors may have different genetic and epigenetic pro-

files. Our cluster analysis identified specific clusters based

on DNAmethylation that were linked with smoking. We iden-

tified 225 differentiallymethylated CpGs in the lung adenocar-

cinoma tissue from never-smoking patients. All differentially

methylated CpGs were hypermethylated in tumors from

smokers, suggesting an association between tobacco smoke

and DNA hypermethylation. Interestingly, the CpG with the

largest difference in methylation levels between the two

groupswas located in LGALS4. This genewas negatively corre-

lated with the mRNA expression, suggesting down regulation

of the gene expression in tumors from smoking patients.

LGALS4 modulates cellecell and cellematrix interactions,

and has also been found downregulated in colorectal cancers,

and may act as a tumor suppressor gene (Satelli et al., 2011).

This was one of five genes that were hypermethylated in tu-

mors from smoking patients compared with tumors from

never-smokers in a study by Selamat et al. (2012). When

comparing methylation level between smokers and never-

smokers in the TCGA cohort, none of the CpGs identified in

the present studywere significantly differentiallymethylated;
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however, there was a clear trend that these CpGs were hyper-

methylated in tumors from smokers/former smokers.

It is well known that patients with EGFR-mutated lung

adenocarcinoma tumors have a different clinical course

than patients with EGFR wild type tumors. We identified 454

differentially methylated CpGs between EGFR mutated and

EGFR wild type tumors, and most were hypermethylated in

the EGFR-mutant tumors. Core analyses in IPA showed that

these genes may be associated with the EIF2-signaling

pathway and mTOR signaling. The mTOR-pathway is down-

stream for the EGFR and often activated in human lung can-

cers with EGFR mutations (Kawabata et al., 2014). Dong et al.

found that the mTOR inhibitor everolimus synergizes with

gefitinib (EGFR inhibitor) to achieve treatment response in

lung cancer cell lines (Dong et al., 2012), and mTOR activity

may contributed to resistance to EGFR TKI in lung cancer cells

(Fei et al., 2013). Kawabata et al. have demonstrated that the

mTOR inhibitor rapamycin inhibits tumor growth in mouse

models with the EGFR TKI resistant T790M mutation

(Kawabata et al., 2014). Our findings suggest that methylation

changes of involved genesmay contribute to this interplay be-

tween the two pathways.

KRAS is frequently mutated in lung adenocarcinoma tu-

mors. Only two CpGs were hypomethylated in the KRAS-

mutated tumors as compared to the KRAS wild type tumors.

The KRAS-mutated samples also have few differentially

expressed microRNAs (Bjaanaes et al., 2014). The methylation

differences were more substantial between the TP53-mutated

tumors and TP53 wild type tumors, with 2375 differentially

methylated CpGs. This has previously been studied in breast

cancer tissue using the Illumina Golden Gate (Rønneberg

et al., 2011). Some of the differentially methylated genes in

this study were overlapping with genes in the present study,

and AFF3 that was identified hypomethylated in TP53-

mutated breast cancer tumors also showed hypomethylation

in 7 CpGs in the TP53-mutant lung adenocarcinomas. This

gene has been associated with tumorigenesis in acute

lymphoblastic leukemia (Impera et al., 2008). In breast cancer

tumors, the basal-like subtype is often associated with both a

high frequency of TP53 mutations and general hypomethyla-

tion (Koboldt et al., 2012; Silwal-Pandit et al., 2014), and this

corresponds to our finding with largely hypomethylation in

the TP-53 mutated lung adenocarcinomas. The reason for

this is unknown, but hypomethylation is often associated

with genomic instability that can lead to mutations (Gaudet

et al., 2003) or the other way around; that TP 53 mutation af-

fects affect important genes such as DNA 50-cytosine-methyl-

transferases (DNMT) (Lin et al., 2010) that again lead to

changes in methylation profiles. In colorectal cancer, the

CIMP low tumors (hypomethylated in CpG islands) are also

linked to TP53 mutations (Toyota et al., 2000).

To identify DNA methylation events of potential functional

and biological significance,we integrated the DNAmethylation

data with gene expression data of the same tumors. We found

that expression of 737 genes were significantly associated to

methylation level of regions in or in close proximity to the

gene. Negative correlations (suggesting that DNA methylation

inhibit gene expression) were as expected found predomi-

nantly in promoter regions, but were also found in the gene

bodies (Figure 3). Negative correlation between gene body
methylation and gene expression has been reported previously

in breast cancer (Fleischer et al., 2014). Positive correlations

were predominantly found in gene bodies and 30UTR, some-

thing that has also been reported in chronic lymphocytic leu-

kemia (Kulis et al., 2012). Some positive correlations were

found in promoter regions, and similar data was also reported

in breast cancer (Fleischer et al., 2014). The majority of the

differentially methylated CpGs in our analysis were not corre-

lated with mRNA expression. It is known that DNA methyl-

ation has other functions than directly affecting the mRNA

transcription, for instance by regulate microRNA expression

and affect chromosomal stability (Esteller, 2008). The correc-

tionmethod used for multiple testing (Bonferroni) in the corre-

lation analysis is a very strict method and may explain the

relatively limited number of correlations. DNA methylation

changes without correlation with mRNA expression may be

important in classification and as biomarkers.

Patients with lung cancer have in general poor prognosis

and this is also true for patients with operable tumors. There

is a clinical need for biomarkers predicting outcome of the dis-

ease. The prognostic index is based on themethylation values

of 33 methylation probes and separated the patients in groups

with good and poor prognosis. Patients with low prognostic

index based on this signature had a significantly better prog-

nosis than patients with high prognostic index. Information

about which patients are more likely to relapse after surgery,

is valuable information for the clinician, and may help iden-

tify patients that might benefit from adjuvant treatment or

more aggressive follow-up. A prognostic test based on DNA

methylation could be adapted for clinical laboratories and

applicable for routine diagnostics. The prognostic signature

was validated in the univariate analysis of the independent

cohort of lung adenocarcinoma patients (Figure 4), but the

multivariate analysis failed to confirm the signature. This

may be due to the quality of the follow-up data and the rela-

tively short follow-up time with a median follow-up of only

16.7months in the validation cohort. None of the other clinical

parameters were significantly associated to prognosis in the

multivariate model in the TCGA cohort, further indicating

that the lung cancer cases in the TCGA are not an ideal cohort

for validation of prognostic signatures.

The genes in the prognostic index were correlated with the

mRNA expression of 51 genes shown in Supplementary Table

15. Some of these genes are known to be aberrantly expressed

in cancer. Two of the CpGs in the prognostic index are located

in HOX genes, respectively HOXB7 andHOXC4, and thesewere

also among the gene regions that we found differentially

methylated between the clusters. Genes in the HOX family

are previously reported as hypermethylated in lung cancer tis-

sue (Lokk et al., 2012; Rauch et al., 2007), but the positive cor-

relation with mRNA expression of HOX B and C genes are to

our knowledge not known. We identified 381 differentially

methylated CpGs situated in different HOX genes, whereas

377 of the CpGs were hypermethylated. The HOX genes are

all part of the homeobox family, acting as transcription fac-

tors, and crucial in development (Bhatlekar et al., 2014). HOX

A family genes are often downregulated in primary NSCLC

and in NSCLC-derived cell lines and are involved in various

regulatory mechanisms in lung cancer cells. Genes in the

HOX C and HOX D families have been found upregulated in
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primary lung tumors (Bhatlekar et al., 2014). In this present

study we found that high methylation levels of a CpG located

in the HOXB7 gene is contributing to a high prognostic index

and this is associated with poor prognosis. Hypermethylation

of this CpG is positively correlated to mRNA expression of

multiple genes in the HOX B family (HOXB2, 5, 6, 8 and 9) all

of which are located in chromosome 17q and appears to be

co-regulated. Interestingly, microRNA 10a is located within

the same area of chromosome 17, and high expression of

this microRNA have previously been associated with poor

prognosis of patients with lung cancer with adenocarcinoma

histology and in breast cancer patients (Bjaanaes et al., 2014;

Chang et al., 2014). Methylation of the CpG located in HOXC4

is also positively correlated with mRNA expression of genes

in the HOX C family (4, 5, 6, 8, 9, 10 and 12). These HOX genes

are localized at chromosome 12q in close relation with the

long non-coding RNA HOTAIR that has been associated with

poor prognosis inmultiple cancer types, including lung cancer

(Liu et al., 2013; Yao et al., 2014).
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5. Conclusion

DNA methylation is radically altered in lung adenocarcinoma

tissue compared to normal lung tissue, and both hypermethy-

lation and hypomethylation are probably important events in

carcinogenesis and immune signaling in tumor tissue.

Methylation changes in tumors from never-smoking patients

were identified, and aberrantly methylated genes in EGFR-

mutated tumors may be involved in the mTOR pathway.

This report verifies the existence of DNA methylation derived

subtypes of lung adenocarcinomas and identifies one subtype

enriched for TP53 mutations. We demonstrate the potential

biological significance of DNA methylation by integrating

mRNA expression data, and identify both positive and nega-

tive correlations in a substantial part of the genome. A prog-

nostic index based on DNA methylation of 33 CpGs

separates the patients in groups with good or poor prognosis.

This may be useful in the design of clinical trials for adjuvant

chemotherapy and should be implemented in clinical trials in

patients with early-stage lung cancer.
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Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.molonc.2015.10.021.
y the applicable C
reative C

om
m

o

R E F E R E N C E S

Ahn, S.-J., Choi, C., Choi, Y.-D., Kim, Y.-C., Kim, K.-S., Oh, I.-J.,
Ban, H.-J., Yoon, M.-S., Nam, T.-K., Jeong, J.-U., Song, J.-Y.,
Chung, W.-K., 2014. Microarray analysis of gene expression in
lung cancer cell lines treated by fractionated irradiation.
Anticancer Res. 34, 4939e4948.

Bhatlekar, S., Fields, J.Z., Boman, B.M., 2014. HOX genes and their
role in the development of human cancers. J. Mol. Med. (Berl)
92, 811e823. http://dx.doi.org/10.1007/s00109-014-1181-y.

Bjaanaes, M.M., Halvorsen, A.R., Solberg, S., Jørgensen, L.,
Dragani, T.A., Galvan, A., Colombo, F., Anderlini, M.,
Pastorino, U., Kure, E., Børresen-Dale, A.-L., Brustugun, O.T.,
Helland, A., 2014. Unique microRNA-profiles in EGFR-mutated
lung adenocarcinomas. Int. J. Cancer 135, 1812e1821. http://
dx.doi.org/10.1002/ijc.28828.

Bouchon, a, Facchetti, F., Weigand, M.A., Colonna, M., 2001.
TREM-1 amplifies inflammation and is a crucial mediator of
septic shock. Nature 410, 1103e1107. http://dx.doi.org/10.1038/
35074114.

Bøvelstad, H.M., Nyg�ard, S., Størvold, H.L., Aldrin, M., Borgan, Ø.,
Frigessi, a, Lingjaerde, O.C., 2007. Predicting survival from
microarray dataea comparative study. Bioinformatics 23,
2080e2087. http://dx.doi.org/10.1093/bioinformatics/btm305.

Brock, M.V., Hooker, C.M., Ota-Machida, E., Han, Y., Guo, M.,
Ames, S., Gl€ockner, S., Piantadosi, S., Gabrielson, E.,
Pridham, G., Pelosky, K., Belinsky, S.A., Yang, S.C., Baylin, S.B.,
Herman, J.G., 2008. DNA methylation markers and early
recurrence in stage I lung cancer. N. Engl. J. Med. 358,
1118e1128. http://dx.doi.org/10.1056/NEJMoa0706550.

Carvalho, R.H., Haberle, V., Hou, J., van Gent, T., Thongjuea, S.,
van Ijcken, W., Kockx, C., Brouwer, R., Rijkers, E.,
Sieuwerts, A., Foekens, J., van Vroonhoven, M., Aerts, J.,
Grosveld, F., Lenhard, B., Philipsen, S., 2012. Genome-wide
DNA methylation profiling of non-small cell lung carcinomas.
Epigenetics Chromatin 5, 9. http://dx.doi.org/10.1186/1756-
8935-5-9, 1756-8935-5-9.

Chang, C., Fan, T., Yu, J., Liao, G., Lin, Y., Shih, A.C., 2014. The
prognostic significance of RUNX2 and miR-10a/10b and their
inter-relationship in breast cancer, 12, 1e12. http://dx.doi.org/
10.1186/s12967-014-0257-3.

Colonna, M., Facchetti, F., 2003. TREM-1 (triggering receptor
expressed on myeloid cells): a new player in acute
inflammatory responses. J. Infect. Dis. 187 (Suppl.), S397eS401.
http://dx.doi.org/10.1086/374754.

Couraud, S., Zalcman, G., Milleron, B., Morin, F., Souquet, P.-J.,
2012. Lung cancer in never smokersea review. Eur. J. Cancer
48, 1299e1311. http://dx.doi.org/10.1016/j.ejca.2012.03.007.

Di Fiore, R., D’Anneo, A., Tesoriere, G., Vento, R., 2013. RB1 in
cancer: different mechanisms of RB1 inactivation and
alterations of pRb pathway in tumorigenesis. J. Cell. Physiol
228, 1676e1687. http://dx.doi.org/10.1002/jcp.24329.

Dong, S., Zhang, X.-C., Cheng, H., Zhu, J.-Q., Chen, Z.-H.,
Zhang, Y.-F., Xie, Z., Wu, Y.-L., 2012. Everolimus synergizes
with gefitinib in non-small-cell lung cancer cell lines resistant
to epidermal growth factor receptor tyrosine kinase inhibitors.
Cancer Chemother. Pharmacol. 70, 707e716. http://dx.doi.org/
10.1007/s00280-012-1946-3.

Esteller, M., 2008. Epigenetics in cancer. N. Engl. J. Med. 358,
1148e1159. http://dx.doi.org/10.1056/NEJMra072067.

Farkas, S.A., Milutin-Ga�sperov, N., Grce, M., Nilsson, T.K., 2013.
Genome-wide DNAmethylation assay reveals novel candidate
biomarker genes in cervical cancer. Epigenetics 8, 1213e1225.
http://dx.doi.org/10.4161/epi.26346.

Fei, S.-J., Zhang, X.-C., Dong, S., Cheng, H., Zhang, Y.-F., Huang, L.,
Zhou, H.-Y., Xie, Z., Chen, Z.-H., Wu, Y.-L., 2013. Targeting
mTOR to overcome epidermal growth factor receptor tyrosine
kinase inhibitor resistance in non-small cell lung cancer cells.
PLoS One 8, e69104. http://dx.doi.org/10.1371/
journal.pone.0069104.

Fleischer, T., Frigessi, A., Johnson, K.C., Edvardsen, H.,
Touleimat, N., Klajic, J., Riis, M., Haakensen, V.D.,
ns L
icense

http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref1
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref1
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref1
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref1
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref1
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref1
http://dx.doi.org/10.1007/s00109-014-1181-y
http://dx.doi.org/10.1002/ijc.28828
http://dx.doi.org/10.1002/ijc.28828
http://dx.doi.org/10.1038/35074114
http://dx.doi.org/10.1038/35074114
http://dx.doi.org/10.1093/bioinformatics/btm305
http://dx.doi.org/10.1056/NEJMoa0706550
http://dx.doi.org/10.1186/1756-8935-5-9
http://dx.doi.org/10.1186/1756-8935-5-9
http://dx.doi.org/10.1186/s12967-014-0257-3
http://dx.doi.org/10.1186/s12967-014-0257-3
http://dx.doi.org/10.1086/374754
http://dx.doi.org/10.1016/j.ejca.2012.03.007
http://dx.doi.org/10.1002/jcp.24329
http://dx.doi.org/10.1007/s00280-012-1946-3
http://dx.doi.org/10.1007/s00280-012-1946-3
http://dx.doi.org/10.1056/NEJMra072067
http://dx.doi.org/10.4161/epi.26346
http://dx.doi.org/10.1371/journal.pone.0069104
http://dx.doi.org/10.1371/journal.pone.0069104
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 3 3 0e3 4 3 341

 18780261, 2016, 2, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1016/j.m

olonc.2015.10.021 by C
E

A
 N

ational, W
iley O

nline L
ibrary on [18/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
W€arnberg, F., Naume, B., Helland, �A., Børresen-Dale, A.-L.,
Tost, J., Christensen, B.C., Kristensen, V.N., 2014. Genome-
wide DNA methylation profiles in progression to in situ and
invasive carcinoma of the breast with impact on gene
transcription and prognosis. Genome Biol. 15, 435. http://
dx.doi.org/10.1186/s13059-014-0435-x.

Gaudet, F., Hodgson, J.G., Eden, A., Jackson-Grusby, L.,
Dausman, J., Gray, J.W., Leonhardt, H., Jaenisch, R., 2003.
Induction of tumors in mice by genomic hypomethylation.
Science 300, 489e492. http://dx.doi.org/10.1126/
science.1083558.

Heller, G., Zielinski, C.C., Z€ochbauer-M€uller, S., 2010. Lung cancer:
from single-gene methylation to methylome profiling. Cancer
Metastasis Rev. 29, 95e107. http://dx.doi.org/10.1007/s10555-
010-9203-x.

Heller, G., Babinsky, V., Ziegler, B., 2013. Genome-wide CpG island
methylation analyses in non-small cell lung cancer patients.
Carcinogenesis 34, 513e521.

Ho, C.C., Liao, W.Y., Wang, C.Y., Lu, Y.H., Huang, H.Y., Chen, H.Y.,
Chan, W.K., Chen, H.W., Yang, P.C., 2008. TREM-1 expression
in tumor-associated macrophages and clinical outcome in
lung cancer. Am. J. Respir. Crit. Care Med. 177, 763e770. http://
dx.doi.org/10.1164/rccm.200704-641OC.

Impera, L., Albano, F., Lo Cunsolo, C., Funes, S., Iuzzolino, P.,
Laveder, F., Panagopoulos, I., Rocchi, M., Storlazzi, C.T., 2008. A
novel fusion 5’AFF3/3’BCL2 originated from a
t(2;18)(q11.2;q21.33) translocation in follicular lymphoma.
Oncogene 27, 6187e6190. http://dx.doi.org/10.1038/
onc.2008.214.

Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D.,
2011. Global cancer statistics. CA. Cancer J. Clin. 61, 69e90.
http://dx.doi.org/10.3322/caac.20107.

Jovanovic, J., Rønneberg, J.A., Tost, J., Kristensen, V., 2010. The
epigenetics of breast cancer. Mol. Oncol. 4, 242e254. http://
dx.doi.org/10.1016/j.molonc.2010.04.002.

Karlsson, A., Jonsson, M., Lauss, M., Brunnstr€om, H., J€onsson, P.,
Borg, A., J€onsson, G., Ringner, M., Planck, M., Staaf, J., 2014.
Genome-wide DNA methylation analysis of lung carcinoma
reveals one neuorendocrine and four adenocarcinoma
epitypes associated with patient outcome. Clin. Cancer Res.
20, 6127e6140. http://dx.doi.org/10.1158/1078-0432.CCR-14-
1087.

Kawabata, S., Mercado-Matos, J.R., Hollander, M.C., Donahue, D.,
Wilson, W., Regales, L., Butaney, M., Pao, W., Wong, K.-K.,
J€anne, P.A., Dennis, P.A., 2014. Rapamycin prevents the
development and progression of mutant epidermal growth
factor receptor lung tumors with the acquired resistance
mutation T790M. Cell Rep 7, 1824e1832. http://dx.doi.org/
10.1016/j.celrep.2014.05.039.

Koboldt, D.C., Fulton, R.S., McLellan, M.D., Schmidt, H., Kalicki-
Veizer, J., McMichael, J.F., Fulton, L.L., Dooling, D.J., Ding, L.,
Mardis, E.R., Wilson, R.K., Ally, A., Balasundaram, M.,
Butterfield, Y.S.N., Carlsen, R., Carter, C., Chu, A., Chuah, E.,
Chun, H.-J.E., Coope, R.J.N., Dhalla, N., Guin, R., Hirst, C.,
Hirst, M., Holt, R.A., Lee, D., Li, H.I., Mayo, M., Moore, R.A.,
Mungall, A.J., Pleasance, E., Gordon Robertson, a., Schein, J.E.,
Shafiei, A., Sipahimalani, P., Slobodan, J.R., Stoll, D., Tam, A.,
Thiessen, N., Varhol, R.J., Wye, N., Zeng, T., Zhao, Y., Birol, I.,
Jones, S.J.M., Marra, M.A., Cherniack, A.D., Saksena, G.,
Onofrio, R.C., Pho, N.H., Carter, S.L., Schumacher, S.E.,
Tabak, B., Hernandez, B., Gentry, J., Nguyen, H., Crenshaw, A.,
Ardlie, K., Beroukhim, R., Winckler, W., Getz, G., Gabriel, S.B.,
Meyerson, M., Chin, L., Park, P.J., Kucherlapati, R.,
Hoadley, K.A., Todd Auman, J., Fan, C., Turman, Y.J., Shi, Y.,
Li, L., Topal, M.D., He, X., Chao, H.-H., Prat, A., Silva, G.O.,
Iglesia, M.D., Zhao, W., Usary, J., Berg, J.S., Adams, M.,
Booker, J., Wu, J., Gulabani, A., Bodenheimer, T., Hoyle, A.P.,
Simons, J.V., Soloway, M.G., Mose, L.E., Jefferys, S.R., Balu, S.,
Parker, J.S., Neil Hayes, D., Perou, C.M., Malik, S., Mahurkar, S.,
Shen, H., Weisenberger, D.J., Triche Jr., T., Lai, P.H.,
Bootwalla, M.S., Maglinte, D.T., Berman, B.P., Van Den
Berg, D.J., Baylin, S.B., Laird, P.W., Creighton, C.J.,
Donehower, L.A., Getz, G., Noble, M., Voet, D., Saksena, G.,
Gehlenborg, N., DiCara, D., Zhang, J., Zhang, H., Wu, C.-J.,
Yingchun Liu, S., Lawrence, M.S., Zou, L., Sivachenko, A.,
Lin, P., Stojanov, P., Jing, R., Cho, J., Sinha, R., Park, R.W.,
Nazaire, M.-D., Robinson, J., Thorvaldsdottir, H., Mesirov, J.,
Park, P.J., Chin, L., Reynolds, S., Kreisberg, R.B., Bernard, B.,
Bressler, R., Erkkila, T., Lin, J., Thorsson, V., Zhang, W.,
Shmulevich, I., Ciriello, G., Weinhold, N., Schultz, N., Gao, J.,
Cerami, E., Gross, B., Jacobsen, A., Sinha, R., Arman Aksoy, B.,
Antipin, Y., Reva, B., Shen, R., Taylor, B.S., Ladanyi, M.,
Sander, C., Anur, P., Spellman, P.T., Lu, Y., Liu, W.,
Verhaak, R.R.G., Mills, G.B., Akbani, R., Zhang, N., Broom, B.M.,
Casasent, T.D., Wakefield, C., Unruh, A.K., Baggerly, K.,
Coombes, K., Weinstein, J.N., Haussler, D., Benz, C.C.,
Stuart, J.M., Benz, S.C., Zhu, J., Szeto, C.C., Scott, G.K., Yau, C.,
Paull, E.O., Carlin, D., Wong, C., Sokolov, A., Thusberg, J.,
Mooney, S., Ng, S., Goldstein, T.C., Ellrott, K., Grifford, M.,
Wilks, C., Ma, S., Craft, B., Yan, C., Hu, Y., Meerzaman, D.,
Gastier-Foster, J.M., Bowen, J., Ramirez, N.C., Black, A.D.,
XPATH ERROR: unknown variable “tname”., R.E., White, P.,
Zmuda, E.J., Frick, J., Lichtenberg, T.M., Brookens, R.,
George, M.M., Gerken, M.A., Harper, H.A., Leraas, K.M.,
Wise, L.J., Tabler, T.R., McAllister, C., Barr, T., Hart-Kothari, M.,
Tarvin, K., Saller, C., Sandusky, G., Mitchell, C., Iacocca, M.V.,
Brown, J., Rabeno, B., Czerwinski, C., Petrelli, N.,
Dolzhansky, O., Abramov, M., Voronina, O., Potapova, O.,
Marks, J.R., Suchorska, W.M., Murawa, D., Kycler, W., Ibbs, M.,
Korski, K., Spycha1a, A., Murawa, P., Brzezi�nski, J.J., Perz, H.,
qa�zniak, R., Teresiak, M., Tatka, H., Leporowska, E., Bogusz-
Czerniewicz, M., Malicki, J., Mackiewicz, A., Wiznerowicz, M.,
Van Le, X., Kohl, B., Viet Tien, N., Thorp, R., Van Bang, N.,
Sussman, H., Duc Phu, B., Hajek, R., Phi Hung, N., Viet The
Phuong, T., Quyet Thang, H., Zaki Khan, K., Penny, R.,
Mallery, D., Curley, E., Shelton, C., Yena, P., Ingle, J.N.,
Couch, F.J., Lingle, W.L., King, T.A., Maria Gonzalez-Angulo, A.,
Mills, G.B., Dyer, M.D., Liu, S., Meng, X., Patangan, M.,
Waldman, F., St€oppler, H., Kimryn Rathmell, W., Thorne, L.,
Huang, M., Boice, L., Hill, A., Morrison, C., Gaudioso, C.,
Bshara, W., Daily, K., Egea, S.C., Pegram, M.D., Gomez-
Fernandez, C., Dhir, R., Bhargava, R., Brufsky, A., Shriver, C.D.,
Hooke, J.A., Leigh Campbell, J., Mural, R.J., Hu, H., Somiari, S.,
Larson, C., Deyarmin, B., Kvecher, L., Kovatich, A.J., Ellis, M.J.,
King, T.A., Hu, H., Couch, F.J., Mural, R.J., Stricker, T., White, K.,
Olopade, O., Ingle, J.N., Luo, C., Chen, Y., Marks, J.R.,
Waldman, F., Wiznerowicz, M., Bose, R., Chang, L.-W.,
Beck, A.H., Maria Gonzalez-Angulo, A., Pihl, T., Jensen, M.,
Sfeir, R., Kahn, A., Chu, A., Kothiyal, P., Wang, Z., Snyder, E.,
Pontius, J., Ayala, B., Backus, M., Walton, J., Baboud, J.,
Berton, D., Nicholls, M., Srinivasan, D., Raman, R., Girshik, S.,
Kigonya, P., Alonso, S., Sanbhadti, R., Barletta, S., Pot, D.,
Sheth, M., Demchok, J.A., Mills Shaw, K.R., Yang, L., Eley, G.,
Ferguson, M.L., Tarnuzzer, R.W., Zhang, J., Dillon, L.A.L.,
Buetow, K., Fielding, P., Ozenberger, B.A., Guyer, M.S.,
Sofia, H.J., Palchik, J.D., 2012. Comprehensive molecular
portraits of human breast tumours. Nature 490, 61e70. http://
dx.doi.org/10.1038/nature11412.

Kulis, M., Heath, S., Bibikova, M., Queir�os, A.C., Navarro, A.,
Clot, G., Mart�ınez-Trillos, A., Castellano, G., Brun-Heath, I.,
Pinyol, M., Barber�an-Soler, S., Papasaikas, P., Jares, P., Be�a, S.,
Rico, D., Ecker, S., Rubio, M., Royo, R., Ho, V., Klotzle, B.,
Hern�andez, L., Conde, L., L�opez-Guerra, M., Colomer, D.,
Villamor, N., Aymerich, M., Rozman, M., Bayes, M., Gut, M.,
Gelp�ı, J.L., Orozco, M., Fan, J.-B., Quesada, V., Puente, X.S.,
Pisano, D.G., Valencia, A., L�opez-Guillermo, A., Gut, I., L�opez-
m
ons L

icense

http://dx.doi.org/10.1186/s13059-014-0435-x
http://dx.doi.org/10.1186/s13059-014-0435-x
http://dx.doi.org/10.1126/science.1083558
http://dx.doi.org/10.1126/science.1083558
http://dx.doi.org/10.1007/s10555-010-9203-x
http://dx.doi.org/10.1007/s10555-010-9203-x
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref19
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref19
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref19
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref19
http://dx.doi.org/10.1164/rccm.200704-641OC
http://dx.doi.org/10.1164/rccm.200704-641OC
http://dx.doi.org/10.1038/onc.2008.214
http://dx.doi.org/10.1038/onc.2008.214
http://dx.doi.org/10.3322/caac.20107
http://dx.doi.org/10.1016/j.molonc.2010.04.002
http://dx.doi.org/10.1016/j.molonc.2010.04.002
http://dx.doi.org/10.1158/1078-0432.CCR-14-1087
http://dx.doi.org/10.1158/1078-0432.CCR-14-1087
http://dx.doi.org/10.1016/j.celrep.2014.05.039
http://dx.doi.org/10.1016/j.celrep.2014.05.039
http://dx.doi.org/10.1038/nature11412
http://dx.doi.org/10.1038/nature11412
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 3 3 0e3 4 3342

 18780261, 2016, 2, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1016/j.m

olonc.2015.10.021 by C
E

A
 N

ational, W
iley O

nline L
ibrary on [18/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
Ot�ın, C., Campo, E., Mart�ın-Subero, J.I., 2012. Epigenomic
analysis detects widespread gene-body DNA hypomethylation
in chronic lymphocytic leukemia. Nat. Genet. 44, 1236e1242.
http://dx.doi.org/10.1038/ng.2443.

Laird, P.W., 2003. The power and the promise of DNA methylation
markers. Nat. Rev. Cancer 3, 253e266. http://dx.doi.org/
10.1038/nrc1045.

Lin, R.K., Wu, C.Y., Chang, J.W., Juan, L.J., Hsu, H.S., Chen, C.Y.,
Lu, Y.Y., Tang, Y.A., Yang, Y.C., Yang, P.C., Wang, Y.C., 2010.
Dysregulation of p53/Sp1 control leads to DNA
methyltransferase-1 overexpression in lung cancer. Cancer
Res. 70, 5807e5817. http://dx.doi.org/10.1158/0008-5472.CAN-
09-4161.

Liu, X., Liu, Z., Sun, M., Liu, J., Wang, Z., De, W., 2013. The long
non-coding RNA HOTAIR indicates a poor prognosis and
promotes metastasis in non-small cell lung cancer. BMC
Cancer 13, 464. http://dx.doi.org/10.1186/1471-2407-13-464.

Livingstone, C., 2013. IGF2 and cancer. Endocr. Relat. Cancer 20,
321e339. http://dx.doi.org/10.1530/ERC-13-0231.

Lokk, K., Vooder, T., Kolde, R., V€alk, K., V~osa, U., Roosipuu, R.,
Milani, L., Fischer, K., Koltsina, M., Urgard, E., Annilo, T.,
Metspalu, A., T~onisson, N., 2012. Methylation markers of
early-stage non-small cell lung cancer. PLoS One 7, e39813.
http://dx.doi.org/10.1371/journal.pone.0039813.

Lyn-Cook, L., Word, B., George, N., Lyn-Cook, B., Hammons, G.,
2014. Effect of cigarette smoke condensate on gene promoter
methylation in human lung cells. Tob. Induc. Dis. 12, 15.
http://dx.doi.org/10.1186/1617-9625-12-15.

Mansfield, A.S., Wang, L., Cunningham, J.M., Jen, J., Kolbert, C.P.,
Sun, Z., Yang, P., 2014. DNA methylation and RNA expression
profiles in lung adenocarcinomas of never-smokers. Cancer
Genet.. http://dx.doi.org/10.1016/j.cancergen.2014.12.002

Mor�an, A., Fern�andez-Marcelo, T., Carro, J., De Juan, C., Pascua, I.,
Head, J., G�omez, A., Hernando, F., Torres, A.-J., Benito, M.,
Iniesta, P., 2012. Methylation profiling in non-small cell lung
cancer: clinical implications. Int. J. Oncol. 40, 739e746. http://
dx.doi.org/10.3892/ijo.2011.1253.

Ndlovu, M.N., Denis, H., Fuks, F., 2011. Exposing the DNA
methylome iceberg. Trends Biochem. Sci. 36, 381e387. http://
dx.doi.org/10.1016/j.tibs.2011.03.002.

Pfeifer, G.P., Rauch, T.A., 2009. DNA methylation patterns in lung
carcinomas. Semin. Cancer Biol. 19, 181e187. http://
dx.doi.org/10.1016/j.semcancer.2009.02.008.

Politi, K., Herbst, R.S., 2015. Lung cancer in the era of precision
medicine. Clin. Cancer Res. 21, 2213e2220. http://dx.doi.org/
10.1158/1078-0432.CCR-14-2748.

R Core Team, 2014. R: A Language and Environment for Statistical
Computing, Vol. 1. http://dx.doi.org/10.1007/978-3-540-74686-
7.

Rauch, T., Wang, Z., Zhang, X., Zhong, X., Wu, X., Lau, S.K.,
Kernstine, K.H., Riggs, A.D., Pfeifer, G.P., 2007. Homeobox gene
methylation in lung cancer studied by genome-wide analysis
with a microarray-based methylated CpG island recovery
assay. Proc. Natl. Acad. Sci. U. S. A 104, 5527e5532. http://
dx.doi.org/10.1073/pnas.0701059104.

Rauch, T.A., Zhong, X., Wu, X., Wang, M., Kernstine, K.H.,
Wang, Z., Riggs, A.D., Pfeifer, G.P., 2008. High-resolution
mapping of DNA hypermethylation and hypomethylation in
lung cancer. Proc. Natl. Acad. Sci. U. S. A 105, 252e257. http://
dx.doi.org/10.1073/pnas.0710735105.

Rønneberg, J.A., Fleischer, T., Solvang, H.K., Nordgard, S.H.,
Edvardsen, H., Potapenko, I., Nebdal, D., Daviaud, C., Gut, I.,
Bukholm, I., Naume, B., Børresen-Dale, A.-L., Tost, J.,
Kristensen, V., 2011. Methylation profiling with a panel of
cancer related genes: association with estrogen receptor, TP53
mutation status and expression subtypes in sporadic breast
cancer. Mol. Oncol. 5, 61e76. http://dx.doi.org/10.1016/
j.molonc.2010.11.004.
Sandoval, J., Mendez-Gonzalez, J., Nadal, E., Chen, G.,
Carmona, F.J., Sayols, S., Moran, S., Heyn, H., Vizoso, M.,
Gomez, A., Sanchez-Cespedes, M., Assenov, Y., M€uller, F.,
Bock, C., Taron, M., Mora, J., Muscarella, L.A., Liloglou, T.,
Davies, M., Pollan, M., Pajares, M.J., Torre, W.,
Montuenga, L.M., Brambilla, E., Field, J.K., Roz, L., Lo
Iacono, M., Scagliotti, G.V., Rosell, R., Beer, D.G., Esteller, M.,
2013. A prognostic DNA methylation signature for stage I non-
small-cell lung Cancer. J. Clin. Oncol. 31, 4140e4147. http://
dx.doi.org/10.1200/JCO.2012.48.5516.

Satelli, A., Rao, P.S., Thirumala, S., Rao, U.S., 2011. Galectin-4
functions as a tumor suppressor of human colorectal cancer.
Int. J. Cancer 129, 799e809. http://dx.doi.org/10.1002/ijc.25750.

Selamat, S.A., Chung, B.S., Girard, L., Zhang, W., Zhang, Y.,
Campan, M., Siegmund, K.D., Koss, M.N., Hagen, J.A.,
Lam, W.L., Lam, S., Gazdar, A.F., Laird-Offringa, I.A.,
Suhaida, A., Chung, B.S., Girard, L., Zhang, W., Zhang, Y.,
Campan, M., Siegmund, K.D., Koss, M.N., Hagen, J.A.,
Lam, W.L., Lam, S., Gazdar, A.F., Laird-Offringa, I.A.,
Selamat, S.A., Chung, B.S., Girard, L., Zhang, W., Zhang, Y.,
Campan, M., Siegmund, K.D., Koss, M.N., Hagen, J.A.,
Lam, W.L., Lam, S., Gazdar, A.F., Laird-Offringa, I.A., 2012.
Genome-scale analysis of DNA methylation in lung
adenocarcinoma and integration with mRNA expression.
Genome Res. 22, 1197e1211. http://dx.doi.org/10.1101/
gr.132662.111.

Shinjo, K., Okamoto, Y., An, B., Yokoyama, T., Takeuchi, I.,
Fujii, M., Osada, H., Usami, N., Hasegawa, Y., Ito, H., Hida, T.,
Fujimoto, N., Kishimoto, T., Sekido, Y., Kondo, Y., 2012.
Integrated analysis of genetic and epigenetic alterations
reveals CpG island methylator phenotype associated with
distinct clinical characters of lung adenocarcinoma.
Carcinogenesis 33, 1277e1285. http://dx.doi.org/10.1093/
carcin/bgs154.

Silwal-Pandit, L., Vollan, H.K.M., Chin, S.F., Rueda, O.M.,
McKinney, S., Osako, T., Quigley, D.A., Kristensen, V.N.,
Aparicio, S., Børresen-Dale, A.L., Caldas, C., Langerød, A., 2014.
TP53 mutation spectrum in breast cancer is subtype specific
and has distinct prognostic relevance. Clin. Cancer Res. 20,
3569e3580. http://dx.doi.org/10.1158/1078-0432.CCR-13-2943.

Strell, C., Entschladen, F., 2008. Extravasation of leukocytes in
comparison to tumor cells. Cell Commun. Signal. 6, 10. http://
dx.doi.org/10.1186/1478-811X-6-10.

The Cancer Genome Atlas [WWW Document], n.d. http://
cancergenome.nih.gov.

Therneau, T., 2013. n.d. A Package for Survival Analysis in S. R
Package Version 2.37-4. http://CRAN.R-project.org/
package¼survival.

Tibshirani, R., 1996. Regression shrinkage and selection via the
lasso. J. R. Stat. Soc. Ser. B 58, 267e288.

Tibshirani, R., Chu, G., Balasubramanian, N.J.L., 2011. n.d. samr:
SAM: Significance Analysis of Microarrays. R Package Version
2.0. http://CRAN.R-project.org/package¼samr.

Touleimat, N., Tost, J., 2012. Human methylation 450K BeadChip
data processing using subset quantile normalization for
accurate DNA methylation estimation. Epigenomics 4,
325e341. http://dx.doi.org/10.2217/epi.12.21.

Toyooka, S., Maruyama, R., Toyooka, K.O., McLerran, D., Feng, Z.,
Fukuyama, Y., Virmani, A.K., Zochbauer-Muller, S.,
Tsukuda, K., Sugio, K., Shimizu, N., Shimizu, K., Lee, H.,
Chen, C.-Y., Fong, K.M., Gilcrease, M., Roth, J.A., Minna, J.D.,
Gazdar, A.F., 2003. Smoke exposure, histologic type and
geography-related differences in the methylation profiles of
non-small cell lung cancer. Int. J. Cancer 103, 153e160. http://
dx.doi.org/10.1002/ijc.10787.

Toyota, M., Ohe-Toyota, M., Ahuja, N., Issa, J.P., 2000. Distinct
genetic profiles in colorectal tumors with or without the CpG
m
ons L

icense

http://dx.doi.org/10.1038/ng.2443
http://dx.doi.org/10.1038/nrc1045
http://dx.doi.org/10.1038/nrc1045
http://dx.doi.org/10.1158/0008-5472.CAN-09-4161
http://dx.doi.org/10.1158/0008-5472.CAN-09-4161
http://dx.doi.org/10.1186/1471-2407-13-464
http://dx.doi.org/10.1530/ERC-13-0231
http://dx.doi.org/10.1371/journal.pone.0039813
http://dx.doi.org/10.1186/1617-9625-12-15
http://dx.doi.org/10.1016/j.cancergen.2014.12.002
http://dx.doi.org/10.3892/ijo.2011.1253
http://dx.doi.org/10.3892/ijo.2011.1253
http://dx.doi.org/10.1016/j.tibs.2011.03.002
http://dx.doi.org/10.1016/j.tibs.2011.03.002
http://dx.doi.org/10.1016/j.semcancer.2009.02.008
http://dx.doi.org/10.1016/j.semcancer.2009.02.008
http://dx.doi.org/10.1158/1078-0432.CCR-14-2748
http://dx.doi.org/10.1158/1078-0432.CCR-14-2748
http://dx.doi.org/10.1007/978-3-540-74686-7
http://dx.doi.org/10.1007/978-3-540-74686-7
http://dx.doi.org/10.1073/pnas.0701059104
http://dx.doi.org/10.1073/pnas.0701059104
http://dx.doi.org/10.1073/pnas.0710735105
http://dx.doi.org/10.1073/pnas.0710735105
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1200/JCO.2012.48.5516
http://dx.doi.org/10.1200/JCO.2012.48.5516
http://dx.doi.org/10.1002/ijc.25750
http://dx.doi.org/10.1101/gr.132662.111
http://dx.doi.org/10.1101/gr.132662.111
http://dx.doi.org/10.1093/carcin/bgs154
http://dx.doi.org/10.1093/carcin/bgs154
http://dx.doi.org/10.1158/1078-0432.CCR-13-2943
http://dx.doi.org/10.1186/1478-811X-6-10
http://dx.doi.org/10.1186/1478-811X-6-10
http://cancergenome.nih.gov
http://cancergenome.nih.gov
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=survival
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref51
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref51
http://refhub.elsevier.com/S1574-7891(15)00199-4/sref51
http://CRAN.R-project.org/package=samr
http://CRAN.R-project.org/package=samr
http://dx.doi.org/10.2217/epi.12.21
http://dx.doi.org/10.1002/ijc.10787
http://dx.doi.org/10.1002/ijc.10787
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021


M O L E C U L A R O N C O L O G Y 1 0 ( 2 0 1 6 ) 3 3 0e3 4 3 343

 18780261, 2016, 2, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
island methylator phenotype. Proc. Natl. Acad. Sci. U. S. A 97,
710e715. http://dx.doi.org/10.1073/pnas.97.2.710.

Tsay, J.J., Tchou-Wong, K.-M., Greenberg, A.K., Pass, H.,
Rom, W.N., 2013. Aryl hydrocarbon receptor and lung cancer.
Anticancer Res. 33, 1247e1256. http://dx.doi.org/10.1016/
j.biotechadv.2011.08.021.Secreted.

Tusher, V.G., Tibshirani, R., Chu, G., 2001. Significance analysis of
microarrays applied to the ionizing radiation response. Proc.
Natl. Acad. Sci. U S A 98, 5116e5121. http://dx.doi.org/10.1073/
pnas.091062498 091062498 [pii].
Yao, Y., Li, J., Wang, L., 2014. Large intervening non-coding RNA
HOTAIR is an indicator of poor prognosis and a therapeutic
target in human cancers. Int. J. Mol. Sci. 15, 18985e18999.
http://dx.doi.org/10.3390/ijms151018985.

Yuan, Z., Mehta, H.J., Mohammed, K., Nasreen, N., Roman, R.,
Brantly, M., Sadikot, R.T., 2014. TREM-1 is induced in tumor
associated macrophages by cyclo-oxygenase pathway in
human non-small cell lung cancer. PLoS One 9, 1e10. http://
dx.doi.org/10.1371/journal.pone.0094241.
/doi/10.1016/j.m
olonc.2015.10.021 by C

E
A

 N
ational, W

iley O
nline L

ibrary on [18/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1073/pnas.97.2.710
http://dx.doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
http://dx.doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
http://dx.doi.org/10.1073/pnas.091062498 091062498 [pii]
http://dx.doi.org/10.1073/pnas.091062498 091062498 [pii]
http://dx.doi.org/10.3390/ijms151018985
http://dx.doi.org/10.1371/journal.pone.0094241
http://dx.doi.org/10.1371/journal.pone.0094241
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021
http://dx.doi.org/10.1016/j.molonc.2015.10.021

	Genome-wide DNA methylation analyses in lung adenocarcinomas: Association with EGFR, KRAS and TP53 mutation status, gene ex ...
	1. Introduction
	2. Material and methods
	2.1. Patients and tissue samples
	2.2. DNA methylation and mRNA expression data
	2.3. Statistical analyses
	2.3.1. Hierarchical clustering
	2.3.2. Differentially methylated genes between groups
	2.3.3. Integration of mRNA expression
	2.3.4. Ingenuity Pathway Analysis
	2.3.5. Prognostic index


	3. Results
	3.1. Hierarchical cluster analysis
	3.2. Methylation differences in lung adenocarcinoma tissue and normal lung tissue
	3.3. Methylation patterns in lung adenocarcinomas associated with clinical variables and mutation status of the tumor
	3.4. Correlation with mRNA expression
	3.5. Prognostic index

	4. Discussion
	5. Conclusion
	Financial support
	Appendix A. Supplementary data
	References


