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Multi-Agent Reinforcement Learning for Adaptive
User Association in Dynamic mmWave Networks

Mohamed Sana, Antonio De Domenico, Wei Yu, Yves Lostanlen, and Emilio Calvanese Strinati

Abstract—Network densification and millimeter-wave tech-
nologies are key enablers to fulfill the capacity and data rate
requirements of the fifth generation (5G) of mobile networks.
In this context, designing low-complexity policies with local
observations, yet able to adapt the user association with respect
to the global network state and to the network dynamics is a
challenge. In fact, the frameworks proposed in literature require
continuous access to global network information and to recom-
pute the association when the radio environment changes. With
the complexity associated to such an approach, these solutions
are not well suited to dense 5G networks. In this paper, we
address this issue by designing a scalable and flexible algorithm
for user association based on multi-agent reinforcement learning.
In this approach, users act as independent agents that, based on
their local observations only, learn to autonomously coordinate
their actions in order to optimize the network sum-rate. Since
there is no direct information exchange among the agents, we
also limit the signaling overhead. Simulation results show that
the proposed algorithm is able to adapt to (fast) changes of radio
environment, thus providing large sum-rate gain in comparison
to state-of-the-art solutions.

I. INTRODUCTION

The fifth generation of mobile communications (5G)
promises to bring an unprecedented improvement in current
wireless systems, providing ultra-high speed communications,
extremely low latency, and enabling a plethora of use-cases.
One of the main targets of 5G is to provide enhanced mobile
broadband (eMBB) services, which are characterized by high
data throughput requirements, e.g., the 5G target for downlink
peak data rate is 20 Gbps [2]. To boost the network capacity,
5G envisions the use of millimeter-wave (mmWave) bands,
which offer large spectrum resources, together with the dense
deployment of small cells in the network architecture. How-
ever, mmWave transmissions suffer from severe path-losses
and are highly sensitive to blockages [3]. Moreover, network
capacity does not increase systematically with the densification
of base stations (BSs) due to e.g., channel interference and
inefficient resource allocation. In this context, optimally asso-
ciating user equipments (UEs) to BSs is a fundamental task
to take full advantage of network densification and mmWave
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technology. This task is particularly challenging in dense 5G
networks, and it is even more complex when taking into
account channel interference, fast fading, and network traffic,
which we later refer to as the environment dynamics. So far,
the current solutions proposed in the literature typically require
global information of the network, are computationally expen-
sive, and do not consider the dynamic nature of wireless net-
works. More specifically, either the state-of-the-art algorithms
are re-computed periodically or whenever a notable change
has occurred in the environment to correct possible drifts
from the optimal association. With the complexity carried by
such approaches, they may lead to significant computation and
signaling overhead. Therefore, there is the need for flexible
and adaptive solutions with respect to environment dynamics.

In this paper, we address this issue by proposing a dis-
tributed algorithm based on multi-agent reinforcement learning
where each UE acts as an independent agent that operates in a
fully distributed manner. UEs learn by experience, based only
on their local and partial observations in order to maximize
the network sum-rate, as we focus on mmWave technology
for eMBB services. Specifically, UEs learn to map their
observations of the environment to actions that correspond to
connection requests to their surrounding BSs. Our proposed
framework has the advantage of being able to incorporate the
environment dynamics during the learning phase i.e., the time
varying nature of mmWaves channels and the traffic of each
user, so that the user association is self-reorganized toward the
optimal association when a relevant change occurs in the envi-
ronment. Furthermore, we reduce the signaling overhead since
agents does not exchange any direct information. Moreover, a
salient feature of the proposed mechanism is that it can easily
be leveraged to optimize operation in other wireless systems
e.g., WiFi, without additional complexity. Eventually, the
distributed nature of our algorithm alleviates the computation
overhead, thus making the proposed framework a promising
tool for next generation of wireless systems [4].

A. Related Work

Although user association problem has been extensively
studied in the literature, the need for flexible, robust, and
efficient solutions to handle the growing networks complexity
is still an open research topic, especially in the context of
dense mmWave networks. In fact, the user association is
known to be a combinatorial and non-convex optimization
problem, difficult to solve with the standard optimization tools.
To deal with this challenge, Athanasiou et al. have designed a
distributed algorithm to manage the user association [5]. Their
solution is sub-optimal as it ignores interference and does not
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consider the environment dynamics. Similarly, Lui et al. have
formulated a non-cooperative game with local interactions for
managing the beam pair selection between UEs and BSs while
targeting to maximize the network sum-rate [6]. However,
this proposal requires information exchange among UEs, thus,
inducing a large signaling overhead. Moreover, as in [5], the
game also need to be replayed every time a relevant change
occurs in the environment.

Recent advances on machine learning and reinforcement
learning [7], [8] have enabled the design of more flexible
algorithms for optimizing the user association. In this context,
Zhou et al. have recently proposed a deep neural network
(DNN) based user association scheme to maximize the net-
work throughput subject to power and beam width constraints
[9]. Although with the use of DNN this solution reduces the
computation overhead with respect to standard solutions, this
approach is centralized and requires collecting the signal-to-
noise ratio (SNR) information of all the links to construct
the DNN inputs. This induces therefore a large amount of
signaling overhead since the SNR values need to be gathered
every time the environment changes. Moreover, the solution
learned by the DNN is generated using a heuristic algorithm,
which limits the system performance.

Although training a deep neural network on mobile devices
in a computation and energy efficient way is an ongoing
research topic, notable efforts have already been made both
in terms of hardware design and software accelerators (see
[10], [11] and references therein), which makes possible
to move part of the optimization process at the user side.
In this sense, Zhao et al. have tackled the problem of
user association with a distributed multi-agent reinforcement
learning (MARL) algorithm [12]. Nevertheless, this work
has not focused on mmWaves networks and has considered
fully observable environment. Besides that, in contrast to our
work, the solution proposed in [12] lacks in scalability as
the architecture of the proposed DNN depends on the total
number of interacting UEs. In our previous works, we have
demonstrated the feasibility of MARL in partially observable
environment, by designing a scalable architecture that enables
user association in static network (static channels) [1] and
to optimize the handover cost in dense mmWave networks
[13]. Now, we extend these previous studies to take into
account more realistic assumptions, and let the user association
optimally update with respect to the network dynamics, viz.
fading, traffic, and interference.

B. Main Contributions

The contributions of this paper can be summarized as
follows:

1) Sum-rate maximization in dense mmWave networks: We
first formulate a user association problem to maximize the
sum-rate of a mmWave network. In contrast to the existing
works, we take into consideration both inter-cell and intra-cell
interference and environment dynamics, which are character-
ized by the time-varying nature of the mmWave channels and
the evolving data rate demand of UEs by using only local
observations at each UE.
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Figure 1. A downlink network with Ns = 3 SBSs, one MBS, and K = 9
UEs. U1 = {1, 2, 3, 8, 9}, U3 = {6, 7, 8, 9}. As an example, A1 = {1, 2},
A5 = {2}. Here, Dj denotes UE j data rate request and Rj is the achievable
data rate w.r.t. the selected BS.

2) Multi-agent reinforcement learning based user associa-
tion scheme: We cast the formulated user association problem
into a multi-agent reinforcement learning task, where UEs,
modeled as agents, collaborate to maximize the network
sum-rate. In order to limit both signaling and computational
complexity, the agents act as independent learners i.e., their
decisions are independent of each other. We force UEs to
act based only on partial observations and perceived rewards.
This brings the benefit that a UE does not need to collect and
process information related to other users. In this setting, we
propose a deep recurrent Q-network (DRQN) architecture and
the associated signaling protocol that enable UEs to learn an
efficient network sum-rate association policy.

3) Policy distillation in small-scale dynamics: When the
system dynamics change faster than the learning convergence
time, online strategies cannot be successfully implemented.
In particular, this is the case when the dynamic of the UE
traffic requests changes in time and that the user association
must be updated accordingly to avoid performance losses. To
deal with these challenges, we design an offline distillation
procedure consisting in integrating experiences related to
different scenarios in a single one, so that the users are able
to adjust their association policy to abrupt changes of the
environment.

The remainder of the paper is organized as follows. Section
II introduces the system model and formulates the optimiza-
tion problem to be solved. Section III details the proposed
distributed algorithm and the associated signaling protocol.
Section IV outlines the simulation results while Section V
concludes the paper and gives some perspectives on future
work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

We consider a downlink network consisting of Ns mmWave
small cells and one macro cell jointly providing services to K
UEs as shown in Fig. 1. We denote by A = {0, 1, 2, . . . , Ns}
the set of Ns + 1 BSs in the network where 0 indexes the
macro base station (MBS), which uses sub-6 GHz technology
to enable ubiquitous network coverage. Also, we use Ui to
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indicate the set of UEs under coverage of the i-th BS; hence,

U =
Ns⋃
i=0

Ui = {1, 2, . . . ,K} represents the set of all UEs in

the network.
In this architecture with multi-radio access technologies, a

UE may receive control signals from multiple BSs. Therefore,
we define Aj = {i, di,j ≤ φi/2, i ∈ A}1 as the set of
BSs the UE j could connect to, where φi/2 is the cell radius
of the BS i and di,j is the distance between BS i and UE
j. Note that Aj 6= Ø,∀j as a UE can always be associated
with the MBS. Let xi,j ∈ {0, 1} be the binary association
variable such that xi,j = 1 when UE j is served by the
BS i and xi,j = 0 otherwise. Here we assume that each UE
can only received data from one BS at a time. Moreover, we
consider that each mmWave small cell BS (SBS) cannot serve
more than Ni UEs simultaneously, where Ni is the maximum
number of beams available at the SBS i. In our system model,
we consider that the SBSs allocate all the available mmWave
band to each served UE; in contrast, the MBS equally shares
its band across the served UEs. Finally, we consider that the
SBSs and the UEs have already performed beam training and
alignment mechanisms in advance and therefore are able to
configure the appropriate beams when a data connection is
set up. For instance, an initial access protocol based on the
signal-to-interference-plus-noise ratio (SINR) can be used to
complete this task [14].

The downlink SINR between BS i and UE j is evaluated
as follows:

SINRi,j =
αi,jP

Tx
i GTx

i,jG
ch.
i,jG

Rx
i,j

I intrai,j + I interi,j +N0Bi,j
. (1)

Here, PTx
i is the transmit power of BS i, N0 is the Gaus-

sian noise power spectrum density, and Bi,j the bandwidth
allocated from the BS i to the UE j. I interi,j and I intrai,j are
the inter-cell and the intra-cell interference on the link (i, j),
respectively. Since, in our system model, we consider only
one MBS, which shares its bandwidth across the served UEs,
I intrai,j = I interi,j = 0 for MBS-UE links. In contrast, for
mmWave links, the inter-cell and intra-cell interference are
due to the overlapping of different beams serving distinct UEs,
as we do not specifically optimize the beamformers. Their
expressions are given as follow:

I intrai,j =
∑

j′∈Ui/{j}
xi,j′αi,jP

Tx
i GTx

i,j′→jG
ch.
i,jG

Rx
i,j←i, (2a)

I interi,j =
∑

(i′,j′)∈V
xi′,j′αi′,jP

Tx
i′ GTx

i′,j′→jG
ch.
i′,jG

Rx
i,j←i′ , (2b)

where V = A\{i, 0}×U\{j} is the set of inter-cell interfering
links with respect to link (i, j). αi,j represents the small
scale fading coefficient, which in case of mmWave channels
is typically modelled with a m-Nakagami2 distribution [15].

Here, Gch.
i,j denotes the channel gain between BS i and UE

j. Let s denote the type of BS, i.e., s ∈ {SBS,MBS}. Then,

1Aj can also be derived based on links quality, e.g., the received signal
strength indicator between UE j and BS i (RSSIi,j ) should be greater than
a predefined threshold κj , i.e., Aj = {i, RSSIi,j ≥ κj}.

2For sub-6 GHz channels, we consider m = 1, which is equivalent to
Rayleigh fading.

we adopt a distance-based channel model [16], which captures
the effect of path loss and shadowing as follows:

Gch.
i,j (dB) = 20log10

(
4πd0,s
λs

)
+ 10ηslog10

(
di,j
d0,s

)
+Xσs

i,j ,

(3)
where d0,s is the close-in-free-space reference distance, ηs is
the path loss coefficient, λs the wavelength, and Xσs

i,j the log-
normal shadowing with a variance equal to σ2

s . In particular,
d0,s, ηs, λs and σ2

s depend on the radio technology; GTx
i,j

and GRx
i,j are the transmitter and receiver antenna gain in the

communication link, respectively. We denote with GTx
i′,j′→j the

transmitter gain of the interfering link (i′, j′) on UE j related
to the communication between BS i′ and UE j′; its value
depends on the orientation of the beam used by BS i′ for
transmitting to UE j′ and the position of the UE j. Moreover,
GRx
i,j←i′ indicates the receiver gain of the UE j, communicating

with BS i, with respect to the interring BS i′; its value depends
on the orientation of the beam used by UE j to receive from
BS i and the position of BS i′.

In addition, we assume that the backhaul network has suf-
ficient capacity so that we neglect its impact when optimizing
the user association. However, this framework can be easily
extended for the scenarios where a backhaul with limited
capacity can degrade the users’ performance, e.g., following
the approaches in [17], [18] or by limiting the number of UEs
served by each SBS. From the above definitions, the achievable
communication rate between BS i and UE j is given by the
Shannon capacity:

Ri,j(t) = Bi,j log2 (1 + SINRi,j(t)) . (4)

Moreover, in our model, we take into account the UE
traffic when computing the network throughput. Accordingly,
we define Dj(t) as the data rate demand of UE j at time
step t, which follows a Poisson distribution with intensity
Dj = E [Dj(t)].

B. Problem formulation

Given the UE j with a traffic demand Dj(t), the ef-
fective data rate exchanged with BS i at the time t is
min

(
Dj(t), Ri,j(t)

)
. Let R(t) be the total network sum-rate,

which is defined as follows:

R(t) =
∑

i∈A

∑

j∈U
xi,jmin

(
Dj(t), Ri,j(t)

)
. (5)

We formulate the user association problem to maximize the
network sum-rate (5) as follows:

maximize
{xi,j}

R(t), (6a)

subject to xi,j ∈ {0, 1}, (6b)∑

j∈Ui
xi,j ≤ Ni, i ∈ A\{0}, (6c)

∑

i∈Aj

xi,j = 1, j ∈ U . (6d)

The constraint (6b) ensures that the decision variables xi,j are
binary. The constraint (6c) highlights that a given SBS i can
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use at most Ni beams at the same time. In our architecture, we
assume that the MBS can simultaneously support any number
of requests by equally sharing the available band across the
served UEs. Finally, constraint (6d) indicates that, in our
setting, each UE is associated with exactly one BS.

One has to notice that the objective function (5a-5d) is non-
convex. Indeed, the association of a given UE j with a given
BS i depends on its SINRi,j value. However, by observing (1)
the expression of the SINR also depends on the association of
other users through the interference terms in the denominator.
These cross-dependencies combined with the binary decision
variables make the optimization problem non-convex and NP-
hard, hence, difficult to solve with conventional optimization
frameworks [19]. The difficulty is exacerbated when consider-
ing the UEs traffic as it introduces a non-linearity through the
min(., .) function. In the next sections, we propose to tackle
the aforementioned issues with deep reinforcement learning
(DRL).

III. PROPOSED SOLUTION VIA DEEP MULTI-AGENT
REINFORCEMENT LEARNING

In this section, we describe the proposed solution to solve
the user association problem in a dynamic environment. First,
to limit the complexity of the proposed solution, we cast
this problem to a multi-agent DRL framework, where each
user independently learns the optimal policy. This solution is
distributed based on multi-agent reinforcement learning. Then,
to characterize the associated overhead, we show the signaling
messages required to implement the proposed solution in a
practical system.

A. Background on multi-agent reinforcement learning

The proposed user association framework is based upon the
cooperative MARL approach, but in our solution, we do not
exploit inter-agent communications. Cooperative MARL refers
to framework in which agents learn to coordinate together to
achieve a common objective [20]. In such a framework, agents
learn by interacting with a shared environment following
a Markov Decision Process (MDP). Basically, an MDP is
defined as tuple (S,A, T ,R), in which S denotes the state
space, A is the action space, T (s, a, s′) the probability of
transitioning from state s to state s′ after taking action a,
which results in an immediate reward R(s, a, s′). The problem
for agents in MDP is to find the optimal policy π∗ : S → A
that maximizes the expected sum of the perceived rewards. To
solve this problem, Q-Learning is a widely used model-free
algorithm that estimates the Q-values Q(s, a), which are the
expected maximum sum of rewards perceived at state s when
taking action a.

Recent exploits in deep learning enable to approximate the
Q-function in order to deal with complex problems with deep
Q-network (DQN): Q(s, a) ≈ Q(s, a; θ), where θ is the set
of neural network parameters [21]. DQN relies on experience
replay to speed up and stabilize the training process [21]. At
each time t, from a state s(t), agent takes an action a(t)
following a policy (e.g., ε-greedy) that brings it to state s(t+1)
with an immediate reward r(t). The resulting experience

e(t) = {s(t), a(t), r(t), s(t+ 1)} is stored into an experience
replay memory M from which a mini batch of experience B
is sampled every iteration during the learning phase. In this
phase, the weights of the DQN are iteratively updated using
stochastic gradient descent (SGD) on mini batches in order to
minimize the loss function:

L(θ) = Ee(t)∼B
[
δ(t)2

]
. (7)

In (7), δ(t) = y(t) − Q(s(t), a(t); θ) denotes the temporal
difference (TD) error where the γ-discounted target value is
computed as follows:

y(t) = r(t) + γ max
a′

Q(s(t+ 1), a′; θ). (8)

Finally, knowing the optimal parameters θ∗, the optimal policy
is given by:

π∗ : S → A
s→ argmax

a∈A
Q(s, a; θ∗).

In general, there can be some states where the outcome is the
same regardless of the action the agent could take; therefore,
it is not always necessary to determine the state action value
at a given state s, Q(s, a; θ), for every action. For instance,
when playing a video game consisting in moving left or right
to avoid objects, trying to decide whether the optimal action is
to move left or right is totally useless if there is no threatening
object in sight. Another example is when a UE is located at
the same distance from two BSs that can provide it with the
same throughput. In that case, there is not a single optimal
action as the result will be the same whatever BS is selected
Based on this intuition, Wang et al. have introduced the notion
of dueling network where Q(s, a; θ) is decomposed into a
state value V (s; θ) = E[Q(s, a; θ)] and the advantage of the
corresponding action A(s, a; θ) [22]. That is,

Q(s, a; θ) = V (s; θ) +A(s, a; θ). (9)

The first term is action-less and is inherent to the state while
the second measures the goodness of the action in that state.
Dueling network shows that learning the DQN by estimating
separately the state value and the advantage values can enable
notable improvement in the agent policy.

In addition, it is important to highlight that, in distributed
deep MARL, each agent maintains its own DQN, i.e., its
own policy, while sharing its environment with other agents.
Typically, in this context, either each agent acts in a selfish
way, learning a policy that optimizes its own performance, or
aims to determine a global optimal policy, which maximizes
the system performance. One major issue that arises with
MARL is the problem of non-stationarity due to multiple
agents interacting simultaneously with the environment. As a
result, this can lead to shadowed equilibria where an agent’s
locally optimal action could end up being globally sub-optimal
[23]. In the following, we focus on cooperative MARL,
meaning that agents also share a common joint reward and
propose a solution to deal with this shadowed equilibria.
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UEj MBS SBS

Request Connection to aj(t)

if aj(t) = 0, MBS Transmit Data

if aj(t) > 0, Request Access for UE j

ACKj(t)

if ACKj(t) = 0, MBS Transmit Data

if ACKj(t) = 1, SBS Transmit Data

Evaluate Rj(t)

Forward min
(
Dj(t), Rj(t)

)

Compute R(t) =
∑

j min
(
Dj(t), Rj(t)

)

Broadcast R(t)

Figure 2. Message sequence chart of the proposed mechanism.

B. Proposed framework

In this section, we define the proposed MARL framework to
solve the optimization problem (6a)-(6d). In this framework,
we model UEs as agents and assign them a common objective,
i.e., maximizing the network throughput. In our setting, a UE,
based on its local observations, selects and requests service
from a target BS, which accepts or rejects the connection re-
quest by sending an acknowledgment (ACK) signal depending
on the available resources.

As described in Fig. 2, each UE j starts by identifying
the set of BSs Aj it may connect to. Note that, in practical
systems, the size of this set is limited to reduce the complexity
of mobile devices. Aj also defines the UE action space,
meaning that the action aj(t) ∈ Aj denotes the index of the
BS to which the UE j requests a connection at time t. Then, in
every time step, each UE j takes an action aj(t) and informs
the MBS of its choice. If the UE is requesting a connection
from the MBS, i.e., aj(t) = 0, the request is automatically
granted3 and the communication is set up. Otherwise, the MBS
forwards the connection request to the corresponding SBS.
Depending on the overall received requests and constraint (6d),
the SBS notifies both the UE and the MBS with an ACKj(t)
signal. If ACKj(t) = 1, the SBS grants a connection to the
UE; otherwise, the MBS establishes the default data link with
the UE j. Next, each UE j evaluates the perceived data rate,
i.e., min

(
Dj(t), Raj(t),j(t)

)
and forwards this value to the

MBS. Then, the MBS computes the network sum-rate R(t).
Finally, the MBS broadcasts the total throughput to each UE,
which uses it to evaluate the goodness of its policy πj(t) and
to update it accordingly.

Following this process, we define the history Hj(t) of UE
j as the set of all actions, observations, and measurements

3Recall that we assume that the MBS is able to simultaneously serve all
the active UEs by equally sharing its band across them.

collected up to time t [24] :

Hj(t) =
{
aj(τ), ACKj(τ), RSSIaj(t),j(τ),

Dj(τ), Raj(t),j(τ), R(τ)
}t
τ=1

. (10)

Hence, the policy of UE j at time t, πj(t), is a mapping
from its history Hj(t − 1) to a probability mass function
over its action space Aj . Therefore, each UE takes its actions
following its own strategy without being aware of the actions
taken by the other UEs.

A key feature of the proposed approach is that in contrast
to MDPs, here, the decision of the j-th UE is based only on
its local state observation oj(t) =

{
aj(t − 1), Raj(t−1),j(t −

1), R(t − 1),ACKj(t− 1),RSSIaj(t−1),j(t), Dj(t)
}

. It is
worth to note that oj(t) carries information related to the
previous action/reward, already available at the UE side, and
new local information (the RSSI and the data demand Dj(t)).
Specifically, each UE makes association decisions based on
how well its previous actions performed. The only observation
that implicitly coordinates the actions of the multiple UEs is
the network sum rate, which serves as a signal to each UE as to
whether their local actions are beneficial to the overall network
objective. Please note that the overall network objective may
increase or decrease due to the actions of multiple UEs, thus
it is not a perfect signal in the sense that it does not tell each
UE exactly the consequence of its own specific action. Yet,
our goal is that, using DRL, each UE is able to learn over
time its optimal policy.

It is noteworthy that the size of the state observation of a
given UE does not scale with the number of UEs in contrast
to other works in the literature, as [12]. This allows us to
build general DQNs that can be used in different network
scenarios; that is, if a UE leaves or joins the network, there
is no need to change the DQN architecture. Moreover, oj(t)
is a partial observation of the true state s(t), which includes
all the observations of other agents. In the literature, the
optimization in partially observable environments is addressed
as a multi-agent partially observable Markov decision process
[25]. Partial observability, in addition to non-stationarity is-
sues, make MARL an even more complex task. To tackle this
problem, Omidshafiei et al. successfully applied hysteretic Q-
learning (first introduced by Matignon et al. [26]) with partial
observability [25]. They empowered the DQNs with recurrent
neural networks (RNN) to obtain deep recurrent Q-networks
(DRQNs), which serves as a basis to our proposed algorithm.

C. Hysteretic Deep Recurrent Q-Network

In the hysteretic deep recurrent Q-network (HDRQN) al-
gorithm4, each UE j acts as an independent learner and
maintains its own DRQN Qj(oj(t), hj(t− 1), aj(t); θj). Fig.
3 describes the proposed DRQN, which is composed by one
input layer, two fully connected hidden layers, one RNN
hidden layer, a dueling layer, and an output layer. The UE’s
local state information oj(t) and the estimated state action

4In the following, we use HDRQN when we refer to the proposed algorithm
and DRQN to the related neural network architecture.
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aj(t− 1)
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Figure 3. Illustration of the architecture of the proposed DRQN.

value Qj(·; ·) define respectively the input layer and the output
layer of the DRQN (Section IV provides more details on
the proposed DQRN). We use hj(t − 1) to represent the
internal state of the RNN hidden layer and θj to define
the UE’s local DRQN weights. The use of RNNs allows to
aggregate past information (previous observed states, i.e., the
history Hj(t)) in agent decision making process, which is
shown to improve the average reward perceived when dealing
with partial observability [27]. Indeed, in partially observable
environment, each agent makes its decision relying on the
observation oj(t) instead of the true state sj(t), which is
unknown. From oj(t) solely, the agent may have a partial
perspective of the environment. In this case, the commonly
used Vanilla DQN may not be effective [27], specifically in
multi-agent scenarios, where each agent is unaware of the
behavior of its teammate. Hence, we extend the baseline
Vanilla DQN with RNN to infer the underlying state sj(t)
from agent past observations, i.e., its history Hj(t) [27].

The experience of the j-th UE
ej(t) = {oj(t), aj(t), rj(t), oj(t+ 1)} is stored into a
local memory buffer Mj . In order to further stabilize
the learning process, synchronized sampling strategy (called
concurrent experience replay trajectories (CERTs)) is adopted
[25]. In other words, during the training, mini batches of
experiences of the same time steps are sampled across agents
to update the local DRQN weights in order to minimize the
hysteretic loss function:

Lj(θj) = Eebj(t)∼Bj

[(
wbjδ

b
j(t)
)2]

. (11)

In (11), b indexes an entry in the mini batch of experiences
Bj , δbj(t) = ybj(t) − Qj(obj(t), hbj(t − 1), abj(t); θj) is the TD
error with respect to the target value

ybj(t) = rbj(t) + γ max
a′

Qj(o
b
j(t+ 1), hbj(t), a

′; θ̂j). (12)

Here, θ̂j represent the weights of the target DRQN, which is
updated less frequently to improve learning stability [21].

In MARL, the agents’ reward is the result of their joint
actions. Accordingly, an agent experience ej(t) is positive,
if the associated TD error δbj(t) in (11) is positive, i.e., the

perceived global reward is better than the previous rewards
independently of the optimality of the agent local action.
This does not necessarily imply that the agent’s strategy
is converging toward the optimal solution but the network
performance is improving over time. In contrast, a negative
experience results in an agent receiving a lower reward after
taking an action that was fruitful in the past. This can be
caused by the agent’s action being non-optimal or more likely
by the others agents’ behavior. That is, an agent that has
taken a local optimal action, may receive a lower reward
because of the bad choices of other agents. Therefore, negative
experiences can be very detrimental in MARL as they may
mislead the agent to change its optimal strategy. Consequently,
an agent may stabilize its strategy by paying less attention to
negative experiences.

This is the idea introduced by hysteretic Q-learning: the
neural network weights are updated via SGD with two distinct
learning rates αµ and βµ (β � α ≤ 1), where µ is a based
learning rate and α and β are control factors. When the TD
error is positive, the learning rate αµ is used; otherwise, βµ
is considered. This leads to optimistic updates that give more
importance to positive experiences [26]. To implement the
hysteretic learning in conventional machine learning libraries,
we set µ as the fixed learning rate and scale the TD-error δbj(t)
in (11) as follow:

wbj =

{
α, if δbj(t) ≥ 0
β, otherwise

. (13)

D. Definition of the reward function

The maximum value of the network sum-rate, and hence,
the optimal user association is unknown to the agents at the
beginning of the learning phase. In other words, there is no
explicit or predefined terminal state that agents are aware of
and toward which they have to converge to. Accordingly, we
treat this learning problem as a continuing task over a time
horizon Te. That is, the agents keep updating their policies as
long as it improves the perceived reward.
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Definition 1. We define the beam collision as the event
corresponding to a given SBS i receiving more requests than
the number of beams it can set up i.e., Ni.

This may occur since all UEs are requesting connections
simultaneously. However, in our proposed framework, we aim
at effectively training agents in order to distribute the network
load and properly leverage the advantages of network densi-
fication. Consequently, when a collision happens during the
training phase, we punish all UEs by setting the instantaneous
reward to zero5. As a result, we define the reward function of
UE j in (12) as:

rj(t) =

{
R(t), if there is no collision

0, otherwise . (14)

During the learning, each UE j builds its policy πj depending
on its data rate requirement, the experienced SINR, the net-
work sum-rate, and whether its requests cause a collision to
maximize the accumulated discounted reward:

Gj(t) =

Te∑

τ=t+1

γτ−t−1rj(τ), (15)

where the discounting factor γ is such that 0 ≤ γ < 1. Taking
γ = 0 leads to myopic (instantaneous) network throughput
maximization. In case of dynamic scenarios, it is better to
consider γ 6= 0 to take into account the dynamic nature
of the environment: there is no need to change the current
user association at time step t due to a low reward perceived
because of the environment dynamics if at the next time step
the system will recover its equilibrium. This consideration
also make sense in a practical system where changing the
association too often can also induce excessive overhead.

As defined, the reward perceived by the agents continuously
varies with the environment stochasticity viz. fading, shadow-
ing, interference, traffic, and noise. Accordingly, this reward
setting can lead to many optimal or quasi-optimal equilibria,
which is a major issue as it results in agents laboriously trying
to converge [23]. Algorithm 1 presents the proposed training
procedure to deal with these challenges. It this noteworthy that
the parts of this algorithm highlighted in gray can be executed
in parallel across all UEs.

E. Adaptability with respect to different service requests

We now focus on a more realistic scenario, where the
service requests of the UEs can change over time, e.g., from
video streaming to virtual reality applications. We model this
change by abruptly modifying the intensity of the Poisson
distribution that characterizes the UE traffic, i.e., for UE j,
Dj(t) is now time-dependent (see Fig. 4). This increases the
non-stationarity of our system and makes the learning process
more challenging. To deal with this, the agents may keep
updating their policies online, to adapt them to an eventual
drastic change in the environment dynamics. This approach
may lead to good performance if the convergence time of the

5Note that setting the reward to zero as mentioned, is simply to discourage
agents from colliding. However, in practice implementation of this framework,
during execution time, one may choose between the colliding UEs, which UEs
to serve. This selection can be made either randomly or based on RSSI.

Algorithm 1: User Association: Training Procedure
1 while t < Te do
2 for j ∈ U do
3 Observe state oj(t).
4 With probability ε pick random action aj(t) in Aj ;

otherwise,
aj(t)← argmax

a′∈Aj

Qj(oj(t), hj(t− 1), a′; θj).

5 if aj(t) 6= 0 and connection granted then
6 ACKj(t)← 1. /* the UE is requesting a

connection to a SBS */
7 else
8 ACKj(t)← 0.
9 Automatically redirect to the MBS.

10 end
11 Measure Raj(t),j .
12 end
13 R(t)← 0
14 for i ∈ A do
15 if

∑
j 1aj(t)=i

> Ni then
16 R(t) = 0. /* collision */
17 Break.
18 else
19 R(t) = R(t) +

∑
j∈Ui

1aj(t)=imin(Ri,j , Dj).

20 end
21 end
22 for j ∈ U do
23 Observe the new state oj(t+ 1).
24 Store experience ej(t) into Mj .
25 Samples a batch of experiences from Mj .
26 Compute the target value ybj (t).
27 Performs a gradient descent step on δbj (t) with respect to

θj .
28 Periodically reset θ̂j ← θj .
29 end
30 t = t+ 1.
31 end
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Figure 4. Example of the variation of UE j service request with time.

algorithm is sufficiently shorter than the time during which
the system is stationary. However, in a multi-agent system this
condition is unlikely satisfied and thus, we design an offline
training strategy that allows the agents to perform well during
the execution time even in strong non-stationary conditions.

Let us assume that the time horizon Te can be divided
into P time intervals Tp such that

∑P
p=1 Tp = Te, where

the intensities Dj(t), ∀j ∈ U remain constant. Accordingly,
we denote by D

(p)

j the average data rate requested by UE j
in the time interval p. Then, we define a task Tp as the set of
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Algorithm 2: Distillation Procedure for UE j

1 for p = 1, . . . , P do
2 Initialize oj = {0}.
3 Select policy πj(Tp).
4 for t = 0, . . . , Tp do
5 Observe new state oj(t).
6 Using the expert policy πj(Tp) takes aj(t).
7 Get Qj(oj ; θj).
8 Store 〈oj(t), Qj(oj(t); θj)〉 into a memory Mj .
9 end

10 end
11 Initialize the distilled DRQN weights θDj .
12 Perform supervised learning using Mj .

the UEs’ traffic requests during the time interval p:

Tp =
{
D

(p)

1 , D
(p)

2 , ..., D
(p)

K

}
. (16)

In our setting, each agent does not have the global knowledge
of each task specifications; in fact, a UE is unaware of the data
rate demands of the other UEs. However, we aim to derive,
for each user, a unique policy that performs well in any task.
This problem falls in the context of the so-called multi-task
reinforcement learning (MTRL) [28], where policy distillation
consolidates multiple task-specific policies into a single policy
(see Algorithm 2).

Specifically, with this mechanism, for every task, we run
Algorithm 1 to collect the agents task-specific policies π(Tp);
that is, we derive as many policies as there are tasks for
any single agent. Then, for every agent j and task p, we
execute the related policy for a time Tp and we store all
the collected observations/action values 〈oj(t), Qj(oj(t); θj)〉p
into a memory Mj . Later, for each UE j, we conduct a
supervised learning on the generated database Mj to learn
a distilled policy πDj trough a single DRQN (having the same
architecture as in Fig. 3 with parameters θDj ) trained via a
tempered Kullback-Leibler (KL) divergence loss function:

L(θDj ) = EMj


softmax

(
Qj
τ

)
log



softmax

(
Qj

τ

)

softmax
(
QDj
)




 ,

(17)
where the temperature τ controls the way the knowledge is
transferred from the expert policies to the distilled policy
[28]. Increasing the temperature softens the Q-values which
may prevent the distilled agent to take the same actions as
the expert. In contrast, when the temperature get decreased,
Q-values becomes more and more sharpened ensuring more
knowledge distillation. Therefore, τ is typically set as a small
positive value [28].

IV. NUMERICAL RESULTS

In this section, we demonstrate the effectiveness of the
proposed HDRQN-based user association by comparing its
performance with two centralized benchmarks of the literature:

Max-SNR: Each UE is associated with the BS providing
the maximum SNR taking into account the constraint on the
number of beams per BS (see (6d)). Since this method does
not consider interference, it has limited performance especially
in case of a dense networks.
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Figure 5. Simulated TX/RX antenna gain radiation pattern for an array of
20× 20 (diag 1), 10× 10 (diag 2), 5× 5 (diag 3) elements operating at 28
GHz [29].

Heuristic: Proposed in [9], this algorithm starts by ordering
all the possible associations according to their respective SNR
values, which do not consider interference. Then, following
this order, the algorithm goes from one potential association
to the following one and validates it if it increases the network
sum-rate R(t) in (5). Although the evaluation of R(t) takes
the interference and UEs traffic into account, the output of the
algorithm is mainly based on the SNRs ordering, which may
prevent to reach a global optimum. This approach is recalled in
Algorithm 3 with minor modifications compared to the original
one since power and beam width constraints are not considered
in this study.

Algorithm 3: Heuristic scheme: Centralized User As-
sociation

1 Set xi,j = 0, ∀j ∈ U , i ∈ Aj .
2 Get the SNRi,j and sort it in descending order into
Z = {z1, z2, ..., zp, ..., zP } with P =

∑
j card(Aj). Let δ be

the transformation (defined by the sort) such that δ(i, j) = p. That
is, zp = zδ(i,j) ← SNRi,j .

3 Set R1(t) = 0.
4 while p ≤ P do
5 Set xp = 1.
6 Compute Rp(t). /* Rp(t) is the sum-rate at

iteration p. */
7 if Rp(t) > Rp−1(t) and a beam is available then
8 Let xp unchanged. /* means that activating

this link improves the sum-rate. */
9 else

10 Reset xp = 0.
11 end
12 end
13 Apply δ−1 to recover which links (i,j) are active.

In the following, we start by analyzing the complexity
of the proposed method with respect to the two baselines.
Then, we study the effect of the hysteretic parameter on both
convergence speed and achievable sum-rate. Also, we evaluate
the effectiveness of collision cost in limiting collision events
and improving network sum-rate. We continue assessing the
performance of our scheme in both static and dynamic sce-
narios. Finally, we conclude the evaluation by demonstrating
the adaptive property of the proposed algorithm.

We consider that UEs and SBSs communicate in the
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Table I
SIMULATIONS PARAMETERS.

Macro cell [30] Small cell [16]

Parameters Values

Carrier frequency, fs 2.0 GHz 28 GHz

Bandwidth, B 10 MHz 500 MHz

Thermal noise, N0 -174 dBm/Hz -174 dBm/Hz

Noise figure 5 dB 0 dB

Shadowing variance, σ2
s 9 dB 12 dB

TX power, PTx 46 dBm 20 dBm

Antenna gain, GTx/GRx 17 dBi / 0 dBi Fig.5

Radius, r 35 m

Back-lobe gain -20 dBi

Path-loss coefficient, ηs 3.76 2.5

Inter-cell distance 1.2× r
Reference distance, d0,s 20.7 m(1) 5 m

Beam number, Ni N1 = 2; N2 = N3 = 3

(1) We use as a path loss model, Gch.
i,j (dB) = 128.1 + 37.6log10(di,j),

di,j in Km from Table A.2.1.1.2-3 in [31]. Then, we compute the equivalent
reference distance in meter for equation (3).

Table II
TRAINING PARAMETERS

Discount factor, γ 0.9

Time horizon, Te 7000

Batch size, |B| 32

CERTs memory size, |M| 500

ε (follows a negative Gompertz function(1)) 1→ 0.1

Target network update frequency 10

KL temperature, τ 0.01

Number of Monte-Carlo simulations, N 400
(1)ε(t) = 1 − ae−b(t−c), with a = 0.9, b = 10−3, c =

800.

mmWave band at a carrier frequency of 28 GHz using the
same phase-array antenna. To evaluate three different inter-
ference scenarios, we consider distinct antenna gain radiation
patterns (see Fig. 5), which correspond to distinct number
of antenna elements in the phase array. Larger the array,
thinner the beam6. In all tests, three small cells are deployed
inside the macro cell. UE and small cell locations follow the
3GPP recommendations [30]. Table I summarizes the network
parameters.

To learn the user association policy, we use the DRQN
described in Fig. 3. This architecture comprises 2 multi-layers
perceptron (MLP) of 32 hidden units, one RNN layer (a long
short memory term - LSTM) layer with 64 memory cells
followed by another 2 MLPs of 32 hidden units. The network
then branches off in two MLPs of 16 hidden units to construct
the duelling network. All layers use a rectifier linear unit
(ReLU) except the final layer, which has a linear activation
function. For the hysteretic learning, we set the base learning
rate µ = 0.001 and α = 1, and then we optimize β ∈ [0, 1]
to strike a balance between convergence speed and network
sum-rate. The DRQNs are trained offline using an ε-greedy
policy. The hyper-parameters values summarized in Table II

6Note that increasing the number of antenna elements also increases the
antenna’s size, which further increases the hardware complexity.

are selected via informal search. Finally, unless specified, all
results are average over N runs of Monte-Carlo simulations.
At each run, UE positions are randomly reset.

We evaluate the performance of the proposed solution and
the related baselines using either the network sum-rate or
the sum-rate ratio with respect to the brute force approach.
Specifically, for these metrics, we compute the average and
the standard deviation as follows:

R =
1

N

N∑

n=1

1

Te

Te∑

t=1

R(n)(t), (18a)

σR=

√√√√ 1

N

N∑

n=1

(
1

Te

Te∑

t=1

R(n)(t)−R
)2

, (18b)

where R(n)(t) is either the sum-rate or the sum-rate ratio at
the time step t of run n.

A. Complexity analysis

In this subsection, we analyze both computational and
signaling complexity of the proposed algorithm and compare
it to the two baselines. Since our framework is based on
deep Q-learning, a practical implementation completely con-
ducts the learning offline as with the Vanilla DQN initially
proposed for Atari games [21], and then, it transfers to
each UE the corresponding weights. In this scenario, UEs
simply conduct the inference on their local states to find
the optimal action, alleviating the computational and power
burdens. That is to say, the computational complexity of the
proposed framework during its execution is limited to the
inference complexity of each local DQRN. Let Lh be the size
of hidden layers and Lc the number of cells in the LSTM layer.
Each DQRN has six inputs7, thus the complexity is in the
order of O

(
6Lh + 2L2

h + LhLc + 2L2
h + Lh(card(Aj))

)
≈

O
(
6L2

h + LhLc
)
. This is very straightforward compare to

a naive algorithm, which may find the optimal solution of
problem (6a)-(6d) through an exhaustive search, which has a
complexity O

(
NsK(1 +Ns)

K
)
.

Proof. For UE j there are card(Aj) possible choices of
BSs. The optimal association {i, s.t. xi,j = 1 ∀i ∈ A}
is an element of ×

j∈U
Aj . That is, for all UEs, there are

∏
j∈U card(Aj) possible combinations in which only some of

them satisfy the constraint (6c). For each combination, check-
ing if constraint (6c) is satisfied required O

(∑
i∈A card(Ui)

)

iterations. In the worst case, when each UE can associate
with any BS, card(Aj) = Ns + 1. Hence, noting that∑
i∈A card(Ui) ≤ NsK, the complexity of running this naive

algorithm will be therefore

O


∑

i∈A
card(Ui)

∏

j∈U
card(Aj)


 = O

(
NsK(1 +Ns)

K
)
.

7Though for practical implementation, we encode the entry aj(t) in Fig.
3 as a one hot vector, thus, there are 5 + card(Aj) inputs.
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The complexity of both max-SNR and heuristic algorithms
during execution is related to sorting the SNR values. Con-
sidering a quicksort algorithm, this complexity in the worst
case (card(Aj) = Ns + 1) is around O (nlog(n)) for
max-SNR and O (n+ nlog(n)) for the heuristic algorithm8

where n = K(1 + Ns). However, the need to collect the
SNR values globally is the most notable disadvantage of
these centralized approaches. In terms of signaling overhead,
compared to the existing standard (e.g. 5G), the additional
complexity introduced by our framework is the broadcasting
of the total network sum-rate. The rest of the information
used by a UE to take a decision is already either measured
by the UEs (Rj(t),RSSIj , aj(t)) or sent by its serving BS
(ACKj). Specifically, the number of messages exchanged in
the sequence chart of Fig. 2 is a function of the UE’s action
aj(t). If aj(t) = 0, the association is set up in two messages
with the MBS. Otherwise, four messages are required to
connect to either a SBS or a MBS depending on the ACK
signal. Overall, for each UE to connect to the serving BS,
the system needs to exchange at most four messages. Then,
two additional messages are required to get the total network
sum-rate from the MBS. Therefore, at most six messages are
needed to complete one training step.

B. Convergence and effect of hysteretic parameter β

In this section, we study the impact of the hysteretic param-
eter β on the performance of the proposed solution in terms
of network sum-rate and convergence speed. Specifically, Fig.
6a shows the evolution of the loss function during the training
process for different values of β and Fig. 6b describes the sum-
rate ratio of the proposed scheme with respect to the optimal
solution as a function of β.

First, Fig. 6a and 6b show that despite the few pieces of
information available locally to each agent, they can success-
fully learn a user association policy that performs close to the
optimal strategy in less than 5 · 103 iterations/associations if
β ≤ 0.6. In addition, Fig. 6a shows that lowering β increases
the convergence speed of the algorithm. However, this also
result in limited sum-rate performance. For instance, when
β = 0, the proposed scheme achieves only 70% of the optimal
performance (see Fig. 6b). This is because, from (13), we
know that selecting very low values of β makes the agents
too optimistic i.e., they tend to neglect actions that produces
negative TD errors. This leads agents to potentially select sub-
optimal actions.

In contrast, when β = 1, the agents give equal importance
to positive and negative TD errors, i.e., they become pessimist.
In this setting, a UE may change its (optimal) strategy after
taking an action that results in negative error, although this
error is simply the result of the other agents’ behaviors.
These continuous changes limit the learning performance, and,
in fact, Fig. 6a shows that the loss function diverges for
β = 1. Hence, there is a trade-off between convergence speed,
successful coordination of the agents, and network sum-rate.

Moreover, as we can note from the zoom in Fig. 6b, if
setting β = 0.5 for K = 6 UEs leads to the best performance,

8One pass to sort the SNR values and another to find the association.
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Figure 6. Convergence speed and effect of the hysteretic parameter β, using
diagram diag 1.

when increasing the number of UEs (i.e., K = 13), the same
value of β results in drastic decrease of the sum-rate ratio
performance, i.e., from 98% to 88%. This result suggests that,
depending on the number of UEs, there is an optimal hysteretic
parameter β. Consequently, for the rest of the paper, we set
β = 0.5 for K ∈ {6, 9} and β = 0.3 for K = 13.

C. Impact of the collision cost on network performance

Here we assess the effectiveness of the collision cost in (14),
to limit the collision events. For this purpose, we consider a
setting in which there is no collision cost. In this case, during
the training phase, if a SBS receives a number of request
greater than the ones that it can accept, it randomly chooses
the serving UEs among the received requests; the remaining
UEs are therefore associated with the MBS. Fig. 7a shows the
frequency of the collision event during the test phase. We can
observe that the collision frequency increases with the number
of UEs as the cell load increases. However, we can see that by
introducing the collision penalty, we are able to significantly
reduce the collision events up to 97%, which leads to an
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Figure 7. Impact of the collision cost on network performance in static
scenario using diagram diag 1.

improvement of the overall network throughput9 by 4.7% (see
Fig. 7b). This demonstrates that, with the proposed solution,
UEs learn to distribute their association requests among the
different BSs, balancing the cell load and maximizing the
network sum-rate.

D. Performance of the proposed algorithm in static scenario

We now compare the performance of the proposed user
association solution with the one achieved by the two baselines
in a static scenario where there is no fading (i.e., αi,j = 1)
and with full buffer traffic. Consequently, in (5), we set
Dj = +∞,∀j and disable the corresponding input in the
DRQNs10. Fig. 8a and 8b show the performance of the dif-
ferent approaches compared to the optimal user association in
terms of network sum-rate, using antenna diagrams diag 1
and diag 3 respectively. We first note that the sum-rate ratio
performance of our solution as well as the heuristic approach
barely changes between the two antenna diagrams (less than
0.5% change), in contrast to the max-SNR algorithms, which
does not consider interference. Specifically, when K = 13
the performance of the max-SNR decreases by 12.2% when
switching from diagram diag 1 to diag 3, which has
lower directivity and thus results in a lower SINR. In addition,
we note that, in average, our proposed scheme achieves up to
98.7% of the optimal sum-rate, hence outperforming both the
max-SNR and the heuristic approaches. For example, when
K = 6, by using diag 3, the proposed solution exhibits a
performance gain of 3.1% and 37.8% over the heuristic and
the max-SNR algorithm, respectively.

As soon as the number of UEs increases, the performance
of our scheme slightly decreases. This is because ensuring
coordination becomes more complex when the number of
interacting agents increases. For instance, with diag 3, our
solution only achieves 94.5% of the optimal performance for
K = 13. However, it still outperforms the two baselines

9We have considered the case of K = 13 UEs to highlight how, in networks
with a large number of users, the collision events impact the network sum-rate.

10To disable an input, we simply set the corresponding entry in o(t) to
zero.
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Figure 8. Performance comparison in static scenario using diagrams diag
1 and diag 3.

showing now a gain of 3% and 64.6% over the heuristic
and the max-SNR approaches, respectively. Although the gain
of the proposed solution over the heuristic scheme is small,
one has to notice that our framework is distributed while the
heuristic approach is centralized.

E. Performance in dynamic scenarios

We now evaluate the performance of the proposed scheme
in dynamic environments and considering the three different
antenna diagrams in Fig. 5. For this purpose, we define
three cases: 1) dynamic channels with small scale fading and
full buffer traffic, 2) static channels with dynamic traffic, 3)
dynamic channels and dynamic traffic. As the optimal user
association obtained via exhaustive search requires extensive
computation, in the following, unless otherwise stated, we
compare only the performance of the proposed scheme with
the aforementioned two baselines. To achieve fair comparison,
every time step, we recompute the association solution of
the two baselines as this may change due to environment
dynamics.

Before discussing the three aforementioned cases, we
can highlight from Fig. 9, 10, and 11 that, as expected, the
network sum-rate decreases as the antenna diagrams become
less and less directive (from diag 1 to diag 3).
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Figure 9. Performance comparison when considering only dynamic channels with fast fading.
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(c) Case 3: Using diagram diag 3

Figure 10. Performance comparison when considering only dynamic traffic.
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Figure 11. Performance comparison when considering both dynamic channels with fast fading and dynamic traffic.

1) Dynamic channel with small scale fading: In this
scenario, we have full buffer traffic, Dj = +∞,∀j and
dynamic channels with Nakagami small scale fading,
characterized by a scale factor m = 3 [15]. Fig. 9 plots
the sum-rate achieved by the different algorithms for a
different number of UEs. We remark that our distributed

solution performs better than the two centralized baselines.
Specifically, when the number of UEs is equal to 9, the
HDRQN improves the network sum-rate by about 1%
and 30.3% when using diag 1, 2.8% and 36.2% when
using diag 2, and 3.6% and 49.2% when using diag 3,
compared respectively to the heuristic and max-SNR schemes.
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As in the static case, the gain with respect to the heuristic is
limited when considering only the fast fading effect. Also,
the gap between our scheme and the two baselines decreases
when the antennas are more directive, which is due to the
smaller interference perceived at the UE side. In fact, the two
baselines perform better in limited interference scenarios.

2) UE traffic: Now we consider static channels (i.e.,
αi,j = 1, ∀i, j) and dynamic traffic. For each UE, the
intensity of its traffic Poisson distribution is uniformly chosen
between [0, 2] Gbps at the beginning of each Monte Carlo
run. Fig. 10 shows the total network throughput reached by the
different algorithms. In contrast to the previous case shown
in Fig. 9, we can remark that the our algorithm yields a large
performance gain over the two benchmarks. For instance, for
K = 13 UEs, the proposed solution improves the sum-rate by
19.4% and 18% when using diag 1, 19.7% and 28.2% when
using diag 2, 23.2% and 37.1% with diag 3, compared to
heuristic algorithm and the max-SNR algorithms, respectively.

3) UE traffic and Fast fading channels: Finally, we
evaluate the performance of our framework considering both
fast fading and UE traffic. Fig. 11 exhibits similar trend as the
case with dynamic traffic only. Overall, as expected, the effect
of the traffic variations on the rate (see (5)) is larger than the
one related to the fast fading, which leads to small variations
on the user perceived SINR (see (4)).

F. Performance with respect to change in service requests

Finally, we show the capacity of our scheme to adapt the
association policy with respect to time-varying service requests
in the network. As the service request (and its corresponding
data rate) at each UE change during time, the user association
has to adapt to keep the network performance optimized i.e.,
balancing the cell load. To achieve this property, we use the
distillation mechanism described in Section III-E.

Let us consider three services rate requirements denoted as
service 1, service 2, and service 3, corresponding
respectively to an average data rate demand of Ds1 = 5 Mbps,
Ds2 = 200 Mbps, and Ds3 = 1.5 Gbps. service 1 may
be related to web browsing or voice call services, service
2 to online video streaming, and service 3 to augmented
reality or virtual reality applications. In the following, we
focus on three time periods during which the UEs randomly
change their service requests and we apply the distillation
procedure (Algorithm 2 with P = 3). Fig. 12 shows a sample
of the performance of the proposed HDRQN with and without
distillation. Specifically, the agent policies without distillation
is obtained through a single training phase over the three time
periods. The upper part of this figure highlights the data rate
changes for each of the 9 UEs in the network. The middle part
of the figure describes the corresponding user association11.
Finally, the lower part shows the evolution of the network
sum-rate. Overall, Fig. 12 shows that the proposed algorithm
using distillation mechanism can effectively adapt the user

11Note that the UEs not served by a mmWave beam are receiving data
through the MBS.
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Figure 12. Dynamic behavior of the proposed adaptive user association
scheme. We set the loss temperature to τ = 0.01 via informal search.

association to service request dynamics thus outperforming
the two baselines. For example, we see that UE 4 is served
by SBS 1 in the first two time intervals, when it is requiring
service 3; in contrast, in the last interval, when it demands
for service 1, which is characterized by a lower data rate
request, its access is provided by the MBS. Meanwhile, in
the last interval, UE 5 asks for service 3; therefore, it
hands off from the MBS to SBS 2, which can satisfy its
demand for higher data rate. Moreover, we can highlight that,
in the absence of distillation, the proposed solution shows poor
performance during the first two time periods. This is due to
the forgetting effect inherent to neural networks training: at
the end of the third period, the agents have forgotten what
they have learned in the first two periods. The resulting policy
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is therefore only appraised to handle the last service for which
it exhibits the best performance.

V. CONCLUSION

In this paper, we have investigated the problem of user
association in dense millimeter-wave networks with multiple
radio access technologies. To deal with network dynamics,
we have presented a novel and distributed approach based
on deep reinforcement learning. With the proposed MARL
algorithm, agent decisions are based on partial and local
observations, which limits the signaling overhead and reduces
the computational complexity with respect to centralized ap-
proaches. In addition, by integrating a distillation procedure,
we make our proposed solution robust to fast changes in the
statistics of the environment dynamics (interference, fading,
traffic). Our analysis shows that, in cases of full buffer traffic,
the proposed scheme achieves up to 98.7% of the optimal
performance obtained through exhaustive search. When con-
sidering dynamic fading, the proposed solution outperforms
centralized baselines, which require to continuously recompute
the user association and hence, are characterized by excessive
complexity. In addition, our approach results in large sum-
rate gains when we consider also dynamic traffic. In fact,
numerical results show that, in this context, the proposed
algorithm can achieve nearly 40% of performance gain with
respect to baseline solutions from the literature.

In future work, we will include user mobility as an addi-
tional case of environment dynamics, and we will investigate
how to include SBS in the decision process, for instance to
select which users to serve when multiple requests are received
simultaneously.
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