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Abstract—Finding the optimal association between users and
base stations that maximizes the network sum-rate is a complex
task. This problem is combinatorial and non-convex, and is
even more challenging in millimeter-wave networks due to
beamforming, blockages, and severe path loss. Despite the interest
that this problem has gained over the last years, the various
solutions proposed so far in the literature still fail at being flexible,
computationally effective, and suitable to the dynamic nature
of mobile networks. This paper addresses these issues with a
novel distributed algorithm based on multi-agent reinforcement
learning. More specifically, we model each user as an agent,
which, at each time step, maps its observations to an action
corresponding to an association request to a base station in its
coverage range. Our numerical results show that the proposed
solution offers near optimal performance and thanks to its
flexibility, provides large sum-rate gain with respect to the
state-of-art approaches.

I. INTRODUCTION

The fifth generation (5G) and beyond mobile

communication systems promise to meet the increasing

demand for ultra-high-speed communications. To achieve

this goal, among the different technologies currently under

consideration, millimeter-wave (mmWave) communication

has attracted a particular attention due to the large and mostly

unlicensed spectrum resources available between 24 and

86 GHz. However, transmissions at mmWave frequencies

suffer from severe attenuation, blockage, and deafness

[1]. Benefiting from the short wavelength characteristic of

mmWaves, directional beamforming enables to overcome part

of these issues [2]. With the dense deployment of mmWave

small cells, though, co-channel interference can be detrimental

for the network performance. Optimally associating users

in this context can be very challenging. In the literature,

efficiently solving the problem of user association in

mmWave networks while taking into account inter-cell

and intra-cell interference has received little attention.

Athanasiou et al. have proposed a distributed algorithm

for managing the user association [3]. However, they have

made the assumption that the interference is negligible,

thus achieving sub-optimal performance. Lui et al. have

designed a decentralized algorithm for beam pair selection

between user equipment (UEs) and base stations (BSs),

where the sum-rate maximization problem is reformulated

as a non-cooperative game with local interactions [4]. This

approach achieves good performance in terms of convergence

speed and sum-rate; however, each UE has its own utility

function whose computation requires information exchange

with its neighbouring UEs, thus, leading to significant

signaling overhead especially in dense networks.

Recently, the use of machine learning and reinforcement

learning has attracted the interest of both academia and

industry to handle the network management complexity [5],

[6]. Zhou et al. proposed a deep neural network (DNN)

architecture to optimize the beam management in order to

maximize the sum-rate subject to power and beam width

constraints [7]. However, this centralized method requires

collecting the signal-to-noise ratio (SNR) information of

all links. Moreover, the training data is generated using a

heuristic algorithm, which reduces the performance of the

DNN. Zhao et al. designed a distributed algorithm based

on multi-agent reinforcement learning (MARL) for user

association in heterogeneous network [8]. In contrast to our

work, they did not focus on mmWave networks and they

considered fully observable environment i.e., agent decisions

are based on global state information, which requires message

passing among UEs and therefore, induces signaling overhead.

Both distributed and centralized schemes have specific

advantages and inconveniences. Centralized schemes allow

efficient resource management since information from all

nodes is collected and processed globally but may lead

to large overhead. In contrast, distributed schemes require

less information exchange but may converge to sub-optimal

solutions, due to the lack of global information.

Inspired by the aforementioned studies, we propose a

distributed deep MARL framework for user association to

maximize the network sum-rate. We model each UE as an

agent operating in a fully distributed manner. No information is

exchanged between UEs, which learn the optimal strategy only

from their local state, thus limiting the signaling overhead and

the algorithm complexity. In addition, by using reinforcement

learning, there is no need of expert database. Moreover, in

contrast to some previous works, we consider both intra-cell

and inter-cell interference. Our numerical results show that

the proposed solution has near optimal performance providing

large sum-rate gain with respect to the state-of-art approaches.

The rest of the paper is organized as follows. Section II

introduces the system model and formulates the optimization

problem to be solved. Section III details the proposed approach

while Section IV outlines the simulation results. Section V

concludes the paper and gives some perspectives on future

work.



II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider a downlink network where Ns mmWave small

cells are deployed in the presence of an overlay macro cell

to provide services to K UEs as described in Fig. 1. Let

S = {0, 1, 2, ..., Ns} be the set of Ns + 1 base stations (BSs)

in the network with 0 indexing the macro base station (MBS).

Each small cell i covers a set Ui of UEs. Accordingly,

U = ∪Ns

i=1Ui = {1, 2, ...,K} represents the set of all UEs in

the macro cell, which in turn uses a sub-6GHz band to provide

ubiquitous coverage.

In this architecture with multi-radio access technologies [9],

a UE may receive control signals from multiple BSs, i.e., in a

multi-connectivity setting [10]. We use Sj = {i, di,j ≤ ci}
1

to denote the set of BSs the UE j could connect to, where ci
is the coverage range of the BS i and di,j is the distance

between BS i and UE j. Let xi,j ∈ {0, 1} be the binary

association variable such that xi,j = 1 when UE j is served

by the BS i and xi,j = 0 otherwise. Here we assume that each

UE can only received data by one BS at a time; moreover,

we consider that each mmWave small cell BS (SBS) cannot

serve more than Ni UEs simultaneously, where Ni is the

maximum beams available at the SBS i. In our system model,

we consider that the SBSs allocate all the available mmWave

band to each served UE; in contrast, the MBS equally shares

its band across the served UEs. Finally, we consider that the

SBSs have already performed beam training and alignment

mechanisms in advance and therefore are able to configure

the appropriate beam when a data connection is set up.

The downlink signal-to-interference-plus-noise ratio (SINR)

between BS i and UE j is evaluated as follows:

SINRi,j =
pig

t
i,jg

c
i,jg

r
i,j

I intrai,j + I interi,j +N0Bi,j
, (1a)

I intrai,j =
∑

j′∈Ui/{j}

xi,j′pig
t
i,j′→i,jg

c
i,jg

r
i,j′→i,j , (1b)

I interi,j =
∑

(i′,j′)∈V

xi′,j′pi′g
t
i′,j′→i,jg

c
i′,j′g

r
i′,j′→i,j , (1c)

where pi is the transmit power of BS i. I interi,j and I intrai,j

are the inter-cell and the intra-cell interference on the link

(i, j), respectively. V = S\{i} × U\{j} is the set of

inter-cell interfering links with respect to link (i, j), N0 is

the background noise power spectrum density, and Bi,j the

bandwidth allocated from the BS i to the UE j. gci,j denotes

the channel gain between BS i and UE j, which captures the

effect of path loss and shadowing as follows:

gci,j(dB) = −20log10

(

4πd0
λi

)

− 10ηilog10

(

di,j

d0

)

−Xi,j ,

(2)

where d0 is the close-in-free-space reference distance, ηi
the path loss coefficient, λi the wavelength, and Xi,j the

1Sj can also be derived based on links quality, e.g., the received signal
strength indicator between UE j and BS i (RSSIi,j ) should be greater than
a predefined threshold κj , i.e., Sj = {i, RSSIi,j ≥ κj}

Fig. 1. A downlink network with Ns = 3 SBSs, one MBS, and K = 9 UEs.
U1 = {1, 2, 3, 6}, U2 = {4, 5, 6, 8}, U3 = {2, 7, 8, 9}. As an example,
S1 = {1}, S2 = {1, 3}, S8 = {2, 3}.

shadowing coefficient. gti,j and gri,j are the transmitter and

receiver antenna directivity gain in the communication link,

respectively. We adopt the symbolic notation gti′,j′→i,j and

gri′,j′→i,j to denote the transmitter and receiver directivity

gain of the interfering link (i′, j′) seen from the link (i, j),
respectively.

To evaluate these gains, we adopt the simplified and

commonly used sectored antenna model [7], [11] where the

beamforming gain is defined as:

g(θ, α) =

{

g0
2π−(2π−θ)ξ

θ , if |α| ≤ θ
2

g0ξ, otherwise
, (3)

where ξ (0 < ξ ≪ 1) is the side lobe gain, α is the beam

offset angle to the main lobe in radian, θ is the beam width in

radian, and g0 is the antenna gain.

B. Problem formulation

According to the system model described in Section II-A,

we can formulate the user association problem for sum-rate

maximization as follows:

maximize
{xi,j}

∑

i∈S

∑

j∈U

xi,jBi,j log2(1 + SINRi,j), (4a)

subject to xi,j ∈ {0, 1}, (4b)
∑

j∈Ui

xi,j ≤ Ni, i ∈ S\{0}, (4c)

∑

i∈Sj

xi,j = 1, j ∈ U . (4d)

The constraint (4b) ensures that xi,j are binary variables and

the constraint (4c) indicates that the maximum number of UEs

associated with a given SBS i is limited to Ni. Note that we

suppose that the number of UEs that can be simultaneously

served by the MBS is larger than K. Finally, constraint (4d)

ensures that each UE is served by exactly one BS. It is

noteworthy that the SINR of the link (i, j) does not only

depend on variable xi,j but also on the association of other

users through the interference terms in the denominator. As

a result, the objective function (4a) is non-convex, making



UEj MBS SBS

Find the surrounding BSs i.e., Sj

Request connection to aj(t)

if aj(t) = 0, MBS Grant Access

if aj(t) > 0, Request Access for the UE

ACKj(t)

if ACKj(t) = 0, MBS Grant Access

if ACKj(t) = 1, SBS Grant Access

Evaluate Rj(t)

Forward Rj(t)

Compute R(t) =
∑

j Rj(t)

Broadcast R(t)

Fig. 2. Message sequence chart of the proposed mechanism.

this problem difficult to solve with the standard optimization

techniques.

III. PROPOSED SOLUTION VIA DEEP MULTI-AGENT

REINFORCEMENT LEARNING

A. General framework

We propose a cooperative multi-agent reinforcement

learning algorithm for solving the optimization problem

(4a)-(4d). Fig. 2 presents the information flow diagram of

the proposed algorithm. Each UE j first identifies the set of

BSs Sj it may connect to, which also represents its action

space, i.e., the action aj(t) ∈ Sj denotes the index of

the BS to which the UE j requests connection at time t.

Accordingly, each time step, the UE j takes an action aj(t)
and informs the MBS to which BS it requests connection to. If

aj(t) = 0, the MBS grants the connection request and sets up

communication. Otherwise, the MBS forwards the connection

request to the corresponding SBS. Depending on the overall

received requests, the SBS sends an acknowledgement signal

(ACKj(t)) to both the UE and the MBS. If ACKj(t) = 1,

the SBS grants a connection to the UE; otherwise, the MBS

establishes the data link with the UE j. Next, each UE j

evaluates the perceived data rate, i.e., Rj(t) = Baj(t),j log2(1+
SINRaj(t),j) and forwards this value to the MBS. Then, the

MBS computes the network sum-rate R(t) and broadcasts it

to the network UEs, which use this information to evaluate

the goodness of their action, and to define future actions

accordingly.

Following [12], the history Hj(t) denotes the set of all

actions, observations, and measurements collected at UE j up

to time t:

Hj(t) = {aj(τ),ACKj(τ), Rj(τ), R(τ)}
t
τ=1 . (5)

Moreover, we define the playing strategy of UE j at time t,

πj(t), as a mapping from its history Hj(t−1) to a probability

mass function over its action space Sj . Therefore, each UE

takes its actions following its own strategy without being aware

of the actions taken by the other UEs.

As formulated, this problem falls in the class of cooperative

independent learners [13], [14], since no information is

exchanged between agents, which operate in a partially

observable environment. In fact, at each time, UEs act based

only on their local state information including the feedback

(ACK, R(t)) perceived from the surrounding BSs. They learn

to which BS to ask for a connection in order to maximize

the overall network throughput. The most challenging issue

with this setting is the non-stationarity of the environment,

which is due to the simultaneous interactions of all the agents

with it. This non-stationarity can lead to shadowed equilibria

- an agent locally optimal action ends up being a globally

sub-optimal action. Omidshafiei et al. successfully applied

hysteretic Q-learning (first introduced by Matignon et al.

[14]) to tackle the non-stationarity problem in MARL with

partial observability [15]. They use deep recurrent Q-networks

(DRQNs), which serves as a basis to our proposed algorithm.

B. Background on Hysteretic Deep Recurrent Q-Network

In the hysteretic deep recurrent Q-network (HDRQN)

setting, each UE j acts as an independent learner with

its own DRQN Qj(oj(t), hj(t − 1), aj(t)|θj) (see Fig. 3).

The input of the DRQN oj(t) =
{

aj(t − 1), Rj(t − 1),
R(t− 1),ACKj(t− 1)

}

is the UE local observation, hj(t−1)
is the recurrent neural network (RNN) hidden state, and

θj represents the UE local DRQN weights. The use of

RNN allows to maintain a local aggregation of previous

observed states, i.e., Hj(t), which improves the average reward

perceived when dealing with partial observability.

UEs learn by interacting with the environment. At each

time t, from its observation oj(t), UE j takes action aj(t)
following a policy (e.g., ǫ-greedy), perceives reward rj(t) and

observes the new state oj(t + 1). The resulting experience

ej(t) = {oj(t), aj(t), rj(t), oj(t+ 1)} is stored into a local

memory Mj , which is used to speed up and stabilize the

training process [16]. During the learning phase, each UE j

concurrently samples a mini batch of experiences Bj from its

local memory Mj with the help of concurrent experience

replay trajectories (CERTs) [15] and updates its DRQN

weights in order to minimize the hysteretic loss function:

Lj(θj) = Eeb
j
(t)∼Bj

[

(wb
jδ

b
j(t))

2
]

. (6)

In (6), b indexes an entry in the mini batch of experiences

Bj . δbj(t) = ybj(t)−Qj(o
b
j(t), h

b
j(t− 1), abj(t)|θj) denotes the

temporal difference (TD) error between the output of the UE

j DRQN and the target value

ybj(t) = rbj(t) + γmax
a′

Qj(o
b
j(t+ 1), hb

j(t), a
′|θ̂j), (7)

where the parameter γ is referred as the discounting factor

and θ̂j are the weights of the target DRQN. In the hysteretic

Q-learning, the network weights are updated via a gradient

descent algorithm with two distinct learning rates α and β



aj(t− 1)

Rj(t− 1)

R(t− 1)

ACKj(t− 1)

Action #1

...
...

Action #card(Sj)

Hidden
layer
(Dense)

Input
layer

oj(t)
Hidden
layer

(LSTM)

Hidden
layer
(Dense)

Output
layer

Activation function

ReLU: max(., x)

Fig. 3. Illustration of the architecture of the used DRQN.

(β ≪ α ≤ 1). When the TD error δ ≥ 0, the learning rate α

is used; otherwise, β is considered. This leads to an optimistic

update by according more importance to positive experiences

[14]. Accordingly, the weights wb
j are defined as follow:

wb
j =

{

α, if δbj(t) ≥ 0
β, otherwise

. (8)

Finally, it is worth to highlight that the target network

weights θ̂j are updated less frequently to improve the learning

stability [16].

C. Definition of the reward function

We treat the optimization problem as a continuing task with

a time horizon Te. Indeed, there is no explicit or predefined

terminal state as the maximum network throughput is unknown

at the beginning. In contrast, our algorithm must ensure

that the system keeps following the optimal policy over the

time horizon Te < ∞ once the maximum throughput is

reached. Moreover, since all UEs are requesting connections

simultaneously, collisions may occur when the number of

UEs asking a given SBS i for a connection is greater than

the number of available beam Ni. However, in our proposed

framework, we want to avoid the collision events, and serve as

many UEs as possible through the mmWave links, to increase

the network sum-rate. Consequently, when a collision happens,

we set the reward for all UEs to zero. As a result, we define

the reward function of UE j in (7) as:

rj(t) =

{

R(t), if there is no collision

0, otherwise
. (9)

Each UE j then acts following its strategy πj to maximize the

accumulated discounted reward:

Gj =

Te
∑

t=1

γt−1rj(t), (10)

where the discounting factor γ is such that 0 ≤ γ < 1. Taking

γ = 0 leads to myopic (instantaneous) network throughput

maximization. In case of dynamic scenarios, it is better to

consider γ 6= 0 in order to take into account the dynamic nature

TABLE I
SIMULATION PARAMETERS.

Macro cell [17] Small cell

Parameters Values

Carrier frequency, fc 2.0 GHz 28 GHz

Bandwidth, B 10 MHz 500 MHz

Thermal Noise, N0 -174 dBm/Hz -174 dBm/Hz

Noise figure 5 dB

Shadowing, X 9 dB 12 dB

Transmit power 46 dBm 20 dBm

g0 (TX/RX) 17 dBi / 0 dBi 0 dBi, Eq. (3)

Cell radius, r 50 m

Beam width, θ 360° 20°

Side lobe gain, ξ 0.01

Inter-cell distance 1.2× r

Pathloss model 128.1 + 36.7log10(d) Eq. (2), d0 = 5 m

of the environment: there is no need to change the current

user association at time step t due to a low reward perceived

because of the environment dynamics if at the next time step

the system will recover its equilibrium.

As defined, the reward perceived by the agents is continuous

and varies with the environment stochasticity viz. fading,

shadowing, interference, and noise. Accordingly, this reward

setting can lead to many optimal or quasi-optimal equilibria,

which is a major issue as it results in agents laboriously trying

to converge [13].

IV. SIMULATION RESULTS

Here we assess the performance of our proposed

HDRQN-based user association in a static scenario (i.e.,

deterministic environment) via Monte-Carlo simulations. UEs

are static and fast fading is not considered in this study. The

case of dynamic scenarios (i.e., stochastic environment) is left

for future works. Table I summarizes the network parameters

used during simulations.

In all tests, three small cells are deployed inside the

macro cell. UE and small cell locations follow the 3GPP



recommendations [17]. To learn the user association policy, we

use the DRQN described in Fig. 3. This architecture includes 2

multi-layers perceptron (MLP) of 32 hidden units, one LSTM

with 64 memory cells followed by another 2 MLP of 32

hidden units. All layers use a rectifier linear unit (ReLU)

except the final layer, which has a linear activation function.

All simulation results are plotted for γ = 0.9. For hysteretic

learning, we use a base learning rate µ = 0.001 and scale

the learning rate into α = α̂µ and β = β̂µ with α̂ = 1 and

β̂ ∈ [0, 1]. The DRQNs are trained offline over a time horizon

Te = 5000 using an ǫ-greedy policy with ǫ annealing from

1 to 0.01. Each time step, each agent uniformly samples a

mini batch of size 32 from its CERT memory of size 500.

The target network weights are updated every 20 time steps.

Note that all hyperparameters values are selected via informal

search. At the end of the learning phase, we collect the agent

strategies and we compare the performance of our approach

with 2 centralized frameworks, which serve as baselines:

1) SNR maximization-based beam allocation (max-SNR),

which simply associates UEs with the BS providing the

maximum SNR.

2) The heuristic algorithm proposed in [7] without power

and beam width constraints.

The max-SNR method does not take the interference

into consideration and accordingly has limited performance

especially in case of dense networks. In contrast, the heuristic

method iteratively looks for an optimal association taking into

account the inter-beam interference; however, at each iteration,

the association is based on the SNR, which may prevent from

reaching a global optimum.

A. Complexity analysis

A naive algorithm may find the optimal solution of

problem (4a)-(4d) through an exhaustive search. For UE

j, there are card(Sj) possible choices of BSs. For all

UEs, there are
∏

j∈U card(Sj) possible combinations in

which only some of them satisfy the constraint (4c). For

each combination, checking if constraint (4c) is satisfied

requires O(
∑

i∈S card(Ui)) iterations. In the worst case, i.e.

card(Sj) = Ns+1, running this naive algorithm will therefore

require O((
∑

i∈S card(Ui))
∏

j∈U card(Sj)= O(K(1+Ns)
K)

iterations. On the one hand, the complexity of both max-SNR

and heuristic algorithms during execution is related to sorting

the SNR values; however, the need to collect such values is

the most notable disadvantage of these centralized approaches.

Considering a quicksort algorithm, this complexity in the

worst case (card(Sj) = Ns + 1) is around O(nlog(n)) for

max-SNR and O(n + nlog(n)) for the heuristic algorithm2

where n = K(1 +Ns). On the other hand, the complexity of

our algorithm depends on the local DRQNs. Let Lh be the size

of hidden layers and Lc the number of cells in LSTM layer.

The complexity of UE j DRQN is in the order of O(4Lh +
2L2

h + LhLc + 2L2
h + Lh(card(Sj))) ≈ O(4L2

h + LhLc). In

terms of signaling overhead, as the reward is the same for

2One pass to sort the SNR values and another to find the association.

0 1,000 2,000 3,000 4,000 5,000
0

1

2

3

4

·105

Time steps (t)

L
0
(θ

0
)

β̂ = 0

β̂ = 0.4

β̂ = 0.6

β̂ = 1

Fig. 4. Loss function for different values of β̂, Ns = 3, K = 9.

Fig. 5. Sum-rate ratio for different values of β̂, Ns = 3, K = 9, averaged
over 50 runs.

all UEs, the complexity of our approach at each iteration is

equal to O(KB), where B is the number of bits exchanged in

the message sequence chart of Fig. 2. This is lower than the

signaling overhead of the algorithm proposed in [4].

B. Effect of the hysteretic parameter

Despite the few information available locally to UEs, they

successfully learn the BS to which they should request a

connection. Fig. 4 shows the evolution of the loss function

in (6) with respect to the hysteretic parameter β̂. Lowering

β̂ helps increase the convergence speed but results in agents

being more and more optimistic. In fact, when β̂ decreases,

agents tend to give less and less importance to actions

producing negative TD errors. Consequently, they may fail to

(autonomously) coordinate, which prevents from reaching the

global optimum. Fig. 5 shows the sum-rate ratio with respect

to the optimal user association solution for different values

of β̂. According to these results, taking β̂ ∈ [0.1, 0.5] is a

good compromise between convergence speed and network

sum-rate.
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C. Performance comparison

We now run the algorithm on different network

configurations where we change the number of active

UEs3. Results are averaged over 50 runs. At each run,

UE positions are randomly reset. Fig. 6 shows that the

HDRQN-based association can achieve up to 98% of the

optimal performance obtained via exhaustive search and

outperforms the 2 baselines. In fact, on average, our proposed

solution has a 4% and 9% performance gain over the

heuristic and max-SNR algorithms, respectively. When the

number of UEs increases, ensuring coordination between

agents becomes more and more complex, resulting in slightly

decreasing performance with respect to the global optimum.

For example, when the number of UEs K = 6, our proposed

algorithm achieves 99.8% of the optimal performance, while

when K = 13, only 98% is reached. In addition, it is worth

to highlight the very low variance of the sum-rate ratio of

the proposed scheme shown in Fig. 6 (the standard deviation

in average is only 1.25% of the optimal performance for

the proposed scheme, compared to 4.75% and 8.25% for

the heuristic and max-SNR algorithms, respectively), which

demonstrates its robustness and stability when compared to

the two baselines.

V. CONCLUSION

In this work we present a novel and flexible approach

to handle the user association in dense networks with

multiple radio access technologies. We first formulate the user

association as a sum-rate maximization problem; then, we

cast it as a multi-agent reinforcement learning task where

agent decisions are based on partial and local observations.

Eventually, we define a DRQN architecture and the associated

signaling protocol to enable UEs to learn the association policy

in a distributed way, with limited complexity. Our simulation

3The limitation to K = 13 is due to the computational complexity to find
the optimal solution.

results show the feasibility of the proposed algorithm and that

it can achieve up to 98% of the performance provided by the

optimal solution.

Future work will focus on dynamic scenarios, taking into

account the time varying nature of communication channels

and considering more realistic antenna models.
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