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Abstract—In forthcoming AI-assisted 6G networks, integrating
semantic, pragmatic, and goal-oriented communication strate-
gies becomes imperative. This integration will enable sensing,
transmission, and processing of exclusively pertinent task data,
ensuring conveyed information possesses understandable, prag-
matic semantic significance, aligning with destination needs and
goals. Without doubt, no communication is error free. Within
this context, besides errors stemming from typical wireless com-
munication dynamics, potential distortions between transmitter-
intended and receiver-interpreted meanings can emerge due to
limitations in semantic processing capabilities, as well as language
and knowledge representation disparities between transmitters
and receivers. The main contribution of this paper is two-fold.
First, it proposes and details a novel mathematical modeling of
errors stemming from language mismatches at both semantic and
effectiveness levels. Second, it provides a novel algorithmic solu-
tion to counteract these types of errors which leverages optimal
transport theory. Our numerical results show the potential of the
proposed mechanism to compensate for language mismatches,
thereby enhancing the attainability of reliable communication
under noisy communication environments.

I. INTRODUCTION

AI and beyond-5G communication systems need each other
to grow but still follow separate paths. In AI algorithms, it is
often assumed that communications are ideal, latency-power-
error free, trustworthy, and always available (on demand). This
is critically far from operational reality. On the other hand,
5G is not AI-native [1][[2]: Communication is designed to
send raw data rather than AI understandable knowledge. While
data is decisive to feed reasoning engines, being gathered-
transferred-processed from scattered sources to update models,
to accumulate knowledge and attain goals, communications
are not engineered to be goal-oriented. The current approach
is to encode data into symbols, ensuring symbol level accurate
recovery even at ultra-high data rate exchange, regardless of
their conveyed meaning [3] and agnostic to what cooperating
reasoning agents need and can understand. Conversely, an AI-
native approach requires to convey meaning or to accomplish a
goal with a reasoning engine. Thus, what really matters is the
impact that the received symbols have on the interpretation
of the meaning intended by the transmitter and/or on the
accomplishment of a common goal. In this context a new
impulse in research has started: semantic and goal-oriented
communications have been proposed for future AI-native 6G
networks [3] [4],[5], based on the seminal works of Shannon
and Weaver [6] and Bar-Hillel and R. Carnap [7], then on the
more recent work of J. Bao [8]. This new area of research

focuses on developing theories and algorithmic solutions for
extracting, sharing and interpreting distilled information rep-
resenting the significance of data, thus conveying the essential
meaning to enable effective task execution. Such exchange of
semantics that allows cooperation between intelligent agents
requires a shared language which serves as a tool to endow
real world observations with meaning that can be interpreted
and thus enables decision making. The design of such lan-
guage is a challenging task and it often relies on Machine
Learning (ML) algorithms. ML-based language design has
been extensively studied [9], [10]. Research indicates that
incorporating communication as part of the learning procedure
results in superior performance compared to human–designed
communication protocols [11] [12].

Most literature on the state of the art on semantic and goal
oriented communication assumes that interacting agents share
a common language. However, this might be an unrealistic
assumption. Indeed, in future 6G communication multiple
heterogeneous autonomous agents will communicate and col-
laborate, and they may utilize distinct languages. When agents
use different languages, semantic noise causes interpretation
errors and performance degradation [13]. Similarly to [14],
this work addresses the problem of communication errors due
to language mismatch between a transmitter and a receiver.
We model the communication channel in three levels, the
syntactic (wireless) level, the semantic (meaning) level and
the effectiveness (goal) level. A language deals with all three
levels of the communication channel: it has to enable the
completion of the task (effectiveness), it has to allow for
meaning transmission (semantic) and it has to account for
possible channel noise (syntactic). In order to study hetero-
geneous language interactions, we treat a language mismatch
as a semantic level problem and explore its consequences at
the effectiveness level.

The contribution of the paper is three-fold: (1) We extend
the work from [14] to language mismatch between agents in
a Markov Decision Process (MDP) context, (2) we propose a
novel mathematical model for errors stemming from language
mismatcht at both semantic and effectiveness levels and, (3)
we propose an equalization algorithm that leverages optimal
transport theory to counteract language mismatches and show
its efficacy on a practical example.
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Figure 1. System model.

II. SYSTEM MODEL

We will consider the system model shown in Fig. 1. A
transmitter observes a world, here the states of a stochastic
environment, and encodes the underlying information for a
distant receiver, which rules it to an action to complete a
task. Communication takes place over an error-prone wireless
channel, in several rounds, until the task is completed or it
fails. To achieve the task, both encoder and decoder employ
distinct languages (different logic), here artificially modeled
with Neural Network (NN), which we respectively refer to as
language generator and language interpreter.
Language generator: A language generator λ maps an obser-
vation of the world into semantic representation: a latent repre-
sentation capturing the intrinsic structure of the data, which is
useful for solving downstream tasks. We define such mapping
with λ : O −→ X , where O denotes the observation space and
X the semantic space. Both O and X are topological spaces,
we will assume O to be discrete and X to be continuous,
however, our results are easily extended to different spaces.
Thus, given an observation o ∈ O, the language generator
outputs the associated semantic representation x ∈ X , later
referred to as a semantic symbol. It is worth noting that λ
can, but is not required to be a one-to-one mapping. It can be
a many-to-one or one-to-many mapping. In addition, λ is not
necessarily deterministic. It can be stochastic, in which case,
λ(o) = x ∼ µλ(x

′|o). Generally speaking, we can think of a
deterministic mapping as a particular case of a stochastic one
where µλ(x|o) = δ(x − λ(o)). Hence, given a distribution µ
over the observation space O, the language generator λ defines
a distribution over the semantic space X as:

µλ(x) =
∑
o∈O

µλ(x|o)µ(o). (1)

A language generator defines a way to encode information
from the observation space into the semantic space. This
effectively creates a partition of the semantic space. A partition
of the semantic space P = {P1, P2, . . . , PN} is a collection
of measurable sets that cover X , where the measure is µλ.
The set Pi ∈ X is referred to as the i-th atom of the partition
and µλ(Pi) is its associated probability measure1. Each atom

1Here, µλ(Pi) can be interpreted as the probability that given a random
observation o, x = λ(o) belongs to Pi.

Pi is associated to a given semantic meaning. For example, in
an image classification task, each atom is related to a different
visual feature present of the images, meaning that if an image
has a certain visual feature, its semantic representation will
reside in the corresponding atom. In general, the semantic
space partition depends only on the language generator and
two different generators can partition the language differently
for the same task. However, it has been observed that task
specific optimal information encoding strategies usually share
common characteristics [15].
Language interpreter: A language interpreter γ transforms
a semantic representation into a task specific action in each
communication round. More specifically, a language inter-
preter defines a strategy for interpreting the semantic partition
defined by the language generator to solve the downstream
task. We define such selection strategy with γ : X −→ A,
where A denotes the action space, which we will assume to be
discrete. Thus, given a received semantic symbol x ∈ X , the
language interpreter selects an action a = γ(x) ∈ A, possibly
sampled from a probability distribution µγ(a

′|x). In the image
classification task example used for the language generator, the
language interpreter leverages the semantic atom features of
the generator’s partition to infer a specific class. Hereafter, we
denote a language (or a communication strategy) as a tuple
ℓ = (λ, γ, µ,O,X ,A).

A. Emergence of language and communication effectiveness

An effective communication between the encoder and de-
coder requires a joint learning procedure, during which a
shared language emerges to solve the downstream task. An
efficient language generator should define a minimal repre-
sentation, transparent and sufficient that enables the language
interpreter to accomplish the task. A representation is sufficient
if it encodes all the information relevant for the decision mak-
ing and transparent if the encoding process is understandable
by the interpreter, i.e. the encoding and decoding logic is the
same. Minimality is related to the compression capabilities
of the encoder and is directly linked to a particular task: a
representation is minimal if it encodes only the task relevant
information.

Ideally, the learned languages logic should only be affected
by the task definition, the designed loss function and other
architecture-specific constraints such as the characteristics of
the semantic space X . However, multiple other factors may
affect the outcomes of the training such as the random weights
initialization, training hyperparameters, or other sources of
randomness including syntactic channel noise [15]. As a result,
even with the same NN architecture and constrains, different
training processes can yield different languages which never-
theless achieve similar performances on the task. When the
language generator and interpreter are the result of different
training procedures, communication may suffer from language
mismatch or incompatibility that stimulates effectiveness er-
rors. This is the focus of our work, to define a novel framework
to counteract and limit the critical errors in interpretation to
achieve effective communication.



B. Semantic channel and effectiveness channel

In this section, we propose to model the semantic and
effectiveness channel between an encoder-decoder pair, which
do not share a common language. We denote with ℓs =
(λs, γs, µ,O,X ,A) the source language of the encoder and
with ℓt = (λt, γt, µ,O,X ,A) the target language of the
decoder. We assume that the mismatch is only due to the
language generator and interpreter, and that the encoder and
decoder share the observation, semantic and action spaces as
well as that the task that they haven been trained to solve.
Let P l = {P l

1, P
l
2, . . . , P

l
N} be the partition defined by the

language generator λl, l ∈ {s, t}. Also, let 1B(x) denote the
characteristic function on the subset B ⊂ X defined such that:

1B(x) =

{
1 if x ∈ B,
0 if x ̸∈ B.

(2)

Given a semantic symbol x ∈ X , we refer to [x]l as the atom to
which x belongs in the corresponding language, i.e. 1[x]l(x) =
1. As the source and target language differ, an observation
o ∈ O may be mapped to symbol xs = λs(o) by the source
language, and to symbol xt = λt(o) by the target language.
Semantic mismatch may arise if xs and xt do not belong
to the same atom of the target language partition2. Hence,
we introduce the following metric to quantify the semantic
mismatch between source and target language:

Definition 1 (Semantic mismatch) The semantic mismatch
SM between a source language ℓs and a target language ℓt is

SM(ℓs, ℓt) = 1−
∑
o∈O

µ(o)

∫
X
1[λt(o)]t(x)µλs(x|o)dx (3)

Intuitively, SM(ℓs, ℓt) characterizes the probability of seman-
tic misinterpretation between the two languages. Given an
observation o ∈ O, when the symbol xs ∼ µλs(x|o) output by
the source language does not belong to the corresponding se-
mantic atom of the target language, the characteristic function
is 1[λt(o)]t(xs) = 0 which leads to semantic misinterpretation
at the receiver. Note that we have 0 ≤ SM(ℓs, ℓt) ≤ 1. When
SM(ℓs, ℓt) = 1(0), 1[λt(o)]t(x) = 0(1) for all observations, in-
dicating that no (all) semantic meaning is correctly conveyed.
It is also worth noting that SM(ℓs, ℓt) is not symmetric.

Errors at the semantic level do not necessarily translate to
errors at effectiveness level. The effectiveness mismatch is a
metric centred around the actions and how they affect the per-
formance on the task. To capture how each action affects the
task, we define, inspired by the the Reinforcement Learning
(RL) literature, the action value function Q : A × O −→ R
which assigns to each observation-action pair a real number.
The number Q(a, o) is called the “value” of taking action a
when the observed state is o and it is related to the optimality
of the action. If we interpret solving a task as equivalent to
optimizing an objective function, the value Q(a, o) measures
the effect of the decision on the objective function. The higher

2Important note: xs and xt can differ, i.e. xs ̸= xt but they still belong to
the same atom; there is no semantic error in this case as semantic is associated
to the atoms of a partition.

the value Q(a, o), the better that choosing action a in the
context of o is at optimizing the objective. So we should
interpret Q as a function that allows to find the best action
for the current observation and to evaluate how sub-optimal
other actions are. Using the function Q, we can then define
the effectiveness mismatch as

Definition 2 (Effectiveness mismatch) Given source lan-
guage ℓs and target language ℓt and denoting â(o) =
γt(λs(o)) as the interpreted action for observation o when
the source encoder λs communicates with the target decoder
γt, the effectiveness mismatch can be measured by

EM(ℓs, ℓt) = 1−
∑
o∈O

µ(o)
Q+(â(o), o)

Q+(a∗(o), o)
, (4)

where Q+(a, o) = Q(a, o) − mina′ Q(a′, o) is the
positive-action value function for the task and a∗(o) =
argmaxa Q(a, o). Given that 0 ≤ Q+(a, o) ≤ Q+(a∗t (o), o)
for all o ∈ O and a ∈ At and that µ is a probability measure
on O, we have 0 ≤ EM(ℓs, ℓt) ≤ 1.

The effectiveness mismatch is a normalized measure that
captures how the performance on the task is degraded due to
the language mismatch. When EM(ℓs, ℓt) = 0, even if there
is some language mismatch and subsequent semantic misinter-
pretations, the performance on the task is the optimal one. On
the other hand, when EM(ℓs, ℓt) = 1, the language mismatch
is such that the performance is the worst possible one. As
with the semantic mismatch, the effectiveness mismatch is not
symmetric and depends on the choice of source and target
languages. We note that, assuming that the target language
leads to a behaviour that follows Q, EM(ℓs, ℓt) ̸= 0 implies
that SM(ℓs, ℓt) ̸= 0 (task performance degradation implies
semantic misinterpretation), but SM(ℓs, ℓt) ̸= 0 does not
imply EM(ℓs, ℓt) ̸= 0 (misinterpretation does not imply task
performance degradation). This is possible because multiple
actions might achieve the optimal performance at a given time
step and thus incorrect action interpretation might still lead to
optimal performance. This is the principal distinction between
semantic and effectiveness mismatch that will motivate the
different equalization strategies developed in this work.

III. SEMANTIC CHANNEL EQUALIZATION

In this section we will introduce the concept of semantic
channel equalization through measurable transformations. A
measurable transformation T is a function that transforms
values measured by a probability distribution into values
measured by another probability distribution. This way, by
using µλs

and µλt
as measures over X , a transformation

T : X −→ X is a measurable transformation. We call this type
of transformation a semantic equalizer. Semantic equalization
between a source language ℓs and a target language ℓt is
the process of transforming, for each observation o, a source
semantic symbol xs = λs(o) into x̂t = T ◦ λs(o). We denote
the set of measurable transformations of X onto itself as T .
We can then define a language equalization,



Definition 3 (Semantic language equalization) Let ℓ =
(λ, γ, µ,O,X ,A) be a language and T ∈ T be a semantic
equalizer, the equalized version of ℓ is

Tℓ = (Tλ, γ, µ,O,X ,A) (5)

where Tλ = T◦λ denotes the transformed language generator.

In this work we deal with equalization from the side of the
encoder, hence the modified language generator Tλ in the
definition of equalized language, but notice equalization can
be performed at the decoder as well.

The optimal semantic equalizer is the one that minimizes
either the semantic or the effectiveness mismatch between the
transformed source language and the target language. It can
be found by solving the optimization problem

T ∗ = argmin
T∈T

[f(Tℓs, ℓt)] . (6)

Where f(Tℓs, ℓt) = SM(Tℓs, ℓt) if the objective is to mini-
mize the semantic mismatch and f(Tℓs, ℓt) = EM(Tℓs, ℓt)
if the objective is to minimize the effectiveness mismatch.
We aim at finding the optimal semantic equalizer T ∗. Solving
the problem in Eq. (6) is challenging and a transformation
that can correctly map the whole source semantic space into
the target semantic space can be highly complex. Therefore,
we propose to design a codebook of multiple low complexity
transformations that, together with a selection policy, can
effectively equalize the semantic channel.

A. Transformation Codebook

We focus now on languages with finite discrete action
spaces, which makes the design of a finite and discrete
transformation codebook feasible. In this case, we can assign
to each action a semantic atom, and thus the semantic partition
will also be discrete and finite. The transformation codebook
we plan to design consists of multiple low-complexity linear
transformation that map semantic atoms from the source
language into semantic atoms of the target language. Let
Al = {ali|i ∈ Jl} be the action set of language ℓl, where
Jl = {1, 2, . . . ,Kl} denotes the action set index and let P l

i be
the atom of the semantic space corresponding to action ali of
language ℓl. The codebook of transformations can be designed
by solving the following problem

CT =

{
Ti,j = argmax

T∈T

[
ρP s

i −→P t
j
(T )

]
∀i ∈ Js, j ∈ Jt

}
(7)

where

ρP s
i −→P t

j
(T ) =

µTλs
(T (P s

i ) ∩ P t
i )

µTλs (P
s
i )

(8)

is the information transfer between source semantic atom P s
i

and target semantic atom P t
j under the semantic equalizer T

[16]. Here, we define T (A) = {T (x)|x ∈ A}. Since µTλs

is the equalized source distribution on the semantic space,
ρP s

i −→P t
j
(T ) measures the probability that an element from

P s
i falls in P t

j after being equalized by T . We also have that
0 ≤ ρP s

i −→P t
j
(T ) ≤ 1.

B. Semantic and effectiveness channel equalization using op-
timal transport

This work leverages Optimal Transport (OT) to solve the
problem in Eq. (7). OT is a method to map a set of samples
from a source distribution into samples from a target distribu-
tion while minimizing the transportation cost (e.g. euclidean
distance). This effectively means transforming samples from
the source distribution in a way that they appear to be sampled
from the target distribution. In particular, in [17, Sec. 3.2]
a method to obtain a linear approximation of the optimal
transportation map is presented. By using this method, we
show that it is possible to compensate non linear language
mismatch by operating a codebook of low-complexity linear-
transformations. For more details on the optimal transport
algorithm used to obtain the codebook we refer the reader
to [14].

C. Policy for transformation selection

To complete the semantic equalization method, once CT is
obtained, a policy π that selects a transformation from CT and
applies it on a given semantic symbol needs to be designed.
The selection policy can be designed to either minimize the se-
mantic mismatch (Definition 1) or the effectiveness mismatch
(Definition 2). For each observation o ∈ O, the encoder has
to select T ∈ CT to pre-equalize his message following a
policy π that will minimize the desired metric. We will focus
on finding a probabilistic policy π where π(o, T ) specifies the
probability of choosing transformation T to equalize λs(o).
We define

π(o, T ) = argmin
π̂∈Π

Eo∼µ(o) [R(π̂, o)] (9)

where R ∈ {RS , RE} is a risk measures that can either be
the semantic mismatch risk or the effectiveness mismatch risk,
both this risk functions will be detailed next. .

1) Semantic mismatch risk: To minimize the semantic
mismatch, a selection policy should choose the transformation
T that maps each semantic xs ∈ P s

i into a corresponding
target symbol x̂t ∈ {P t

j |j ∈ κ(i)}. Here κ : Js −→ Jt captures
the correspondence between source and target semantic atoms.
κ can be a one-to-one mapping, many-to-one or one-to-many
depending on the source and target language generators, the
action space and the downstream tasks to solve by both
languages. In our scenario, both the source and the target
language were designed to solve the same task with the same
action space, so we can find a one-to-one correspondence
between atoms, i.e. atoms are associated if they lead to the
same action. We then define the semantic mismatch risk as

RS(π, o) = 1− ET∼π(o,T )

[ ∑
i∈Js

µλs (P
s
i |o)

∑
j∈κ(i)

ρP s
i −→P t

j
(T )

] (10)

where µλs (P
s
i |o) is the probability that the semantic symbol

xs = λs(o) belongs to the semantic atom P s
i .



2) Effectiveness mismatch risk: Not all semantic misinter-
pretations lead to the same degradation in performance, even
more, it is possible that, after experiencing a semantic error,
the effectiveness aspect of the system isn’t affected at all.
This is the main motivation behind reducing the effectiveness
mismatch rather than the semantic mismatch. Denoting as
Qt(a, o) the target language estimation of the true Q(a, o)
value function, the effective mismatch risk is

RE(π, o) = 1−ET∼π(o,T )

[ ∑
i∈Js

µλs (P
s
i |o)

∑
j∈Jt

ρP s
i −→P t

j
(T ) ·Qt(aj , o)

] (11)

where aj = γt(P
t
j ) is the action the target decoder outputs for

any semantic message inside partition P t
j . Notice that, since

it relies on the estimation Qt(a, o), this equalization strategy
is tied to the performance of the target language.

IV. NUMERICAL RESULTS

We test the proposed system on a language designed by
RL methods to solve the environment shown in Fig. 1. In this
scenario, the observation space O is the state of a grid world
with an agent and a treasure. The encoder λ maps each obser-
vation into X = R2 in a deterministic manner and transmits it
through a AWGN channel. The output power of the encoder is
normalized o that that each of the components of the semantic
symbol x = (x1, x2) is limited to 1, i.e. xi ≤ 1, i ∈ {1, 2}.
This way, since it is the maximum and not the mean signal
power which is fixed, the characteristics of the channel are
defined by the Peak Signal to Noise Ratio (PSNR) rather than
by the Signal to Noise Ratio (SNR). However, to simplify
notation, from now on we will denote the PSNR as SNR. The
decoder γ receives the noisy version of the transmitted symbol
and chooses an action from A = {right, down, left, up} which
is then executed by the agent. For the action taking, we will
explore both a deterministic decoder and a stochastic one. The
objective is to get the agent to the treasure in the least number
of time steps possible. The episodes finishes when the agent
gets to the treasure or when the maximum number of steps
(150) is achieved.

We assume that the encoder and decoder are given and
that they were jointly trained in a de-centralized manner using
RL techniques with the same reward signal with a SNR of
10 dB. The decoder is trained to learn Q(a, x) using Deep
Q-Learning (DQN) [18] which is suitable for discrete action
spaces while the encoder is trained using Deep-Deterministic
policy gradient (DDPG) [19] which is suitable for a continuous
action space. For more details on the training we refer the
reader to [11, Section IV].

During evaluation time, the decoder decision making is
defined as

γ(x) = a ∼ SoftMax (βQ(a, x)) (12)

where β is the inverse of the well known temperature value for
a soft max distribution where β = 0 corresponds to completely

Figure 2. Mapping of the learned languages. Both encoder-decoder pairs
were trained to solve the same task in identical conditions only differing in
stochastic training aspects.

random decisions and the deterministic case can be recovered
by setting β −→ ∞. For the results we will explore both a
determinist decode and a stochastic one with β = 5.

A. Emergent language diversity

In Fig. 2 the semantic language partition is shown for
both the target and the source language. We see that each
language follows a logic that divides the semantic space in
different ways with a successful task competition. The training
algorithm, NN architectures and training task are identical
for both languages, this shows that the training results are
sensible to random weight initialization and randomness in
training. In particular we see that opposite actions (up-down
and right-left) are mapped the furthest away allowed by the
available semantic space (which is limited by the power
normalization) for both languages. This characteristic suggests
that, even if multiple optimal semantic space partitions are
possible, there is a certain structure that allows this languages
to successfully complete a task. This latent space invariability
has been observed for non distributed Artificial Intelligence
(AI) in multiple task [15].

B. Language equalization

The metric to evaluate the performance of the system is
the episode length. The objective of the communication is for
the agent to find the treasure as fast as possible, thus, lower
episode length means better performance. We compare the
performance of the proposed methods with other approaches
both for a deterministic decoder (see Fig. 3) and a stochastic
one (see Fig. 4). The evaluated communication strategies are:

No equalization: The source encoder messages are not
equalized i.e. the messages are transmitted as the encoder
outputs them without further processing. We see that both for
a deterministic (Fig. 3) and a stochastic (Fig. 4) decoder the
performance of the system is worst. It seems counter intuitive
to see that for low SNR values, the performance actually
improves. This is due to the fact that the errors caused by
the language mismatch can sometimes be corrected by the
channel noise.



Source/Target grounded communications: The encoder and
decoder both adopt the source/target language, the two ideal
cases with no mismatch. For the deterministic case, Fig. 3, the
languages attain the optimal performance in the SNR range
from 0 to 10 dB rather than SNR = ∞. This is related to the
limitation of the learned languages. Indeed, in the absence
of channel noise, the encoder-decoder pairs do not always
perform optimally. In fact, we have observed that the language
systematic error causes the system to enter in loops that lead
to task failing. This loops occur when the actions of the
decoders bring them to a state that has already been visited
before. In this situation, it is easy to see that, without any
channel noise, the agent is doomed to follow the same steps
as before and the system will end up transitioning between
previously encountered states. Eventually, this will lead to the
agents attaining the maximum time-steps and fail the task. It
is the presence of noise that can break this type of infinite
loops caused by the systematic error. This is further validated
by the results for stochastic decoder shown in Fig. 4. When
we introduce some randomness in the decision making, the
performance is not degraded for increasing SNR since the
infinite loops in the episode can be avoided. In this case,
channel noise is actually detrimental and the episode length
is minimized for infinite SNR. This suggests that, in the
deterministic decision-making scenario, reducing the syntactic
channel noise may result in the increase of the semantic noise,
which affect the performance in achieving the goal. In contrast,
when considering the stochastic decoder (Fig. 4), reducing the
syntactic noise improves the goal achievement performance.
These results show the strong interplay between syntactic noise
and semantic noise and how they affect each other.

SM and EM oriented equalization: The proposed OT
based equalization method. For SM oriented equalization,
the policy that minimized the semantic mismatch risk in
Eq. (10) is used. For EM oriented equalization, we employ
a policy that minimizes the effectiveness mismatch risk in
Eq. (11). Notice that, since it follows µλs , the SM oriented
equalization is tied to the source language performance. On the
other hand, the EM oriented equalization is tied to the target
language performance by the target language Q function Qt.
In both the cases of a deterministic (Fig. 3) and a stochastic
(Fig. 4) decoder, our methods are effective on minimizing
the language mismatch effects on the performance since the
performance is improves for all values of SNR when compared
to the no equalization approach. However, the equalization
methods perform worse than the base languages. This can be
explained by the resilience of the proposed methods to channel
noise, indeed, as the developed methods reduce the effect
of the wireless channel noise, this enforces the systematic
errors of the language and causes an increase in the average
episode length. This hypothesis is further reinforced by the
fact that, under error-free syntactic channel (SNR = ∞) and
deterministic decoding (Fig. 3), the performance of the SM and
EM oriented equalization decreases and aligns perfectly with
the source and target grounded communications respectively.
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Figure 3. Average episode length (lower is better) for the different commu-
nication strategies with varying SNR for a deterministic decoder (β −→ ∞ in
Eq. (12)).
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Figure 4. Average episode length (lower is better) for the different commu-
nication strategies with varying SNR for a stochastic decoder with β = 5 in
Eq. (12).

C. Ablation study on β

To better characterize the effects of an stochastic decoder,
we performed a study of the performance of the different
methods while varying β and fixing SNR = ∞. In Fig. 5 the
results are shown. We see that increasing β has similar effects
as increasing the SNR for the deterministic encoder (Fig. 3).
Indeed, as β increases, the decoder becomes more and more
deterministic to choose actions based on the maximum the Q-
values principle (see Eq. (12)). Conversely, when β decreases,
the decoder becomes more stochastic. In particular, for β = 0,
all the decisions are random and thus independent from the
communication, we see in this case that all the communication
methods attain the same performance.
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Figure 5. Average episode length (lower is better) for the different commu-
nication strategies with varying β and SNR = ∞.

V. CONCLUSIONS

In this paper, we analyze the consequences of semantic
extraction and interpretation mismatches on goal-oriented task
solving in scenarios involving heterogeneous AI agents uti-
lizing distinct languages. At first, we establish mathematical
models that address errors originating from language mis-
matches, encompassing both semantic and effectiveness levels,
employing measurable transformations within semantic repre-
sentation spaces. We show that in case of language mismatch,
emergent languages might encounter systematic errors in task
solving. In order to assess and address this critical issue, we
present innovative metrics aimed at quantifying the influence
of language mismatch across both semantic and effective-
ness dimensions. Our proposed solution incorporates these
metrics to devise an innovative equalization algorithm firmly
grounded in optimal transport theory. This algorithm serves as
a crucial component in mitigating systematic errors stemming
from language mismatches. Notably, our proposed equalization
methods effectively diminish language-related discrepancies,
thereby enhancing the overall robustness of task execution.
Furthermore, we investigate the behaviour of the system and
validate the performance of our equalization methods when
stochastic decision-making is used. This helps to understand
the role that randomness and errors play in distributed MDP
problems.
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