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ABSTRACT

The dense deployment of millimeter wave small cells combined with
directional beamforming is a promising solution to enhance the net-
work capacity of the current generation of wireless communications.
However, the reliability of millimeter wave communication links can
be affected by severe pathloss, blockage, and deafness. As a re-
sult, mobile users are subject to frequent handoffs, which deterio-
rate the user throughput and the battery lifetime of mobile terminals.
To tackle this problem, our paper proposes a deep multi-agent rein-
forcement learning framework for distributed handover management
called RHando (Reinforced Handover). We model users as agents
that learn how to perform handover to optimize the network through-
put while taking into account the associated cost. The proposed so-
lution is fully distributed, thus limiting signaling and computation
overhead. Numerical results show that the proposed solution can
provide higher throughput compared to conventional schemes while
considerably limiting the frequency of the handovers.

Index Terms— Handover Management, mmWave, Multi-Agent
Deep Reinforcement Learning

1. INTRODUCTION

The fifth generation (5G) of mobile communication systems will in-
tegrate millimeter-wave (mmWave) technologies to enable a signif-
icant improvement in the network capacity. In addition, network
densification together with directional beamforming will allow to
deal with the severe propagation losses that characterize mmWave
communications [1]. Densification comes however with its own is-
sues. As the number of base stations (BSs) increases, the handover
(HO) rate of mobile user equipment (UEs) increases accordingly. In
fact, a UE to maintain or improve its quality of service (QoS) may
need to change its current BS association when moving through the
network. Performing an HO procedure requires signaling between
the UE, the serving BS, and the target BS, which induces overhead
and energy consumption, thus decreasing the network performance.
A wide range of HO algorithms exists in the literature, each trying to
limit the impact of frequent HOs in UEs quality of experience (QoE).
In general, HO decisions are based on measurement signals such as
Received Signal Strength (RSS), Reference Signal Received Power
(RSRP), Reference Signal Received Quality (RSRQ), or Word Er-
ror Indicator (WEI) [2]. 3GPP standard suggests that a UE triggers
an HO process when the RSS of the target BS exceeds the one of
the serving BS by a certain amount to avoid ping pong effect [2].
This procedure may induce large signaling overhead preventing to
meet the latency requirements of future wireless communication ser-
vices [3]. To improve the HO performance, Yan et al. have pro-
posed to limit the time-consumed in HO process by designing a ma-
chine learning algorithm that predicts HO decisions [4]. Koda et al.
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Fig. 1. A downlink network with Ns = 3 SBSs, one MBS, and
K = 5 UEs. As an example, U1(t) = {1, 2}, S5(t) = {3}.

have proposed to limit HO frequency by designing a reinforcement
learning (RL) framework that uses a Q-learning algorithm to max-
imize the network throughput [5]. In the same vein, Wang et al.
have extended this approach using deep RL with actor-critic meth-
ods to avoid state discretization and for better scalabilty [6]. All
these works do not consider cell load and limited resource availabil-
ity when optimizing the HO strategy.

In this paper, we propose a distributed algorithm called RHando
- Reinforced Handover - that optimizes handover decisions in order
to maximize the network throughput, considering mobility and lim-
ited resources at the BS side. We model each UE as an agent, which
at each HO triggering time, based on its local observation takes the
handover decision. In this framework, each agent maintains its own
deep recurrent Q network (DQRN) and decides regardless of other
UEs. This limits both computational and signaling complexity since
communications is not required between UEs, thus making RHando
a good candidate to meet the latency requirements of 5G networks.

The rest of the paper is organized as follows. Section 2 describes
the system model and formulate the handover decision problem. In
Section 3 we present the proposed solution and we show numerical
results in Section 4. Finally, Section 5 concludes the paper.

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. System Model

In the considered downlink network deployment (see Fig. 1),K UEs
are moving in an area where Ns millimeter waves small cell BSs
(SBSs) are collocated with a sub-6 GHz macro base station (MBS)
to provide broadband wireless services. We denote by S the set of



Ns + 1 BSs in the network and let U define the set of K UEs. Due
to mobility, given a BS i, the set of UEs in its coverage area Ui(t)
changes over time as well as the set of BSs a UE j could associate
with, Sj(t). In our model, each SBS allocate all the mmWave band
to each of its served UEs, which are spatially multiplexed through di-
rect beamforming. In contrast, the MBS equally share its frequency
resources across its UEs. In addition, we assume that a SBS can
support at most Ni UEs at the same time.

To characterize the environment dynamic, we adopt a classic
distance-based path loss model [7], where the channel fading coeffi-
cient follows a Nakagami-m distribution with a shape factor m [8].
Thereupon, the downlink rate perceived from the BS i by the UE j
is as follows:

Ri,j(t) = xi,i(t)Bi,j log2(1 + SINRi,j(t)), (1)

where xi,i(t) = 1 if the UE j is associated with the BS i and
xi,i(t) = 0 otherwise. SINRi,j(t) denotes the signal-to-interference
plus noise ratio, which includes both intra-cell and inter-cell inter-
ference.

2.2. Handover Overhead and Network Sum-rate Maximization

As UEs are moving across the network, they may be subject to mul-
tiple handovers in order to maintain or improve their QoE. However,
unnecessary HOs lead to large signaling overhead, which increases
the energy consumption, lowers the spectral efficiency, and affects
UEs latency. To account with this, we directly introduce a penalty
due to the handover in the evaluation of the network performance.
Indeed, let ∆τ be the time between two possible handovers, also
known as Time-to-Trigger (TTT) interval [2]. That is, a handover
process can be triggered every time τp = τ0 + p∆τ , where τ0 is
an initial system delay. If UE j want to perform a handover at time
τp, then, a time β∆τ is dedicated to the handoff procedure while
the time (1 − β)∆τ is used to communicate data. The coefficient
β ∈ [0, 1] allows to control the cost of an HO process, which de-
pends on the type of implemented handover (soft or hard handover)
[9]. Accordingly, the effective data received by UE j from BS i
between time τp and τp+1 is

Ri,j(τp, β) =

∫ τp+(1−βλj(τp))∆τ

τp

Ri,j(t)dt, (2)

where λj(τp) = 1 indicates that UE j has handed over at time τp,
and λj(τp) = 0 otherwise. Hence, we define the network throughput
R(τp) measured between time τp and τp+1 as follows:

R(τp, β) =
1

∆τ

∑
i∈S

∑
j∈U

Ri,j(τp, β). (3)

Let b.c be the floor operator and P = bT/∆τc be the number of
TTTs over a time period T . We aim to find the HO strategy that max-
imizes the average network throughputRT (β) = 1

T

∑P
p=1 R(τp, β)

taking into account the cost associated to handoff events. Hence, we
formalize this problem as follows:

max
{xi,j}

RT (β) (4)

s.t. xi,j(τp) ∈ {0, 1}, i ∈ S, j ∈ U , p = [1, P ], (5)∑
j∈Ui

xi,j(τp) ≤ Ni, i ∈ S\{0}, p = [1, P ], (6)

∑
i∈Sj

xi,j(τp) = 1, j ∈ U , p = [1, P ]. (7)

tτp−1 τp τp+1∆τ

TTI
β∆τ

HO Data Transmission

Fig. 2. HO process timeline. TTI denotes the Transmission Time
Interval.

Constraint (5) ensures that the decision variables are binary. Con-
straint (6) indicates that the maximum number of UEs that a SBS
can simultaneously support is limited to Ni. Finally, constraint (7)
indicates that a UE is always associated with a BS. The optimization
problem (4)-(7) is a non-convex integer programming problem. In
addition to the complexity of such a problem, the optimal association
at time τp also depends on the association at time step τp−1 through
the handover variable λj , making the problem (4)-(7) intractable
with conventional optimization frameworks. In the following, we
propose a solution based on multi-agent reinforcement learning to
tackle this problem.

3. PROPOSED HANDOVER FRAMEWORK

In this section, we depict the proposed HO solution. We formal-
ize the optimization problem (4)-(7) as a multi-agent reinforcement
learning (MARL) task where each UE is modeled as an independent
agent that learns in a distributed way its handover strategy with the
goal of optimizing the network throughput.

3.1. General Setup

3.1.1. UEs action space

At each time step τp, each UE j takes an action aj(τp) to associate
with one BS in the network. If the connection request is addressed to
the MBS, this is automatically granted. Otherwise, if the requested
SBS is able to support the association, an acknowledgment signal is
sent (ACK=1), otherwise ACK=0 (see constraint (6)). Finally, if the
BS that UE j is effectively associated with at time step τp differs
from the one at time step τp−1, the UE initiates an handover proce-
dure. Later, the MBS collects information from each BS to compute
the overall network throughput R(τp, β), which is broadcast to all
UEs to evaluate the goodness of their policy.

3.1.2. UEs state space

To learn their optimal strategy, UEs continuously collect informa-
tion about their surrounding environment. We assume that at each
time step, each UE can measure the RSS of the surrounding BSs i.e.,
{RSSi, ∀i ∈ S}. In addition, each UE uses the previously perceived
data rate Raj(τp),j(τp−1, β) and network sum-rate R(τp−1, β).
Hence, at time τp, UE j acts based on local observations:

oj(τp) =
{
vxj (τp), v

y
j (τp), aj(τp−1), Rj(τp−1, β), (8)

R(τp−1, β),ACKj(τp−1), {RSSi(τp)}∀i∈S
}
,

where vj(τp) = (vxj (τp), v
y
j (τp)) is the corresponding UE’s speed.

3.1.3. UEs reward

To optimize the network performance, UEs must learn how to per-
form association requests that limit handovers and avoid collisions
across service requests.



Definition 3.1 Let c(τp) denotes the request collision event. There
is a request collision at time step t, i.e., c(τp) = 1, if ∃ i such that∑
j∈U xi,j(τp) > Ni. Otherwise, c(τp) = 0.

Hence, collisions occur when the number of UEs requesting an asso-
ciation with a given SBS is greater than the number of connections
(i.e., Ni) the SBS can support. To optimize the system, we have de-
signed two reward functions taking into account the collision events.

• RHando-F (Fully cooperative RHando): in this strategy,
UEs receive the same reward, which favors global network
optimization:

rj(τp) = (1− c(τp))∆τR(τp, β). (9)

• RHando-S (Self interest RHando): here, each UE instanta-
neous reward only considers the data rate it perceived. Hence,

rj(τp) = (1− c(τp))Raj(τp),j(τp, β). (10)

It is noteworthy that even in RHando-S, the reward of each
UE still depends on other UEs because of the interference
and the collision events.

Next, each UE j learns a policy that maximizes its long term
γ-discounted reward:

Gj =

P∑
p=1

γτp−1rj(τp). (11)

3.2. Learning procedure

The agents learn their handover strategy with the caveat of hys-
teretic DRQN [10], which enables them to leverage on aggregated
past information. At each time step, UE j observes oj(τp), takes
an action aj(τp) that brings it to a new state oj(τp+1). As a
consequence of that action, the UE receives an immediate reward
rj(τp) (defined as (9) or (10)). Then, the resulting experience
ej(τp) = (oj(τp), aj(τp), rj(τp), oj(τp+1)) is stored into a local
memory Mj . During the training process, all the agents syn-
chronously sample a batch of experiences from their local memory
using concurrent experience replay [10]. Then, each agent j updates
its DRQN weights by minimizing the loss function:

Lj(θj) = Eebj(τp)∼Bj

[
(wbjδ

b
j(τp))

2
]
. (12)

In (12), b indexes an entry in the mini batch of experiences Bj .
δbj(τp) = ybj(τp) − Qj(o

b
j(τp), h

b
j(τp−1), abj(τp)|θj) denotes the

temporal difference (TD) error between the output of the UE j
DRQN and the target value:

ybj(τp) = rbj(τp) + γmax
a′
Qj(o

b
j(τp+1), hbj(τp), a

′|θ̂j), (13)

where θ̂j are the weights of the target DRQN. In the hysteretic Q-
learning, the neural network weights are updated via a gradient de-
scent algorithm with two distinct learning rates ζµ and ηµ (η �
ζ ≤ 1) [10], where µ is a fixed base learning rate. When the TD
error δ ≥ 0, the learning rate ζµ is used; otherwise, ηµ is consid-
ered. This leads to an optimistic update that gives more importance
to positive experiences [11]. Accordingly, the weightswbj in (12) are
defined as follow:

wbj =

{
ζ, if δbj(t) ≥ 0
η, otherwise . (14)
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Fig. 3. Simulated TX/RX antenna gain radiation pattern for an array
of 5× 5 elements operating at 28 GHz [12].

Table 1. Simulation parameters.
Macro cell [13] Small cell

Parameters Values
Carrier frequency, fc 2.0 GHz 28 GHz
Bandwidth, B 10 MHz 500 MHz
Thermal Noise, N0 -174 dBm/Hz
Noise figure 5 dB 0 dB
Shadowing, X 9 dB 12 dB
Transmit power 46 dBm 20 dBm
Antenna gain (TX/RX) 17 dBi / 0 dBi Fig. 3
Cell radius, r 35 m
Inter-cell distance 1.2× r
Pathloss model 128.1 + 36.7log10(d) [7], d0 = 5 m
TTI 10 ms
∆τ 1 s
T 2000 s

4. NUMERICAL RESULTS

To assess the performance of the proposed framework, we consider
as a benchmark a simplified version of the HO procedure proposed
in 3GPP [2] in which each UE is associated to the BS providing the
strongest RSS. In case of request collision, each SBS selects the best
UEs in terms of RSS while the MBS serves the others UEs.

In all tests, five mmWave SBSs are deployed inside the macro
cell. UEs locations are randomly initialized. To account for hetero-
geneous mobility, each UE randomly picks a speed between 0 and
10 ms−1 and takes a straight motion with random direction. In ad-
dition, without loss of generality, we suppose that users turn back
once they reach the macro cell edge. Finally, each UE is equipped
with a dueling DRQN (with averaged advantages)[14]. This archi-
tecture comprises two multi-layers perceptron (MLP) of 32 hidden
units, one long short term memory (LSTM) layer with 64 memory
cells, followed by another two MLPs of 32 hidden units. The net-
work then branches off in two MLPs of 16 hidden units [14]. We fix
the discounting factor γ = 0.9, the base learning rate µ = 0.001 and
empirically set η = 0 and ζ = 0.4 through exhaustive search. Fi-
nally, we train the DQRNs using an ε-greedy policy with ε annealing
from 1 to 0.1.

For a given UE i associated to a given BS j, we evaluate
Ri,j(τp, β) by aggregating the data received during each TTI (see
Eq. (2)). Fig. 3 shows the transmitter and receiver beamforming
gains in the mmWave band. Additional simulation parameters can
be found in Table 1.
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Fig. 4. Performance comparison w.r.t. number of possible beams, HO cost factor, and Nakagami scale factor.

4.1. Performance in terms of collision avoidance

As mentioned in Subsection 3.1.3, request collisions may happen
when BSs do not have enough beams to simultaneously support all
the service requests. Figs. 4a and 4d show the performance com-
parison of the two RHando configurations compared to the bench-
mark solution. Unsurprisingly, for lower values of Ni, RHando-S
exhibits poor performance than RHando-F both in terms of average
reward (i.e., (1/P )

∑P
p=1

∑
j∈S rj(τp)) and HO’s frequency. This

is because UEs in RHando-F fully cooperate through the common
reward they perceive and, as a result, they effectively learn to avoid
request collisions. In contrast, with RHando-S, each UE learns a
policy based on a local reward, which does not provide sufficient
information on the effect of its action on the other UEs’ reward. In-
versely, when Ni is sufficiently large (> 7), RHando-S outperforms
both RHando-F and RSS-based HO in terms of average reward. The
throughput is increased by about 17.89% by RHando-S and only
10% by RHando-F compared to the benchmark. Regarding the HO
events, RHando-F decreases the HO frequency by about 70% and
RHando-S by 54% compared to the baseline. Overall, we can ob-
serve that the fully cooperative approach limits the handover rate at
the cost of lower reward when Ni is large.

4.2. Performance w.r.t. handover cost factor β

Now we evaluate the performance of the proposed solutions with re-
spect to the handover cost factor β. Fig. 4b shows that when the HO
cost increases, the network average throughput decreases. The RSS-
based solution is characterized by the worst performance as it does
not consider the handover cost. Fig. 4e shows that when the HO
becomes more and more costly, the HO rate decreases with Rhando-

S while remaining almost constant with Rhando-F. This is because
the HO cost variation has a limited impact on the global reward per-
ceived by the agents in RHando-F: after a handoff decision, an agent
can still perceive a large global reward as this is defined as the sum
of all the other agents’ rewards.

4.3. Average throughput w.r.t. Nakagami fading scale factor m

HO events highly depends on the channel conditions viz. path loss
and fading. Here, we evaluate the performance gain of the different
algorithms with respect to Nakagami scale factor m. Figs. 4c and 4f
show that the more severe the fading (m→ 0), the more pronounced
the gain of the proposed solution compared to the benchmark both in
term of average throughput and number of HOs. The performance
of the RSS-based HO strongly deteriorates with the fading while
RHando-F and RHando-S adapt their policies to the fading char-
acteristics demonstrating therefore the robustness of the proposed
framework.

5. CONCLUSION

In this work, we have proposed a framework to manage handover
events based on multi-agent deep reinforcement learning. We max-
imize the average network sum-rate taking into account the cost in-
duced by HO events. The proposed solution is distributed among
UEs thus limiting signaling overhead. We show that it can reduce
the HO events up to 70% and increase the average network through-
put by 18% compared to a HO solution based on maximum RSS.

Future work will focus on heterogeneous access network inte-
grating HO strategies based on multi-connectivity.
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