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Abstract—This work presents and compare three realistic
scenarios to perform near sensor decision making based on
Dimensionality Reduction (DR) techniques of high dimensional
signals in the context of highly constrained hardware. The
studied DR techniques are learned according to two alternative
strategies: one whose parameters are learned in a compressed
signal representation, as being achieved by random projections
in a compressive sensing device, the others being performed in the
original signal domain. For both strategies, the inference is yet
indifferently performed in the compressed domain with dedicated
algorithm depending on the selected learning technique. Our
results, based on two common datasets, show that performing
the inference in the compressed domain represents a compet-
itive approach compared to the classical classification strategy
(inference in the original signal domain) regarding memory and
computational requirements. We also exhibit the fact that it is
especially well suited for embedded applications in the context
of hardware implementations with limited resources even with
specific hardware design and limitations.

I. INTRODUCTION

THE last few years have testified a widespread of data
specific processing units [1], [2]. Considering any kind

of computer vision problem (e.g., ADAS), image descriptors
(e.g., HOG, LBP) combined with a proper classification al-
gorithm (e.g., Artificial Neural Networks) are used to enable
objects detection and/or classification [3]. Embedding such
system with high dimensional and complex data requires
considerable memory and computational resources.

Recent advances in signal processing and pattern recogni-
tion tend to deal with high-dimensional problems by introduc-
ing new and efficient techniques in terms of computing and
storage resources. For example, Dimensionality Reduction [4]
(DR) relies on the projection of a high-dimensional data into
a relevant low dimensional feature domain that preserves data
intrinsic properties (e.g., statistical or geometrical properties).
Various DR techniques can be found in the literature, they can
be linear or nonlinear, supervised or unsupervised [5]–[8]. One
can identify two distinct approaches to achieve dimensionality
reduction. First, DR can be performed by a learned projection
that optimizes a regularized objective function. These tech-
niques are basically introduced as machine learning algorithms
to perform decision making in low dimensional domains.
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However, embedding such techniques involves dedicated hard-
ware ressources to store ex-situ learned patterns. Alternatively,
DR can be signal independent and achieved by random
projections to acquire compressed features as performed in
a Compressed Sensing (CS) [9] based system with remote
signal reconstruction. In this case, the design of related sensing
matrices has to satisfy Restricted Isometry Property (RIP)
[10] to guarantee a stable embedding property and preserve
geometrical properties [11]. In particular, it was shown that
a wide variety of randomly generated matrices satisfies this
property [12]. This well studied matrices can advantageously
be generated by e.g., pseudo-random generators (e.g., LFSR
[13], cellular automata [14]), relaxing as a consequence design
constraints, in particular memory requirements. For the sake
of clarity, we will call ML-DR DR performed by learned
projections, and CS-DR DR via random projections.

Related work: In the CS state-of-the-art, several CS-based
image sensor architectures have emerged each proposing an
alternative scheme to the traditional image acquisition [13]–
[15]. Indeed, one major limitation of CS based systems is
the processing complexity related to the signal reconstruction.
This consideration highly restricts the use of CS to niche ap-
plications. When combined with machine learning, CS might
not involve this costly operation. On the other hand, [16]–
[18] provide theoretical guarantees to perform compressed
inference when dealing with CS measurements [19]–[22]. This
is possible thanks to the RIP property which preserves the
geometrical properties of the projected measurements in the
compressed domain (e.g., Euclidean distance) [17], [18].

Contribution: The motivation of this letter is to show, in
the context of highly constrained hardware (e.g., always-on
ultra low power vision systems), the interest of using ML-
DR and CS-DR for basic embedded image inference. Two
processing stages have to be considered: learning ML-DR
in an off-line system on labeled data, and then performing
embedded inference on compressed data whose related classes
is unknown (e.g., considering embedded inference in a CS
image sensor). As a comparative study we propose various
learning and inference strategies for two ML-DR methods
known as Linear Discriminant Analysis (LDA) [5] and Support
Vector Machine (SVM) [5]. For each technique we present
and compare three approaches to perform near-sensor decision
making in the context of hardware limited systems. The first
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Fig. 1: Schematic description of ”inference learned in CS domain” (approach A), ”projection based inference” and ”inference in the reconstructed signal
domain” (approach C). X represents the training set, X̃ is the compressed training set, y is an unknown sample, ỹ is an unknown compressed sample,
A represents the CS matrix, P̂ cs is the ML-DR transformation learned on CS measurements, P̂ proj is the ML-DR transformation learned in the signal
domain and projted in the CS one, P̂ sig is the ML-DR transformation learned in the signal domain, mj are classes centers, and c is the predicted class of
an unknown sample.

approach (Fig. 1(a)) consists in performing ML-DR learning
and embedded inference on compressed measurements taking
advantage on CS-DR to reduce embedded resources require-
ments. In the second and third ones (Fig. 1(b) and Fig. 1(c)
resp.), dedicated inference solutions are presented to deal with
compressed measurements extracted using a CS device whose
sensing scheme is not necessarly a priori known (e.g., for
security purposes [23] or to manage sensor non-idealities [24]).
Performance of ML-DR methods is evaluated based on the
inference accuracy regarding the learning approach, as well as
general considerations on memory resources, computational
complexity and robustness to some hardware variations for
two object recognition applications.

II. ML-DR LEARNING BACKGROUND

Let us consider a database of N -length “vectors” in RN
(e.g., images with N pixels) composed of C classes. This
database is separated into two subsets: a “train” set X ∈
RN×n1C , where each class is composed of n1 samples,
associated with labels l ∈ {1, · · · , C}n1C ; and a “test” set
Y ∈ RN×n2C with unknown labels and composed of n2 sam-
ples per class. We refer to Xj = (Xj

1, · · · ,X
j
n1
) ∈ RN×n1

and Y j = (Y j
1, · · · ,Y

j
n2
) ∈ RN×n2 for the train and the

test sets restricted to the jth class, respectively. When we
write x ∈ X or x ∈ Xj , we mean that the sample x is
an arbitrary column of X or Xj , respectively (and similarly
for Y ). In the following, we first describe how to learn the
considered ML-DR classifiers denoted P̂ (x) = D̂x+ δ̂, and
then present the corresponding inference algorithms for each
approach. Here, P̂ i(x) represent the projection of x on the ith

axis (line) of P̂ , the mean vector of each class is expressed as
mj = 1

n1

∑n1

i=1X
j
i , for 1 ≤ j ≤ C, and m = 1

C

∑C
j=1mj

the mean vector of all samples. Greek letter λ represents a
scalar regularization parameter. Depending on the technique,
the matrix D̂ and the offset δ̂ are computed using one of the
following optimization problems.

A. LDA (Linear Discriminant Analysis)

The LDA [5] aims at finding the best projection mini-
mizing the within-class variance while maximizing between
class variance (Fisher’s criterion [5]). This can be expressed

using between-classes (SB) and within-classes scatter matrices
(SW ):

D̂LDA = argmax
D∈R(C−1)×N

|DSBD> |
|DSWD> |

, (1)

where | . | denotes the determinant operation, SB =∑C
j=1(mj −m)(mj −m)> and SW =

∑C
j=1

∑n1

i=1(X
j
i −

mj)(X
j
i−mj)

>. Here, δ̂LDA = D̂LDAm ∈ RC−1 represents
the projected training set centroid of all samples.

B. SVM (Support Vector Machine)

Another way to learn a discriminant classifier is to learn a
multiclass SVM using a one-vs-all strategy [25], this allows to
learn C binary soft margin classifiers to construct a boundary
decision for each class versus the others. It consists in as-
signing a positive margin to the sample’s class and a negative
margin to the others (i.e., ljk = 1 if the kth sample belongs to
class j, and −1 otherwise). Mathematically speaking:

{D̂SVM,j , δ̂SVM,j , ξ̂j} = argmin
D∈RN ,δ,ξ∈Rn1

(
∥∥D∥∥2

2
+λ
∑n1

k=1 ξk)

s.t. ljk(Dx+ δ)j ≥ 1− ξk, ξk ≥ 0, ∀1 ≤ k ≤ n1. (2)

We define P̂ SVM,j(x) := D̂SVM,jx+ δ̂SVM,j , for 1 ≤ j ≤ C.
Above, the matrix ξ̂ = (ξ̂1, · · · , ξ̂C) is made of n1C slack
variables that allow to deal with outliers, each variable is
associated to one training sample. Here D̂SVM ∈ RC×N and
δ̂SVM = (δ̂SVM,1, · · · , δ̂SVM,C) ∈ RC .

III. CLASSIFICATION COMBINING ML-DR AND CS-DR

We here describe three approaches to perform the infer-
ence on CS measurements. In section A we present the first
approach, where the ML-DR projection is learned on data
compressed by a pseudo-random CS-DR (Fig. 1(a)). In this
case, classification inference is performed in the compressed
domain based on the learned ML-DR affine projection. The
second scheme is presented in section B. In this case, the ML-
DR is learned in the signal domain without the knowledge
of the sensing matrix (Fig. 1(b)) and then projected in the
CS domain using a sensing matrix A. In contrast to the first
and second approaches, the third one introduces a dedicated
DSP allowing to implement a reconstruction-like algorithm



Embedded required resources DR Inference learned Projection based Inference in the
in CS domain inference reconstructed signal domain

Memory needs LDA O(C2) +O(CM) O(C2) +O(CM) O(C2) +O(CM)
SVM O(CM) O(CM) O(CM)

Algorithmic complexity LDA O(C2) +O(CM) O(C2) +O(CM) O(qC3) +O(qMC2)
SVM O(CM) O(CM) O(qC2) +O(qMC)

TABLE I: Embedded resources requirements to perform near sensor decision making.

to perform the inference using a ML-DR learned in the
signal domain and compressed observations (Fig. 1(c)). In the
following, studied DR techniques will be denoted P̂ cs−LDA,
P̂ proj−LDA and P̂ sig−LDA (for LDA using approach A, B and
C resp.) and P̂ cs−SVM, P̂ proj−SVM and P̂ sig−SVM (SVM).

A. Approach A: Inference learned in CS domain
A desirable CS sensor property is the capability to acquire

a compact signal with a sparse representation that allows to
extract its inherent information. To formulate this problem,
let X̃ = AX ∈ RM×n1C and Ỹ = AY ∈ RM×n2C the
training and test sets observed in the CS domain using the
CS matrix A ∈ RM�N . This implies that all the training
samples are of lowered dimensionality, which, in addition,
reduces the computational complexity of the training. Here,
the equations (1) and (2) are solved in the compressed domain
and the training set X is replaced by its projection X̃ .

1) Classification for LDA: As the LDA clusters samples of
the same class, an Euclidean distance metric is used to assign
the test sample ỹ to the nearest class represented by its center,
i.e., we estimate the class c of this sample with:

c = argmin1≤i≤C ‖P̂ cs−LDA(ỹ)− P̂ cs−LDA(m̃i)‖22, (3)

where m̃i = Ami is the mean class vector in CS domain and
P̂ cs−LDA(x) = D̂cs−LDAx+ δ̂cs−LDA.

2) Classification for SVM: In the SVM case, a one-vs-all
strategy is used to learn C binary decision functions between
one class and the rest. Then, with respect to the geometric
criterion, a winner-take-all strategy assigns the test sample to
the class with the highest margin, i.e., the class label c is now:

c = argmax1≤i≤C P̂ cs−SVM,i(ỹ). (4)

B. Approach B: Projection based inference
This approach is based on a ML-DR transformation trained

in the signal domain (i.e., using X as training set). It has
the advantage of not requiring the knowledge of the sensing
scheme at the training stage. Moreover, this allows the ac-
quisition system to generate various sensing matrices (on-the-
fly), for example for data-encryption purposes and improve
robustness against hardware attaks. In this approach, a signal
y ∈ RN is observed in the compressed domain RM (using
the measurement matrix A) and the decision is done in
the inference domain RC (thanks to P̂ ). A straightforward
way is to reconstruct the signal using a sparsity-promoting
prior (e.g., `1-norm, TV), and then project it in the infer-
ence domain. However, this two-step scheme shows a dra-
matically high algorithm-hardware complexity. To overcome

this cost, we propose to project the classifier of the signal
domain (i.e., P̂ sig−LDA and P̂ sig−SVM) in the compressed
domain using A [16], i.e., project their N -dimensional axis
in RM . This allows to classify a compressed test sample
ŷ using either P̂ proj−LDA or P̂ proj−SVM defined respec-
tively as: P̂ proj−LDA(x) = D̂sig−LDAA

>x + δ̂sig−LDA and
P̂ proj−SVM(x) = D̂sig−SVMA

>x+ δ̂sig−SVM. The inference
can be then performed as follows:

1) Classification for LDA:

c = argmin1≤i≤C ‖P̂ proj−LDA(ỹ)− P̂ proj−LDA(m̃i)‖22.
(5)

2) Classification for SVM:

c = argmax1≤i≤C P̂ proj−SVM,i(ỹ). (6)

C. Approach C: Inference in the reconstructed signal domain
As in Approach B, to perform the inference independently

of the training acquisition scheme, we propose to directly re-
construct a vector in the inference domain from its compressed
observation. Thus, given ỹ = Ay ∈ Ỹ in the CS domain, the
main goal is to reconstruct a signal α̂ in the inference domain
(i.e., RC) such that the projection of its inverse mapping (i.e.,
projection in the signal domain) in the CS domain minimizes
the Euclidean distance to the compressed signal ỹ. Indeed,
for a signal α ∈ RC in the inference domain, we define its
minimum energy inverse mapping as:

û = argmin
u∈RN

‖u‖22 subject to P̂ (u) = α. (7)

Thus, the solution of (7) can be expressed as: û = P̂
†
(α),

where † denotes the Moore-Penrose pseudo-inverse operator.
Finally, under a regularization term promoting classes sep-
arability in the inference domain, the reconstructed signal
α̂ minimizing the energy ‖ỹ − AP̂

†
(α)‖22 will correspond

to the projection of ỹ in the inference domain. It allows
as a consequence the classification of a compressed sample
using a classifier learned in the signal domain. Moreover, the
regularization function typically takes advantages on intrinsic
properties of each method (e.g., statistical and geometrical
properties). In the following, this framework is applied for
both LDA and SVM to perform embedded inference on CS
measurements with dedicated reconstruction-like algorithms.

1) Classification for LDA: Given the CS matrix and the
P̂ sig−LDA transformation, we find for each new sample its
coefficients α̂ with a constraint to encourage them to be close
to the classes centers (i.e., regularizing by RLDA,i(α) = ‖α−
P̂ sig−LDA(mi)‖22). These coefficients are then used to find the



sample’s class c which minimizes the cost function, i.e., we
estimate:

α̂i = argmin
α∈RC−1

‖ỹ−AP̂
†
sig−LDA(α)‖22+λRLDA,i(α), (8)

c = argmin1≤i≤C ‖α̂i − P̂ sig−LDA(mi)‖22. (9)

2) Classification for SVM: The one-vs-all strategy assigns
a positive margin to the sample’s class and a negative one to
the others. For this reason, the exponential function is chosen
to reinforce sparsity of positive margins (i.e., regularizing by
RSVM(α) = ‖ exp(α)‖22) allowing a better reconstruction of
the α with highest margin. Thus,

α̂ = argmin
α∈RC

‖ỹ −AP̂
†
sig−SVM(α)‖22 + λRSVM(α), (10)

c = argmax1≤i≤C α̂i. (11)

IV. EMBEDDED RESOURCES REQUIREMENTS STUDY

Table I stands for the study of embedded resources require-
ments to implement our studied inference solutions. In the
quest for the ”most” hardware-friendly solution and depend-
ing on the targetted application specifications, we evaluate
memory needs in terms of the number of coefficients to store
and computational complexity in terms of the total number
of operations (MACs) for each solution. Two main inference
schemes are studied: affine projection (i.e., (3) to (6)) and
regularized based scheme (i.e., (8) and (10)). Let us consider
the affine projection based scheme (i.e., approaches A and
B), in this case, memory requirements are limited to the
ex-situ learned ML-DR matrix for the SVM, and ML-DR
matrix and the mean vectors for the LDA. In addition, to
evaluate computational complexity, two subproblems have to
be considered: the affine projection and the min/max operation.
On the other hand, regularized based approach can take
advantage on the commonly used iterative algorithms to solve
problems in (8) and (10). In this case, one has to consider
memory and computational requirements of multiple gradient
calculations [26]. Finally, one can observe that performing the
inference in the compressed domain allows to reduce memory
requirements for the three approaches. However, focusing on
the computational complexity, Approach A and B combined
with an affine projection for the inference, need far less
embedded operations compared to Approach C (we set q
number of iterations to 100).

V. EXPERIMENTAL RESULTS

Fig. 2 shows inference results of two databases: AT&T
face database (40 classes, resized 32 × 32 pixels) [27] and
MNIST digits database (10 classes, 28 × 28 pixels) [28].
We evaluate the error rate (ratio of incorrect predictions to
the total number of test samples) and its standard deviation
over random batches using two different types of CS matrices
(Rademacher and Gaussian). We also explore the robustness
of the proposed approaches in the presence of some hardware
variations, i.e., noise and CS matrix alterations. First and
foremost, Fig. 2(a) and 2(b) attest that Approach A (blue

lines) outperforms Approach B and C (green and red lines).
Indeed, they analytically demonstrate that learning in the CS
domain allows to achieve higher compression ratios thanks to
the intrinsic properties of the sensing matrix [11]. Despite of
learning the ML-DR on original data combined with a proper
regularization term, Approach C still exhibits a lower inference
accuracy for high compression ratios while being better than
approach B for low compression ratios. Regarding considered
ML-DR techniques, Fig. 2(a) shows that the LDA classifier
slightly underperforms the SVM for the face recognition task
(AT&T) even if all required assumptions are not met.

On the other hand, one can consider impact of hardware
variations on the inference robustness. For example, in the
presence of Additive White Gaussian Noise (AWGN) implying
a certain SNR, Fig. (2(c)) reports that approach A still exhibits
the best error rate while sharing the general behavior with
approaches B and C, i.e., the error rate massively increases
for low SNR (i.e., below 10 Db). In a second setting, binary
alterations of a Rademacher sensing matrix are considered, i.e.,
random bit flips due to nonideal hardware behaviour occurred
during matrix generation. Unsurprisingly, Fig. 2(d) shows that
Approach B and C (green and red plain lines) are more robust
to such variations when there are known as a prior for the
inference stage (green and red solid lines). Indeed, in the
sensing device the actual ”on-the-fly” generated sensing matrix
can be provided to the hardware component performing the
inference in order to be taken into account. However, when
not considered because of its hardware cost (dashed lines)
these approaches (B and C) are still less robust than A.

(a) AT&T - Rademacher (b) MNIST - Gaussian

(c) Robustness to additive noise (d) Acquisition scheme variations

Fig. 2: (a) and (b) Inference accuracy for the AT&T and MNIST databases.
We set n1 = n2 = 5 for AT&T; and n1 = 5000, n2 = 1000 for MNIST.
(c) Robustness to additive noise. (d) Robustness to hardware variations. Blue,
green and red lines refer approaches A, B and C respectivelly.



VI. CONCLUSION

In the context of highly constrained hardware, three al-
gorithmic approaches for near-sensor decision making were
investigated. Our experimental results (based on AT&T and
MNIST databases) show that a compression ratio of 10% can
be reached while performing an equivalent inference accuracy
as traditional linear classifiers. Moreover, to design an embed-
ded decision making hardware, we show that performing the
inference in the CS domain needs far less resources and MACs
compared to an inference in the signal domain. However,
when dealing with specific design constraints (e.g., for privacy
purposes), one can take advantage on dedicated algorithms to
perform the inference on CS measurements while preserving a
good trade-off between accuracy and robustness to unexpected
hardware variations. Finally, to provide a more hardware-
oriented study, future works will take into account the impact
of quantizing both CS measurements [18] and ML-DR learned
coefficients, as well as the advantage of using a hardware-
friendly CS matrix [29] to fit with constraints of ultra-low
power analog-to-information sensing devices.
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