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ABSTRACT
This paper presents a new compressive sensing acquisition
scheme well adapted for highly constrained hardware im-
plementations. The proposed sensing model being basically
designed to meet both theoretical (i.e., Restricted Isometry
Property) and hardware requirements (i.e., power consump-
tion, silicon footprint), is highly suitable for image sensors
applications addressing both image rendering and embed-
ded decision making tasks. In fact, for a pixels array, the
proposed framework consists in applying for each row a ran-
dom modulation ±1 and a random permutation of the pixels,
and then averaging the outputs by column to extract a com-
pressed vector. This model is shown to be relevant as it has
the same theoretical performance as a randomly generated
sensing scheme as well as a low silicon footprint for physical
implementation. Various numerical results and a discussion
on possible implementations will be presented to show the
robustness and the efficiency of the proposed model.

Index Terms— Compressive sensing, random modula-
tions, random permutations, image sensor, machine learning

1. INTRODUCTION

With the rise of Internet-of-Things (IoT) [1] and data specific
processing units [2] [3], the amount of data to sense and pro-
cess has grown in leaps and bounds. To address the algorithm-
hardware complexity involved by the data dimensionality, a
compression technique is typically introduced in the signal
processing pipeline [4]. To this end, a vector x ∈ RN (e.g.,
an image with N pixels) is approximated by K non-zeros
coefficients in a basis Ψ ∈ RN×N , i.e., x = Ψα, with∥∥α∥∥

0
= | supp (α)| is the degree of sparsity of x in Ψ.

Since the emergence of Moore’s law, several works have
focused on implementing near image sensor compression
techniques [5]. However, these implementations exhibit
high computational and memory costs mainly related to the
transform coding (e.g., DCT, DWT). On the other hand,
Compressive Sensing (CS) [6] has emerged as a powerful
framework for signal acquisition and sensor design based on
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random measurements. Indeed, CS theory demonstrated that
a sparse signal can be recovered from a small set of those
measurements. Mathematically, this corresponds to consider
the sensinng matrix Φ ∈ RM×N to perform a signal indepen-
dent dimensionality reduction mapping the signal x ∈ RN to
y = Φx ∈ RM (M � N ). CS allows one to alleviate hard-
ware design constraints (e.g., Analog-to-Digital conversion,
power consumption) e.g., using pseudo-random generators to
generate on-the-fly the sensing matrix as a deterministic and
reproducible process (e.g., LFSR [7–9], Cellular Automa-
ton [10,11]). However, recovering the original signal from its
CS measurements involves a costly reconstruction process.
Taking advantage of the sparsity of the signal x in a basis
Ψ (e.g., DWT) to recover the sparsest signal x̂ such that y
is very close to Φx̂, we can then solve the following Basis
Pursuit Denoising (BPDN) problem:

x̂ = arg min
x

∥∥Ψ>x∥∥
1
s.t.
∥∥y −Φx

∥∥2
2
≤ ε. (1)

Related works: The CMOS image sensor community
has proposed several CS implementations to deal with either
hardware or algorithm constraints for image rendering tasks.
First, [7, 12] exploit random convolutions to extract CS mea-
surements giving the priority to a fast and efficient image re-
construction at the expense of on-chip complexity. [8] reduces
the measurements support and applies an identical pseudo-
random measurement matrix for every column while perform-
ing charge summation to reduce power consumption. More-
over, [13] describes a scalable and low-complexity column
based CS scheme based on a Cellular Automaton (CA) that
shows a chaotic behavior to generate the sensing matrix dur-
ing the acquisition process. Alternatively, the most promising
way to perform CS during A/D conversion via incremental
Σ∆ converters is proposed in [9, 14]. Summation/averaging
operations are done during A/D conversion while well op-
timized 4T pixels and a canonical readout scheme are used
optimizing that way the overall performance of the sensor in
terms of noise, technological dispersion and power. These
works yet all suffer from numerous drawbacks, limiting the
use of CS to niche applications. This can mainly be summa-
rized to the hardware complexity in terms of memory needs
in [7, 12], and restricted measurements supports in [8, 9, 13].



Contributions: In this paper we propose a hardware-
friendly CS sensing scheme to provide more independent
measurements by extending the measurements support to
address highly constrained hardware design (e.g., ultra-low
power image sensor). The proposed framework is mathe-
matically defined as a combination of a random modulation
matrice and random permutation matrices. Thus, for a given
pixels array, we first apply a random modulation to the sensed
pixel values, and then perform a random column permutation
which is different for each selected row before averaging the
column output in a rolling shutter readout fashion [9]. The
purpose of the modulation is to center CS matrix expectation
and thus center measurements distribution, while the permu-
tations increase the information content (diversity) of each
measurement with uncorrelated measurements supports. Ad-
vantageously, the proposed sensing scheme enables the reuse
of a standard rolling shutter acquisition scheme as well as an
array of optimized pixels. In the rest of the paper, we first de-
scribe the proposed sensing scheme and then carry out some
analytical and numerical studies to evaluate its robustness
for both image rendering and decision making applications.
Finally, we provide a discussion on the hardware implemen-
tation in the context of a highly constrained hardware for
embedded near-sensor processing [15, 16].

2. PROPOSED SENSING FRAMEWORK

2.1. Mathematical model

Given u = (u1, · · · ,unr )> ∈ Rnrnc a per-row vectorized
image sensed by a canonical nr×nc CIS with a rolling-shutter
readout of its pixels array (nr and nc are the numbers of rows
and columns respectively). The proposed sensing model Φ
corresponds to applying the following steps repeated over s
snapshots. First, we apply a random modulation, i.e., mul-
tiplication of each image by a ±1 weights generated by a
Bernoulli distribution. Then, an horizontal concatenation of
nr permutation matrices is built to accumulate randomly se-
lected pixels from each row. For each snapshot, a compressed
vector in Rnc is extracted. Thus, for s snapshots, the sensing
scheme is expressed with a normalization factor 1√

s
as:

Φu =
1√
s

((

nr∑
j=1

P
(j)
1 ϕ

(j)
1 uj)

>, · · · , (
nr∑
j=1

P (j)
s ϕ(j)

s uj)
>)>,

(2)
where, for each 1 ≤ i ≤ s and 1 ≤ j ≤ nr, ϕ(j)

i is
a diagonal matrix whose main diagonal entries are the ±1
weights applied to the jth row at snapshot i, and Pi =

(P
(1)
i , . . . ,P

(nr)
i ) ∈ {0, 1}nc×ncnr is the horizontal con-

catenation of nr permutation matrices P (j)
i ∈ {0, 1}nc×ncnr

for the snapshot i. We stress that the modulation weights and
permutation matrices are different for each snapshot. Theo-
ritically, the design of CS sensing matrices has to satisfy Re-
stricted Isometry Property (RIP) [17] to guarantee a stable

embedding property. In particular, it was shown that a wide
variety of randomly generated matrices (e.g., Bernoulli and
sub-Gaussian distributions) satisfies this property [18]. In the
rest of this section, we first present the key concept to eval-
uate the robustness of a CS matrix, i.e., Restricted Isometry
Property (RIP), and then provide a quantitative and qualita-
tive analysis of this property for the proposed CS scheme and
compare its performances to a well known randomly gener-
ated sensing scheme [18].

2.2. Definitions

A key concept to evaluate the robustness of a CS sensing
scheme is the RIP property. A sensing matrix Φ is said to
respect the RIP of order K if for all K-sparse vectors x there
exists δ ∈ (0, 1) such that:

(1− δ)
∥∥x∥∥2

2
≤
∥∥Φx∥∥2

2
≤ (1 + δ)

∥∥x∥∥2
2
. (3)

When respecting the RIP, the mapping Φ preserves the energy
of the sensed signal and thus is said to be a stable embedding.
Consequently, respecting the RIP over all 2K-sparse vectors
implies to preserve the pairwise distance between any twoK-
sparse vectors u and v, i.e.,

(1− δ)
∥∥u− v∥∥2

2
≤
∥∥Φu−Φv

∥∥2
2
≤ (1 + δ)

∥∥u− v∥∥2
2
. (4)

2.3. RIP analysis

To show that the CS model presented in (2) respects the RIP
property, let us present the following lemma.

Lemma 1. Let Φ in (2). For anyK-sparse vectoru ∈ Rnrnc ,

E(
∥∥Φu∥∥2

2
) =

∥∥u∥∥2
2
.

Proof. The `2-norm of Φu can be expressed as:∥∥Φu∥∥2
2

=
1

s

s∑
i=1

∥∥ nr∑
j=1

P
(j)
i ϕ

(j)
i uj

∥∥2
2
,

equivalently,∥∥Φu∥∥2
2

=
1

s

s∑
i=1

nr∑
j=1

nr∑
k=1

(ϕ
(j)
i uj)

>(P
(j)
i )>P

(k)
i (ϕ

(k)
i uk).

BecauseP (j)
i are orthonormal matrices, (P

(j)
i )>P

(j)
i = Inc

,
and, the main diagonal entries of ϕ(j)

i are Bernoulli variables
with E(diagϕ

(j)
i ) = 0, with ϕ(j)

i and ϕ(l)
k independent if

i 6= k or j 6= l, we can write:

E(
∥∥Φu∥∥2

2
) =

1

s

s∑
i=1

nr∑
j=1

nc∑
j′=1

E((ϕ
(j)
i )j′(uj)j′)

2.

Thus,
E(
∥∥Φu∥∥2

2
) =

1

s

s∑
i=1

nr∑
j=1

nc∑
j′=1

(uj)
2
j′ =

∥∥u∥∥2
2
.



(a) (b)

Fig. 1: (a) Concentration of pairwise distances of our model and a Bernoulli
distribution around the pairwise distances in the signal domain (bisectrix line)
for N = 1024, K = 10 and M = 128. (b) Distances to the bisectrix line
of our model and a Bernoulli distribution.

Note that this lemma can advantageously be generalized
to E(

∥∥ΦΨu
∥∥2
2
) =

∥∥Ψu∥∥2
2

=
∥∥u∥∥2

2
by Parseval’s identity, if

Ψ is an orthonormal basis.
To estimate the RIP constant δ of our sensing matrix, an

analytical estimation is carried out. A dataset of 1000 10-
sparse signals are generated in the canonical basis. Each vec-
tor of length 1024 (i.e., nc = nv = 32) has K = 10 non-zero
coefficients normally generated on the support. This dataset
is projected in the CS domain using either our model in (2) or
a full Bernoulli random matrix to extract M = 128 measure-
ments. The main idea behind this study is to show that the
embedding performed by our model preserves the pairwise
distance between any two K-sparse vectors of the generated
dataset as well as the Bernoulli random matrix. Thus, to eval-
uate the distortion of the projected distances, Fig. (1(a)) ex-
hibits a point cloud mapping the pairwise distances between
the signal domain (X axis) and the CS domain (Y axis), for
our model and a Bernoulli random matrix over 100 trials. As
the point cloud of our model is well concentrated around the
bisectrix line (blue line) and its regression line perfectly fits
the Bernoulli’s one, we can validate, qualitatively, the fact
that our model preserve the pairwise distances with respect to
a distortion constant, expressed as the RIP constant δ.

The RIP constant δ can be seen as the aperture of the cone
defined by the point cloud related to our model. In Fig. (1(b))
we establish the histogram of distances to the bisectrix line
for every point of Fig. (1(a)) to get an estimation of the RIP
constant of our model and compare it to the Bernoulli random
matrix. Thus at 3σ, the estimated δ = 0.033 for our model
and δ = 0.031 for the Bernoulli matrix. This means that
we can reasonably attest that the proposed model respects the
RIP with a small distortion constant, and guarantee to recover
signals from their compressed measurements.

3. NUMERICAL EXPERIMENTS

3.1. Reconstruction of sparse signals

In this section we evaluate the recovery performance of the
proposed model for sparse signals. Here, we consider the Bar-
bara, Monkey, Boat, Cameraman and Lena images resized to

128 × 128 with different level of sparsity (thresholded in the
wavelet domain and back projected). The sparsifying basis
Ψ is the Daubechies-6 wavelet basis and the UnLocBox 1 is
used to solve the augmented Lagrangian 2 of (1). We then
plot the average PSNR in dB for different sparsity level (i.e.,
K

1282 ) in function of the number of snapshots (i.e., for each
snapshot we extract 128 measurements). Fig. (2) reports the
required amount of snapshots to perform (i.e., minimum num-
ber of measurements to extract) to successfully recover the
signal under the constraint of a certain PSNR using a per-
column Bernoulli (denoted ”Col-Bern”) sensing scheme as
used in [8], our model without permutations (denoted ”W/o
perm”) and our model (denoted ”modPerm”). One could say
that a signal is properly reconstructed if the reconstruction er-
ror is lower than 10−4, i.e., a PSNR higher than 40 dB.

(a) Col-Bern. (b) W/o perm. (c) modPerm.

Fig. 2: Phase-transition diagrams. Black, red and magenta lines show the
transitions to a success reconstruction above 40 dB for per-column Bernoulli
(Col-Bern), our model without permutations (W/o perm) and our model sens-
ing schemes (modPerm) respectivelly.

3.2. Reconstruction of compressible signals

In this section, the only considered image is the Cameraman
image of size 512 × 512 (because of its intrisic image char-
acteristics). Two regularization operators are used to recover
this image instead of a simple `1-constraint in a wavelet ba-
sis: first the Total Variation (TV) and secondly the sum of
the `1-norm of the gradient of the image in multiple wavelet
domains (Db-2, Db-6 and Db-10 denoted mDWT-TV) as per-
formed in [13]. The reconstruction from CS measurements is
performed thanks to a FISTA algorithm [19] using our model
and a per-column Bernoulli sensing [8] over 10 batches. As
clearly seen in Fig. (3) and Fig. (4), our sensing scheme out-
performs the alternative scheme.

3.3. Classification of compressible signals

Leveraging the cost of signal recovery, compressive signal
processing [20] allows to perform signal processing (e.g., fil-
tering, detection and inference) in the CS domain thanks to
the RIP property. In this section, we address an object recog-
nition problem to evaluate the performance of our model on
two object recognition databases: the MNIST handwritten
database (10 classes, 28 × 28 pixels) [21] and the AT&T

1//epfl-lts2.github.io/unlocbox-html/
2with a very small regularization parameter λ



Fig. 3: Quality of reconstruction of our sensing model compared to a per-
colon Bernoulli acquisition scheme over 10 batches.

(a) TV | Col-Bern. (b) mDWT-TV | Col-Bern.

(c) TV | modPerm. (d) mDWT-TV | modPerm.

Fig. 4: Quality of reconstruction of our sensing compared to a per-column
Bernoulli acquisition scheme (75 snapshots, i.e., 14.7% compression ratio).

face recognition database (40 classes, 92 × 112 pixels) [22].
The performance of a one-vs.-all Support Vector Machine
(SVM) classifier [23] learned on CS measurements sensed by
our model is reported in Fig. (5). It shows the accuracy in
terms of the ratio of correct predictions to the total number of
test samples and its standard deviation (10 randomly selected
batches). By comparing the plots one can draw out the fol-
lowing conclusions regarding the data variability. First, one
can see that in the case of the MNIST (small and low variable
samples), we can achieve a no-loss classification compared to
a no-CS setting from 10 snapshots, (i.e., ≈ 35% compression
ratio). However, with more variability and informational con-
tent (i.e., AT&T), we achieve the same performance from 10
snapshots, (i.e., ≈ 10% compression ratio).

Fig. 5: Classification accuracy for the AT&T and MNIST databases.

4. DEDICATED HARDWARE IMPLEMENTATIONS
AND CONCLUSION

A physical system implementation of the proposed sensing
model is illustrated in Fig. (6) [15,16]. Two possible embodi-
ments are presented to perform on-chip pseudo-random mod-
ulations and permutations. To perform permutations, [15]
proposes a pseudo-random generator to generate a pseudo-
randomly permuted sequence to address the columns of the
selected row. However, in [16] this task is achieved thanks to a
butterfly network [24] controlled by a pseudo-random gener-
ator (PRG). In addition, the pseudo-random modulations and
the sum are performed in both architectures by a dedicated
A/D converter enabling to perform pseudo-random modula-
tions, averaging and A/D conversion as in [9]. For multiple
snapshots, our scheme requires non-destructive pixel readout
both in the case of rolling shutter and global shutter acquisi-
tions thanks to relaxed constraints on ADC speed. However,
for specific inference tasks we can perform single scan.

Fig. 6: Top-level architecture of a pseudo-random modulations & permuta-
tions compressive image sensor.

In conclusion, this paper proposes a new CS sensing
scheme based on random modulations & permutations to
meet highly constrained hardware tasks while respecting
theoretical properties of a CS matrix. To this end, we demon-
strate that our sensing model respects the RIP property with a
distortion constant estimated, analytically. We also compared
it to a randomly generated matrix and present some numerical
results to evaluate its robustness regarding various applica-
tions. A key difference of the proposed model is its relevance
in terms of silicon footprint and on-chip CMOS limitations.
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