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Xvpfloat : RISC-V ISA Extension for Variable
Extended Precision Floating Point Computation

Eric Guthmuller, César Fuguet, Andrea Bocco, Jérôme Fereyre, Riccardo Alidori, Ihsane Tahir,
and Yves Durand

Abstract—A key concern in the field of scientific computation is the convergence of numerical solvers when applied to large problems.
The numerical workarounds used to improve convergence are often problem specific, time consuming and require skilled numerical
analysts. An alternative is to simply increase the working precision of the computation, but this is difficult due to the lack of efficient
hardware support for extended precision. We propose Xvpfloat, a RISC-V ISA extension for dynamically variable and extended
precision computation, a hardware implementation and a full software stack. Our architecture provides a comprehensive
implementation of this ISA, with up to 512 bits of significand, including full support for common rounding modes and heterogeneous
precision arithmetic operations. The memory subsystem handles IEEE 754 extendable formats, and features specialized indexed loads
and stores with hardware-assisted prefetching. This processor can either operate standalone or as an accelerator for a general
purpose host. We demonstrate that the number of solver iterations can be reduced up to 5× and, for certain, difficult problems,
convergence is only possible with very high precision (≥384 bits). This accelerator provides a new approach to accelerate large scale
scientific computing.

Index Terms—Instruction sets, Scientific computing, Application specific processor, Floating point arithmetic, Linear algebra, High
precision arithmetic, Coprocessor, RISC-V.

F

1 INTRODUCTION

S CIENTIFIC applications for physics, molecular chemistry,
structure engineering, data analysis, etc. extensively ex-

ploit linear algebra kernels, e.g. linear solvers or eigen-
solvers. Indeed, an enormous fraction of the time on High-
Performance Computing (HPC) systems is spent executing
these kernels. For example for computational fluidics they
represent up to 80% of user time [1]. New approaches are
needed to improve the overall computational efficiency and
deal with larger datasets.

The size of the problems to be solved is continuously
increasing [2] making them more sensitive to round-off and
quantization errors. Indeed, one of the focuses of numeri-
cal analysis research is to improve the stability of solvers
through techniques such as orthogonalization, precondi-
tioning, etc. [3], [4]. Some of these techniques to improve
stability have a higher computational and memory cost than
the solver itself [5].

In this paper, we present a holistic approach to reduce
time to solution for large linear and eigen-solvers. This
time to solution consists of several components, including
the human time required to modify the problem so that
it converges, iteratively selecting the correct solvers and
parameters, the compilation of the code, the execution of the
solver and the analysis of the results. Our solution addresses
all of these aspects.

The core of our solution is an enhanced RISC-V proces-
sor, supporting an Instruction-Set Architecture (ISA) exten-
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sion for dynamic, high-precision arithmetic, including the
associated software toolchain.

The benefits of our solution are :
i) Simpler solver algorithms can be used, which are

more efficient and require less memory, and avoid
compensation techniques such as preconditioning or
re-orthogonalization.

ii) The precision can be adapted to the problem at hand,
without re-compiling the applications.

iii) The convergence speed is increased. Due to the reduced
number of iterations for convergence, the execution
time is reduced, even though the high-precision ele-
mentary operations are actually slower.

Indeed, it has been shown that certain real-world prob-
lems do not converge at all using standard double precision,
and that increased precision is a highly effective means to
obtain a solution [6].

Our solution includes a software toolchain to facilitate
the porting of scientific applications. Library support for
writing code in C++ makes it easy to modify existing
solvers to use extended precision. Furthermore, our soft-
ware stack maintains compatibility with standard scientific
compute libraries (e.g. Basic Linear Algebra Subprograms,
BLAS), facilitating integration with existing scientific appli-
cations. It is important to note that our solution provides
dynamic, extended precision, which means the precision
can be changed at runtime, based on the requirements of
the current problem, making it unnecessary to recompile
the application code. This is unlike other solutions which
require recompilation to change the numeric precision [7].

Extended precision is not supported by mainstream
hardware platforms. Software emulation, with MPFR [8] or
GCC Libquadmath [9] is possible, but the enormous slow-
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down makes this approach unusable for large problems.
Our objective is to augment a high-performance processor
with efficient support for extended precision both in regis-
ters and in memory. This requires tight coupling with the
core, which is possible in an open source ecosystem such as
RISC-V. Our ISA extensions were developed for the RISC-V
CVA6 core [10]. The original L1 D-cache for this core [10]
has several limitations, thus to achieve high performance,
we also improved the L1 memory system to better mask the
latency for cache misses [11].

The main contributions of this paper are :
i) a RISC-V ISA extension for dynamic variable extended

precision, that supports more than 53 bits of mantissa
both internally and in memory, with runtime modifi-
able precision specified for each instruction;

ii) an efficient hardware implementation including an op-
timized load-store unit supporting unaligned arbitrary
size memory accesses with strided indexing;

iii) a full Software Development Kit (SDK) for integration
with solvers and scientific applications;

iv) a demonstration that all of the above can be integrated
to improve the time to solution for linear solvers with
large datasets.

The remainder of this paper is structured as follows:
Section 2 presents related works on extended precision and
in Section 3 we introduce the RISC-V ISA extensions for
variable extended precision. Then, in Section 4 we present
the micro-architecture of the Variable Precision Floating-
Point Unit (VPFPU), followed by Section 5 which describes
the integration of the VPFPU in the CVA6 core. The software
stack is described in Section 6 and in Section 7 we present
experimental results demonstrating the performance im-
provements. This is followed by the conclusions in Section 8.

2 RELATED WORKS

As early as 1964, Wilkinson [12] had established the close
link between working precision and numerical convergence.
Yet, the numerical analysis community still lacks an effective
computing solution supporting arbitrary high precision.

In 1983, CADAC [13] proposed a comprehensive archi-
tectural study for a Floating-Point Unit (FPU) supporting
up to 32 Radix 10 digits. Other FPU designs have been pro-
posed later, such as CASCADE [14] with radix 16 support,
or even online arithmetic [15], but all of these machines store
the high precision values in a small, local memory and do
not support large scale calculations with extended precision.

Many mainstream x86 processors provide “extended
precision”, which means that they use 64 significand bits
with the same exponent size as standard double precision.
This is the case for the Intel family processors (IA32, x86-64,
and Itanium) for example which support an 80-bit “double
extended” precision format, stored in memory on 96 or 128
bits. This is an improvement over 64-bit precision but falls
short of the precision required to improve the stability of
large computations, the focus of this work.

IBM z13, Power8 and Power9 series are the only com-
mercial platforms to support quad precision (128 bits) float-
ing point formats in hardware [16]. Nevertheless, no pro-
duction computer today provides full hardware support for
variable extended precision above 128-bits, either in the FPU
or in memory.

Fig. 1: Multiple word formats for the representation of
floating-point numbers in memory

Multiple Word Representation

Multiple word arithmetic is a common practical approach
which consists in encoding augmented floating point num-
bers using existing numeric formats. For example, the MPFR
software library [8] implements variable precision floating-
point numbers using sets of integers (limbs) for storing the
significand (as represented in Fig. 1). This library provides
exact rounding, and therefore it is widely used as the
reference library for variable precision. Nevertheless, its
computing and memory overhead prevents its use for large
scale calculation (even though the latest release has been
optimized for performance for the support of the binary64
and binary128 types [20]).

Other multiple-word implementations exploit error-free
transformations which are variants of compensated summa-
tions or floating-point expansions [21]. The most practical
method consists in implementing a “double-double” arith-
metic with a pair of double format numbers. This technique
is implemented by software libraries such as QDlib [7].
However, the overhead cost in terms of arithmetic opera-
tions is significant: an addition costs 20× more in double
double, 89× in quad double compared to double [22]. Thus,
several authors compensate this overhead by exploiting the
parallelism and the speed of either GPGPUs with optimized
libraries such as CAMPARY [23], or specialized SIMD or
MIMD [24] processors. This approach is effective for double-
double precision if GPU hardware is available, but for
arbitrary precision above 128 binary digits, it is necessary
to use dedicated hardware, combined with native format
representations and operations.

Native Formats

There exist very few native formats for arbitrary precision
floating-point numbers beside the current standard IEEE
754 [25]. In 2015, John Gustafson introduced the UNUM
type I format [26] for interval arithmetic with arbitrary
precision (represented in Fig. 2). In 2018, ETH Zurich [18]

Fig. 2: Native formats for the representation of floating-point
numbers in memory
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TABLE 1: Related floating point computation implementations with support for variable precision

Name Year Floating point format Implementation Architecture
CASCADE [14] 1989 Radix 16 redundant signed-digit numbers study sliced FPU
e.g VLPLA [15] 2001 Online fixed point FPGA
VPFPAP [17] 2011 Radix 2 floats FPGA VLIW, fixed width FPUs
GRAPE9-MPX [17] 2015 Radix 2 floats FPGA SIMD
ETH UNUM ALU [18] 2018 Radix 2 floats (UNUM) Silicon ALU only
SMURF [19] 2019 Radix 2 floats (UNUM) STM 28 nm FDSOI RISC V & Schulte FPU
VRP (this work) 2021 Radix 2 floats (IEEE) TSMC 7 nm RISC V & Schulte FPU

implemented a complete UNUM based co-processor using
a 65 nm technology, however, significand length was limited
to 64 bits.

Our “SMURF” [19] processor also supported Unum type
I with up to 512 bits of significand, both internally and in
memory. Our new version, presented in this paper, brings
closer integration with the RISC V core, has an improved
FPU design, tailors the ISA extension for BLAS routines,
and drops support for the UNUM representation in favor of
the IEEE754-2008 extendable format.

Among other native formats for reals, posit [27] has
gained some attention for deep learning and signal pro-
cessing. However, it is not adapted for scientific computing,
mainly because, in practice, its implementation is limited to
64 bits [28]. Furthermore, its relative representation error is
not strictly bounded which is a common requirement for
numerical algorithms.

Unlike posit, radix based representations (with radix R)
are particularly suitable for scientific computing, because
of the straightforward relation εm = R−p between the
significand size p and the actual machine Epsilon εm , which
is the reference quantity for convergence analysis. Today, the
radix 2-based format is dominant.

The IEEE 754-2008 revision defines extended and extend-
able formats [25]. This radix 2-based representation comes
with a variable mantissa size, which may be much wider
than 80 bits. The binary128 type, which is becoming widely
used in scientific and data analysis software, is an instance
of this format. Extending precision beyond ≈64 bits of
mantissa has important micro-architectural implications, as
it is not practical to directly implement hardware multipli-
ers beyond this width. Therefore, most implementations of
binary128 are emulated by software libraries such as GCC
libquadMath [9]. However, this involves multiple native
arithmetic instructions and multiple data accesses for each
individual operation, which slows down the operations by
10× to 60× [29] when implemented using a classical CPU.

FPU Architectures for extended precision

There are two leading philosophies for variable-precision
FPU architectures. The Kulisch architecture leverages a
fixed-point accumulator, large enough to hold the whole ex-
ponent dynamic of a floating-point number. Floating-point
operations are done within this accumulator through fixed-
point basic operations, but precision is lost whenever data is
stored back to memory. This solution has been implemented
on an FPGA, but not realized in HPC computers [30].

Schulte and Swartzlander [31] took an orthogonal ap-
proach. Their architecture exploits a floating-point self-

descriptive register format. The significand occupies a con-
figurable number of 64 bits wide segments. The philosophy
behind Schulte’s work is to expose full fledged VP opera-
tions to the ISA. This means that operations span the full
length VP number and include rounding when needed: the
succession of partial sums and products and rounding is
managed by internal sequencers. Unlike the Kulisch archi-
tecture, the Shulte’s one applies more alignment and round-
ing steps within internal floating point operations. But this
scheme enables the use of internal intermediate variables
without loss of precision. We have adopted this solution for
internal operations in our previous realization [19] and in
this work.

VPFPAP [17] (similar to VV in [32]) adopts a different
scheme for the Kulisch architecture: the processor exposes
the elementary operations on mantissa segments (again 64-
bit wide). The software is responsible for sequencing these
elementary operations, and exploits 64 entries of internal
memory to store the intermediate results. The instruction
level parallelism of VPFPAP’s VLIW structure improves the
throughput via software unrolling. However, this solution
is meant for accelerating specific functions, and does not
support the storage of VP numbers in main memory.

The GRAPE-MP [33] reports to be the first practical
hardware implementation of high-precision floating-point
units. It is a family of accelerator boards able to perform
calculations in quad to octuple precision (ie 112/176/240
bits of significand). Rounding is relaxed, making it dif-
ficult to analyse convergence properties. The system was
originally implemented on a “structured” gate array ASIC
from Nextreme eASIC NX2500. The following version used
multiple FPGAs, taking advantage of the FPGA embedded
multipliers.

In this work, our processor, with full support for variable
precision computation up to 512 bits, has been implemented
on an ASIC in TSMC 7 nm technology. Table 1 summarizes
the most significant hardware implementations of extended
precision processors.

3 Xvpfloat RISC-V ISA EXTENSION

To fully benefit from faster convergence resulting from
higher precision arithmetic, an optimized FPU is required.
Furthermore, it is important that the precision can be
controlled at runtime, to avoid the need to recompile or
manage multiple executables. As seen in Section 2, no such
hardware implementation exists, thus we propose a RISC-V
ISA extension called Xvpfloat for variable extended precision
floating point computation. We have implemented this ISA
extension in the CVA6 [10] 64-bit open-source RISC-V core.
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3.1 Design Principles

As a first principle, we decouple the floating point binary
representation in memory from the one used internally.
In memory, numbers are stored following the IEEE 754-
2008 [25] extendable format, which imposes an 8-bit gran-
ularity. This format supports independent configuration of
mantissa and exponent bit-widths.

Internally, 32 logical registers, the P-registers, hold float-
ing point numbers at the maximum precision supported
by the hardware. The mantissa is kept normalized. Hence,
it is encoded with a hidden bit implicitly fixed to 1. The
internal fixed-width exponent is stored in two’s complement
representation. To encode numbers that we cannot represent
with normalized mantissa, we leverage additional flags
beside the sign bit: zero, sNan, qNan and inf. In order to
exploit fixed-size hardware, the mantissa is logically split in
chunks of 64 bits. Thus a field “L” holds how many chunks
are valid. This also allows to optimize performance and
energy consumption when less-than-maximum precision is
required. In general, software has no need to manipulate
this internal representation, although these fields are visible.
Xvpfloat instruction fields limit hardware implementations
to a maximum 54-bit exponent size and a maximum 1984-
bit mantissa size (in steps of 64 bits). The total P-register
size thus ranges from 146 to 2048 bits depending on the
implementation parameters.

As precision is a problem-specific requirement, we avoid
encoding it in the instruction format to limit duplication of
binaries. Runtime precision is specified via 24 environment
registers:

• 8 ec registers for internal computation, holding: preci-
sion of the result’s mantissa in bits (Working Precision,
WP) and rounding mode;

• 8 evp registers for variable precision floating point load
and store operations, holding: total bit-size in memory,
exponent size, rounding mode and a 16-bit unsigned
stride fields used for accessing arrays in memory
(akin to lda/inc x/inc y parameters of BLAS func-
tions);

• 8 efp registers for 16/32/64 bits floating point conver-
sion operations, holding the rounding mode.

A 3-bit field in the Xvpfloat instructions provides the
source environment register used at execution. These envi-
ronment registers are modified through dedicated instruc-
tions. Proper dependency and forwarding are computed
in the issue stage to avoid the need for costly barriers
while updating these registers. The load store instructions
calculate a memory address using a base address and a
stride which takes into account the size of the stored value,
making the code independent of the selected precision and
saving multiple integer instructions. The stride parameter
for load and store instructions is targeted at optimizing
handwritten-assembly BLAS kernels.

We implement RISC-V ISA extensions in the standard
way by using the custom-0 25-bit encoding space. We are
thus compatible with existing standard RISC-V extensions,
and in particular with RV64GC which would be the target
of a general purpose high performance core.

TABLE 2: Xvpfloat instructions

Mnemonic Operation

PGER rt, ea rt = ea

PSER et, ra et = ra

PLE pt, evpi, ra{, #index} vpfloat<evpi> *tab = ra

pt = tab[index*stride]

PSE pb, evpi, ra{,#index} vpfloat<evpi> *tab = ra

tab[index*stride] = pb

PMV.P.P pt, pa pt = pa

PMV.Pfield.X rt, pa rt = pa[field]

PMV.X.Pfield pt, ra pt[field] = ra

PCVT.P.H rt, pa, efpi rt = (float16_t) pa

PCVT.P.F rt, pa, efpi rt = (float32_t) pa

PCVT.P.D rt, pa, efpi rt = (float64_t) pa

PCVT.H.P pt, ra pt = (float16_t) ra.H[0]

PCVT.F.P pt, ra pt = (float32_t) ra.W[0]

PCVT.D.P pt, ra pt = (float64_t) ra

PADD pt, pa, pb, eci pt = pa+pb

PSUB pt, pa, pb, eci pt = pa-pb

PRND pt, pa, eci pt = pa+0.0

PMUL pt, pa, pb, eci pt = pa*pb

PCMP.EQ rt, pa, pb rt = pa == pb ? 1 : 0

PCMP.NEQ rt, pa, pb rt = pa != pb ? 1 : 0

PCMP.GT rt, pa, pb rt = pa > pb ? 1 : 0

PCMP.LT rt, pa, pb rt = pa < pb ? 1 : 0

PCMP.GEC rt, pa, pb rt = pa >= pb ? 1 : 0

PCMP.LEQ rt, pa, pb rt = pa <= pb ? 1 : 0

3.2 ISA Overview

Table 2 lists instructions of the Xvpfloat ISA extension. PGER
and PSER allow for reading and writing the 24 environ-
ment registers. PLE and PSE are P-register load and store
instructions that can be configured through evp environment
registers to read and write IEEE 754 extendable floating point
numbers from/to memory. Fast paths are implemented for
loading and storing standard half, float and double formats.
All load/store instructions support subnormals in memory
as long as exponent value fits in internal exponent range,
otherwise the value is rounded to infinity or zero. PCVT.*.*
instructions are conversion instruction from/to the integer
register file. PADD, PSUB, PRND and PMUL implement
a basic arithmetic set of operations. Finally, PCMP.* are
comparison instructions allowing in particular conditional
jumps.

Xvpfloat implements the same rounding modes as those
defined by RISC-V floating point extension: Round to Near-
est ties to Even; Round towards Zero; Round Down; Round
Up; Round to Nearest ties to Max Magnitude. These modes
are specified by environment registers, enabling runtime
instruction-level control. Rounding is defined at bit granu-
larity for both internal and memory operations, to allow for
example reproducibility in transcendental functions compu-
tation. The memory footprint of scalar variables is aligned
to a byte boundary through the use of padding as memory
accesses are performed with byte granularity.

Finally, memory consistency is explicitly not enforced
between Xvpfloat load/store instructions and RISC-V stan-
dard load/store instructions (integer or floating point), thus
fences are needed to ensure memory consistency, if applica-
ble.
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4 ARITHMETIC PIPELINE OF VPFPU
We have developed a dedicated VPFPU which integrates
multiple arithmetic pipelines that work on multiples of 64-
bit mantissa chunks and implements the instructions listed
in Table 2. Our current implementation has an upper limit
of a 512-bit mantissa and a 18-bit internal exponent size.

The path delay of the pipeline stages was tuned to
match the critical path in the CVA6 RISC-V core [10], while
optimizing throughput and latency without impacting the
maximum clock frequency, in the 7 nm target technology. We
found that within the available cycle time, it was possible to
implement a 128-bit adder, a 512-bit barrel shifter or a 512-
bit leading-zero-counter (lzc). A 64-bit multiplier requires 3
cycles at our 1.25 GHz target clock frequency.

Thus, we adopt an iterative approach to support opera-
tions up to 512-bits. For example, a 512-bit addition requires
four iterations through the 128-bit adder. Similarly, if two
input operands with 128-bit mantissa precision need to
be multiplied, it requires four iterations through the 64-
bit multiplier block. In general, the number of iterations
required to execute a given instruction, depends on:

i) the precisions of input operands,
ii) the exponent values of the input operands,

iii) the maximum output precision, associated to the envi-
ronment register specified in the instruction.

To improve performance, we implement separate
pipelines for addition, multiplication, load/store and com-
parison (CMP), as well as some other operations. Each
pipeline supports multiple concurrent instructions, for a
total of at most 17 instructions in flight in the VPFPU. To
our knowledge, this is the first hardware implementation of
a parallel floating-point unit supporting dynamic extended
precision. This parallelism masks the throughput penalty
of high precision operations. Section 7.2 shows how our
optimized BLAS functions exploit Instruction-Level Paral-
lelism (ILP) to that end. Moreover, the VPFPU implements a
dedicated high throughput Load-Store Unit (LSU), distinct
from the integer LSU.

The variation of bit-width within the sequence of ele-
mentary operators has the following design consequences:

• the data-path width varies from one pipeline stage to
the next;

• additions and multiplications are performed iteratively;
• a stop-and-wait protocol preserves operation consis-

tency while iterating on mantissa chunks.
Section 4.1 details the VPFPU micro-architecture and

Section 4.2 shows its impact on performance.

4.1 Microarchitecture
Fig. 3 depicts the VPFPU floating point operators and their
pipelines. Pipeline stages, corresponding clock cycle laten-
cies (lat) and bit-width parallelism (par) are also displayed.
The pLD and pST stages are 1-clock cycle latency full P-
numbers buffers, which decouple the VPFPU pipelines from
the CVA6 core. Control flow in the pLD stage is optimized
to reduce buffering knowing that, for precision above 128-
bits, throughput will be limited by following stages. Pipeline
synchronization barriers in Fig. 3 are denoted by dashed
lines ¦. The number of full P-number buffers are denoted
with a flip-flop symbol. The n-th pipelines stage of an
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1
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Fig. 3: VPFPU microarchitecture overview

operator is marked with a n symbol. Operators not detailed
in Fig. 3 have a one clock cycle latency, except for the
PCVT.P.* instructions that require two clock cycles.

4.1.1 pADD Floating-Point Adder
The pADD operator consists of seven pipeline stages. PSUB
is implemented by flipping the second operand sign, and
PRND by forcing to zero the second operand at the input
of the pADD pipeline. Stage 2 computes the shift amount
(shamnt) for the exponent alignment of the two operands,
and then it aligns the mantissa with the lower input expo-
nent by shifting it to the right (shr). The main addition oper-
ation 3 adds the aligned mantissas by iterating through two
128-bit adders. In case of different input signs, it computes
in parallel op1-op2 and op2-op1, and it selects the result with
a positive mantissa. Stages 4 - 6 perform the normalization
and rounding of the addition result. They first compute the
lzc 4 of the result to compute the shift amount needed for
normalizing the mantissa performed by 5 . Stage 6 rounds
the normalized value increasing the mantissa by one Unit
in the Last Place (ULP) according to the rounding policy
specified in the environment, by iterating through a 128-bit
adder.

4.1.2 pMUL Floating-Point Multiplier
The pMUL operator has five pipeline stages. Stage 2 mul-
tiplies the operands by iterating through a four-stage 64-bit
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multiplier/accumulator. It minimizes the number of itera-
tions by considering the precision of the operands, specified
in their L fields encoding the number of valid 64-bit chunks:
the number of partial multiplications is op1.L × op2.L. The
first three stages implement the 64-bit multiplier, the fourth
accumulates the partial products on a 128-bit adder. The
1024-bit result is truncated to 512 bits, and the resulting
underflow and overflow conditions are handled during nor-
malization. Compared to the pADD pipeline, stages 3 - 4
perform the normalization and rounding of the multiplied
result with one less cycle latency by exploiting the known
range of the resulting mantissa.

4.1.3 pLSU Load-Store Unit
The pLSU has two internal pipelines: a four-stage load
pipeline 1L-4L , and a six-stage store pipeline 1L- 6S . Mem-
ory consistency between load and store operations is han-
dled by keeping track of the addresses involved in memory
operations.

Store pipeline: normalization is done in stages 2 - 3
(similar normalization design as pMUL). Subnormal num-
bers are supported by re-aligning the mantissa during nor-
malization. Stage 4 implements the floating point memory
format conversion, shifting the mantissa, and merging all
its fields. A fast path for the standard IEEE 754 memory
format conversions (half, float, double) reduces the latency
of stages 2 - 4 to two clock cycles. Stages 5 - 6S send 128b
write requests to memory through a dedicated interface and
wait for the corresponding responses.

Load pipeline: data are loaded from memory 1L
through a 128-bit memory port interface, separate from the
interface of the store pipeline. Data in memory can be in
subnormal form, hence the data is normalized in two stages
2 - 3 . A similar fast path for the standard IEEE 754 memory

format conversions, permits to gain a clock cycle in stages
2 - 3 .

Fig. 4 details the 1L load stage. It masks the latency of
the out-of-order L1 cache by generating multiple outstand-
ing memory loads. For maximum memory bus utilization,
considering the average cache latency, this unit can support
up to 16 parallel 128-bit memory requests, with up to 8
parallel memory operations. This stage works with two
internal tables: the pending load table (PLT) 3 to keep track
of alive memory operations, and a table to store memory
responses 4 .

This unit receives the load address (addr), an identifier
for the memory operation (ID), and control signals (ctrl),
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Fig. 4: VPFPU load unit microarchitecture (1L in Fig. 3)

including the size of data in memory (BIS). For every new
operation, the allocator block 2 searches for space in the
memory response table 4 . If there is enough contiguous
space, it 2 updates the PLT 3 at the first free entry,
while the request generator 1 sends all the 128-bit memory
requests to the memory interface in a single burst. The PLT
stores among other things:

• the original instruction identifier (ID);
• the address in table 4 of the first chunk of the loaded

data (mch);
• the address offset (soff ) in case of misaligned memory

operations;
• and, the number of expected memory responses to end

the load operation (cnt).
Memory requests are associated to an 8-bit request

identifier (mem req.id). The first bit is used to distinguish
between load and store operations. Three more bits contain
the memory operation identifier, mid, pointing to the table
3 . The remaining four bits point to the destination chunk

in table 4 (moff ). Upon reception of a load response, the
data are written at the moff ’th entry of table 4 , and the
corresponding counter of table 3 is decremented. When
all responses have been received, the loaded data is output
through the window extractor unit 5 , which shifts and
masks the content of table 4 according to the mch, BIS,
and soff information. Finally, the entry of table 3 and the
blocks in table 4 are freed for the allocator.

4.2 Latency and Throughput
Fig. 5 depicts the latency and Instruction-Per-Cycle (IPC)
throughput of the previously described operators, obtained
by RTL simulation, in function of the number of 64-bit
chunks of inputs L, the Working Precision WP or precision
in memory. Since instruction performance depends on the
value of operands, a floating point inputs set that covers the
full range of operation latencies is fed to each unit. Latency
is measured with an empty pipeline, while throughput is
measured by continuously repeating the same operation
with constant operands. A zero-latency memory is con-
nected to the pLSU load-store unit and only aligned accesses
are issued 1.

We observe that:
• The performance varies greatly with operands and with

the computational precision. Addition, load and store
instructions have a linear dependency on precision,
while for multiplication the relation is quadratic.

• As discussed in previous section, the control flow in
the first stage (pLD) of each pipeline is optimized for
precision above 128 bits to reduce buffering. It results
in suboptimal IPC at less than 128 bits of precision,
mitigated by exploiting ILP in most real cases.

• The latency and throughput match the behaviour de-
scribed previously: fixed-point adder stages (including
during normalization) and the LSU iterate on 128-bit
chunks while the multiplier iterates on 64-bit chunks.

• The addition performance is not only dependent on
input and output precisions, but also depends on man-
tissa and exponent input values.

1. The impact of unaligned memory accesses is very low, variation is
limited to an additional clock cycle of latency.

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3383964

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7

128 256 384 512
Max(LA 64, LB 64, WP) (bits)

8

10

12

La
te

nc
y 

(c
yc

le
s) min

max

(a) Add latency in function of operand
sizes and desired result precision

0 10 20 30 40 50 60
LA LB (64-bit chunks 64-bit chunks)

0
10
20
30
40
50
60
70
80

La
te

nc
y 

(c
yc

le
s)

0 2 4 6 8

8
12
16
20

min
max

(b) Multiplication latency in function of
operand sizes

0 128 256 384 512
bis: Memory footprint (bits)

6

8

10

12

14

La
te

nc
y 

(c
yc

le
s)

Store
Load

Store (min)
Store (max)

(c) Load/store latency in function of
precision in memory

128 256 384 512
Max(LA 64, LB 64, WP) (bits)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le min max

(d) Add IPC in function of operand sizes
and desired result precision

0 10 20 30 40 50 60
LA LB (64-bit chunks 64-bit chunks)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le
1 2 3 4

0.3
0.4
0.5
0.6
0.7

min max

(e) Multiplication IPC in function of
operand sizes

0 128 256 384 512
bis: Memory footprint (bits)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le Load
Store

(f) Load/store IPC in function of preci-
sion in memory

Fig. 5: Latency of (a) add, (b) mul, (c) load and store instructions (empty pipeline). Instructions Per Cycle (IPC) of (d) add,
(e) mul, (f) load and store instructions. IPC is measured by injecting 1000 identical and consecutive instructions.

5 VPFPU INTEGRATION IN THE VRP CORE

We implemented the Xvpfloat ISA extension in the CVA6
RISC-V core and named this new core VRP. This core
has been integrated into a multi-core chip implemented in
7 nm technology. It will be seen that the area overhead is
reasonable (+66% compared to a CVA-6 without a FPU), and
there is no degradation in the operating frequency. The core
was also integrated into an FPGA platform for prototyping
and performance analysis. In this section, we describe both
these implementations.

5.1 Architecture

A VRP compute tile is made of multiple VRP cores. These
cores are interconnected via two different Network-on-
Chips (NoCs): a “memory” NoC and a “IO” NoC. The
former provides access to the main DRAM via the cache
hierarchy, and the latter handles IO peripheral accesses.

The memory NoC is a 512-bit wide AMBATM AXI inter-
connect, with an inverted binary tree topology, where the
leaves are the VRP cores, and the root is a bridge to the rest
of the system. The IO NoC is used for configuration and
peripheral access.

5.1.1 VRP Core

Each VRP core is a 64-bit, in-order, CVA6 RISC-V core
extended with support for the Xvpfloat instruction set exten-
sions (see Section 3). The core was configured to implement
two commit ports and a 16-entry scoreboard to account
for the variable and potentially high latency of Xvpfloat

instructions. The pipeline was modified as shown in Fig. 6,
to add support for these instructions.

In the original CVA6 core, functional unit results are
stored in the scoreboard and only written in the register files
in the commit stage. To avoid hazards, of particular concern
with the long, variable execution latency of the Xvpfloat
instructions, we used this existing scoreboard data-path
for environment registers updates by the PSER instruction.
However, to avoid storing full 538-bit P numbers in the
scoreboard, we used register renaming for the P register file
while reusing existing scoreboard fields to store renaming
metadata. Thus, the P register file has 64 physical entries,
two read ports and a single write port arbitrated at the
output of the VPFPU. The renaming table is implemented as
two tables, speculative and committed, to allow for single-
cycle rollback in the case of exceptions. The scoreboard en-
tries hold renaming metadata to properly compute hazards,
retain physical register usage and update the logical-to-
physical mapping at commit stage. In this way, the potential
hazards in the VPFPU are handled by the CVA6 scoreboard
using physical register dependencies.

Inside the VPFPU (see Fig. 6), each functional unit can
take multiple cycles (see Fig. 5) to process an instruction.
However multiple VPFPU functional units can operate in
parallel, improving the IPC. There is a single issue port for
all the functional units with a registered demux stage which
distributes instructions to the corresponding unit. At the
output of the functional units, there is an arbiter writing one
P-number per cycle to the VPFPU register file. As detailed
in Section 4, the VPFPU integrates a dedicated LSU (pLSU)
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to enable high-bandwidth to memory. This LSU supports
IEEE 754-2008 extendable formats and has a fast path for
half, standard and double precision floating point numbers.

5.1.2 VRP Cache Memories
Each VRP core implements private L1 instruction and data
caches. As the standard CVA6 data cache does not support
multiple outstanding misses and has a 64-bit data-bus, it is
not suited for high performance applications, thus we devel-
oped a new high-throughput data cache [11] which has been
open-sourced [34]. For the VRP, this data cache is configured
to be 32 KB in size, 4-way set-associative, with 64-byte
cache-lines and an internal 128 bit data-width to match the
VPFPU bus width. It also supports four independent affine
prefetchers and a 128-entry Miss Status Handling Register
(MSHR) which effectively mask memory latency. A typical
configuration was used for the instruction cache (16KB,
4-ways, 64-bytes cache-line, set-associative). Moreover, in
our implementation, the number of memory cuts has been
minimized to reduce area and routing congestion.

5.2 7nm FinFet Hardware Implementations

TABLE 3: Post-synthesis cell area breakdown of a single
VRP core in TSMC 7nm technology

Cell area (µm²)
Block Logic Registers SRAM Total %

Frontend 866.1 2100.4 0.0 2966.5 2.1
ID stage 81.2 161.1 0.0 242.4 0.2
Issue Stage 6382.4 5598.8 14726.0 26707.2 19.3

Ex
ec

ec
ut

e
St

ag
e

V
PF

PU

pADD 5524.8 4297.6 0.0 9822.4 7.1
pMUL 5014.1 3256.8 0.0 8270.9 6.0
pLSU 9566.5 6922.5 0.0 16489.0 11.9
pCMP 764.2 2543.5 0.0 3307.6 2.4
Misc 1783.1 1574.0 0.0 3357.1 2.4

Total (w/ ALU) 25199.9 21243.6 0.0 46443.5 33.5
L1 Cache 7595.9 8889.3 41772.3 58257.5 42.0
Commit Stage 74.1 0.0 0.0 74.1 0.1
Miscellaneous 1505.3 2422.3 0.0 3927.6 2.8

Total 41704.8 40415.6 56498.3 138618.7 100.0

Eight VRP cores are being integrated in a multi-core
HPC processor [35] implemented in TSMCTM 7 nm FinFet
technology. We present physical synthesis results for a single
VRP core implemented with Synopsys DesignCompilerTM
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Fig. 7: VRP post-synthesis placement

(version 2021.06-sp5) in topographical mode. Synthesis was
done with H300 HP standard cells using SVT and LVT in
a multi-Vt methodology and the ARMTM memory compiler
was used to generate SRAM macros.

The VPFPU register file has 2 read and 1 write ports and
was implemented by mirroring two dual-port SRAM writ-
ten in parallel (2×64×538 ≈ 69kb), achieving better density
compared to an implementation with flip-flops. The register
file is divided into banks and the banks containing mantissa
LSBs are clock-gated when not used, to save energy.

The design achieves a 1.25 GHz worst case frequency
(100ps of extra margin) at 0.675V and 0°C with a physical
area of 0.18 mm². The critical path in the VPFPU (in the
adder) is similar in length to the CVA6 one which lies in
the scoreboard. The floorplan of the VRP is shown in Fig. 7
and Table 3 gives the area breakdown of the main design
blocks for a total cell area of 138,618.7 µm². To put the area in
perspective, a similarly configured vanilla CVA6 supporting
the RV64GC ISA with the same L1 cache has a cell area
of 84,568 µm², showing that the integration of our 512-bit
VPFPU results in a 61% area increase.

Fig. 7 shows the post-synthesis placement with per-block
colouring. In this technology, the logic area is greater than
the memory area, but this will shift progressively as SRAM
is expected to scale slower in more advanced technology
nodes.
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Application
(executed on host or natively on the VRP)

VPFloatArray X(EXP_SZ, FRAC_SZ, Ndiag);
VPFloatComputingEnvironment::set_precision(precision); 
…
Nbiter = cg_vp(precision, Ndiag, X, A, B, tol);

// A*x = b
int cg_vp(int precision, int Ndiag, 

VPFloatArray & x, double *A, 
VPFloatArray b, double tolerance) {

VPFloat alpha (EXP_SZ, BIS_SZ, STRIDE_SZ);
…
while (relerror < tolerance) {

…
VBLAS::vgemv(precision, n, n, A, p_k, Ap_k, …)

// y = A*x, naive implementation
void VBLAS::vgemv(int precision, …){

pser_ec(precision, EC0); // compute precision
pser_evp(X.es(), X.fs(), EVP1); // memory precision
for (int i = 0; i < m; i++) {

pcvt_d_p(P24, 0); // acc = 0
for (int j = 0; j < n; j++) {

ple(P0, a_ptr, 0, EVP0); // A(m)(n)
ple(P1, x_ptr, 0, EVP1); // x(n)
pmul(P0, P0, P1, EC0); // A(m)(n)*x(n)
padd(P24, P24, P0, EC0); // acc += A(m)(n)*x(n)

Solver
(VPFloat software)

(V)BLAS routine
(C/assembly)

SW Emulation
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SW Emulation
(Spike)
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Fig. 8: VPSDK software stack architecture and code examples

6 SOFTWARE STACK

6.1 Execution Model and Assumptions

The VRP is primarily intended for intensive algebraic com-
putations. In a typical application such as finite element
calculations, extended precision comes into play during the
linear solving, which happens after domain decomposition
and matrix construction. This phase takes place at the com-
pute node level, as represented on Fig. 9, and this is where
numerical stability issues occur.

While the RISC-V core is able to execute the full applica-
tion stack, this is not currently a likely use model, as RISC-V
is not yet in mainstream use for HPC applications. The VRP
can instead be used as an accelerator in a x86/ARM host
on a separate board with offloading through PCIe using
DMA memory transfers. The application must then first
copy the data to the accelerator’s memory space, perform
the compute and copy back the results. Otherwise, the VRP
may be integrated on-chip with the application core where
it can directly access the data through the on-chip memory
hierarchy in a IO-coherent manner exploiting Shared Virtual
Memory (SVM). These differences are hidden from the user

Compute node: CPU cores + VRP accelerator

Compute node: CPU cores + VRP accelerator

Compute node cores + VRP 

Global 
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infrastructure 
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Compute node: CPU cores + VRP accelerator

Sub-problem
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Problem
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RISC-V 

CVA6 core

+ 512b VPFPU

Convergence

improved thanks to 

extended precision

Fig. 9: Problem mapping on a typical HPC infrastructure

by our software stack, shown in Fig. 8, and both offloading
modes are supported.

6.2 Application Programming Support
As shown in the code examples in Fig. 8, programmers can
exploit the VRP using the Variable Precision SDK (VPSDK),
which is a set of C++ classes supporting variable preci-
sion arithmetic. We used this VPSDK to implement sev-
eral iterative solvers, in particular the Conjugate Gradient
(CG) and its variants evaluated in Section 7. The VPSDK
provides both scalar and array types, and an Application
Programming Interface (API) for variable precision floating-
point numbers. Scalar computation is done through C++
operators overloading for the VPFloat type. We provide
support for extended precision BLAS level 1 (vector-vector)
and level 2 (vector-matrix), including support for dense and
sparse CSR/BCSR matrix formats derived from OSKI [36].
BLAS primitives have been partially hand coded in as-
sembly to avoid instruction dependencies and maximize
VPFPU utilization. A single BLAS implementation supports
all precisions and is fine-tuned according to worst case
operation latencies.

The VPSDK supports two execution targets: (i) the
Xvpfloat ISA executed by the VRP, (ii) a high-level MPFR-
based emulation layer, which is our golden reference. The
MPFR backend allows us to prototype and validate algo-
rithms on any Linux-supported hardware. Support for the
Xvpfloat ISA has also been added to the standard RISC-V
Spike model to provide low-level software emulation.

Finally, offloading from a host processor requires sup-
port for interrupts, peripheral drivers, memory allocation
and other C++ hooks. This is provided via a minimal bare-
metal runtime environment, running on the VRP.

7 EVALUATION

7.1 Experimental Setup
In order to both verify the RTL with a controlled environ-
ment and to run full numerical applications, we used two
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platforms: (i) an RTL simulation platform to obtain cycle-
accurate results, for developing the BLAS-level software and
for hardware validation, and (ii) a XilinxTM VCU128 FPGA
platform to execute numerical solvers on moderate size ma-
trices in acceptable time. On this FPGA platform, offloading
from a x86 host is done through PCIe. A multicore VRP
design reaches 90 MHz on this Virtex UltraScale+ XCVU37P
FPGA, each VRP core occupying about 172K LUTs (13%). A
64-bit load instruction takes 73 cycles on average (min 71,
max 109) in case of L1 cache miss, when placing code and
data in the 4GB DDR4 memory of the VCU128 board.

For simplicity, we chose to execute all software on a sin-
gle core, however, extrapolation to multicore performance
is straightforward, since the BLAS level functions can be
efficiently parallelized. To keep the focus on the VRP and to
prevent the memory system from being a bottleneck, we
have chosen to focus on dense matrices and to use our
affine hardware prefetcher which can effectively mask the
memory access latency. We therefore converted the subset
of matrices taken from the Florida sparse Matrix Collec-
tion [37], which were initially in sparse format, to a dense
representation.

To ensure that all the numeric results are correct, we
functionally validated all results, in terms of solver iteration
counts and the magnitude of residuals, against our MPFR
emulation layer. All solver results presented in this section
are cross-validated with this approach by running identical
application code on x86 hardware. For all following mea-
surements, we set in-memory exponent size of vectors to 11
bits, while 18 bits exponents are used internally.

7.2 Matrix-Vector Multiplication Throughput

We first evaluate the performance of matrix-vector multi-
plication (BLAS “GEMV” routine), which is where dense
linear solvers spend most of their time. Fig. 10 shows the
achievable number of Multiply-ACcumulate (MAC) oper-
ations per cycle for varying numerical precisions. The left
vertical axis shows the MAC per cycle when running BLAS
GEMV (y = Ax) and the IPC is shown on the right axis.

The double precision matrix (A) has a diagonal size of
1024. The horizontal axis represents total size in memory of
the variable precision vectors (operand x and result y). We
plot four different curves: MAC throughput and IPC, with
and without the hardware prefetcher (see Section 5.1.2).
Memory latency is fixed such as the execution of a 64-bit
load instruction resulting in a L1 cache miss takes 100 cycles
to complete.

The following observations can be made:
• The prefetching has a significant positive impact on per-

formance: we observe a up to 300% IPC increase when
enabled. Indeed, without prefetching, performance is
limited by the memory subsystem, thus all subsequent
results have prefetching enabled.

• The overall throughput is higher than combined IPC of
individual instructions. This shows that the interleav-
ing of functional units within the pipeline is effective.

• Since our core is in-order, the theoretical asymptotic
MAC throughput is 0.33 MAC/cycle within the GEMV
inner loop (load, multiply, add). In fact, the measure
ranges from 0.21 to 0.11, which reflects the effects of
less-than-ideal instruction scheduling and flow-control
instructions overhead at low precision. Increasing pre-
cision mitigates these effects and MAC throughput is
nearing the 0.125 IPC upper-bound of the multiplier at
512-bit precision (see Fig. 5e).

7.3 Execution of Linear Solvers
The significant metrics for measuring the impact of pre-
cision on linear kernels are (i) convergence speed, which
refers to the number of iterations necessary for reaching that
objective and (ii) execution time, measured in clock cycles,
which sums up both arithmetic processing and memory
access time.

Convergence is highly dependent on the data set (e.g.
matrix and vectors values). For solving linear problems
Ax=b with Krylov subspace methods, the condition num-
ber of matrix A and its eigenvalue structure are decisive
characteristics. Moreover, in all experiments hereafter, we
define the key parameter tolerance as the threshold for the
normalized residual value below which the algorithm is
considered successful and stops iterating. Conversely, if the
iteration count exceeds some fixed limit, the algorithm is
considered to diverge. In our experiments, we arbitrarily fix
the limit to five times the matrix diagonal size n. Also, by
default, the right-hand-side vector b has all its components
set to 1/

√
n.

7.3.1 Conjugate Gradient (CG) Solver on Pseudo-Random
Matrices
Iterative solvers are usually applied on large sparse matri-
ces. Nevertheless, dense matrices are not uncommon and
the case cannot be overlooked.

We generate random matrices with a refined version of
the “Randsvd” method from [38], which guarantees fixed
eigenvalue distributions and gives reproducible conver-
gence with CG kernels. Specifically, we use two distribu-
tions “cliff” (resp. “step”) which consist in three abutted
segments with arbitrary slopes 0.1; 10; 0.1 (resp. 10, 0.1, 10).

Fig. 11a (resp. 11b) represents normalized iteration count
(resp. cycle count) of the CG kernel running on a subset
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Fig. 11: Normalized iteration count and execution time for kernel CG, PCG and BiCG, using random matrices and matrices
from SuiteSparse collection

of matrices generated according to Ransvd method, using
“cliff” profile. Diagonal preconditioning does not work with
random matrices, therefore the evaluation runs the original
CG algorithm (as given in [39]). The first three curves show
execution of three different random matrices of 503, 907
and 1511 diagonal sizes with vectors of different precisions,
corresponding to different bit-sizes in memory. Inside the
register file, the actual computation precision is aligned
to the next 64-bit boundary, without negative performance
impact on performance. We adopt a challenging value toler-
ance,which we arbitrarily set to 10−12.

The CG results shown in Fig. 11 ( traces) suggest two
remarks:

• The effect of precision is decisive: the iteration count
decreases significantly with precision starting at 128
with an up to 79% reduction, and remains unchanged
for greater precisions.

• The cycle count “sweet spot” corresponds to 128-bit
precision.

7.3.2 Solvers on Benchmark Matrices
We have selected a subset of the Florida sparse Matrix
Collection [37], according to following criteria: we restrict
ourselves to real matrices, which may be symmetric (for
CG) or asymmetric (for BiConjugate Gradient); dense matrix
diagonal size is less than 4,000 in order to guarantee an
acceptable execution time on our prototyping platform. The
condition number is not limited and may go up to 1016 in
these examples.

We consider two commonly used linear algorithms:
Preconditioned Conjugate Gradient (PCG) and BiConjugate
Gradient (BiCG)2.

Preconditioned Conjugate Gradient: PCG is com-
monly used when matrix A is a symmetric positive definite
complex or real square matrix, which is usually the case for
the resolution of partial derivative equations.

Preconditioning is a very common technique used to
speed up the convergence of iterative solvers. We bench-
mark the simplest version, i.e. the Jacobi preconditioning

2. A more detailed description of the implementation of these algo-
rithms on VRP can be found in [39]

which only involves the diagonal of the system matrix A.
The method is exact in theory, but roundoff errors slow
down or even prevent convergence. Running the classical
algorithms with augmented precision limits the accumula-
tion of error, and lowers the number of iterations necessary
to attain the target tolerance.

The two PCG experiments shown in Fig. 11 ( traces) in-
volve SuiteSparse matrices. The absence of result, i.e. when
a part of the curve is missing, means that the run did not
converge. This figure highlights two opposite behaviours:

• When the matrix is “easy”, e.g. well structured and
well conditioned, preconditioning is very efficient and
augmenting precision is of little use. This is the case for
the strongly diagonally-dominant nasa2910 matrix.

• Preconditioning fails to bring convergence in double
format in other matrices, such as ex10. A vector preci-
sion of 384 bits is necessary for convergence and upping
it to 512 bits still brings some benefit in term of cycle
count.

BiConjugate Gradient: BiCG is quite similar to stan-
dard CG, but works for asymmetric matrices. As CG, its
memory cost is O(n) but with twice the number of vectors.
The behaviour of this algorithm is less known than CG,
and may be irregular. However, our experiments show the
benefits of augmenting precision even if not formally backed
with theoretical results as in the case of CG.

We display in Fig. 11 ( traces) the influence of precision
on the kernel iteration and cycle counts. Tolerance of the
BiCG solver is set to 10−12. These experiments show that
High (>128) precision is generally more beneficial to BiCG
convergence, compared to previous Conjugate Gradient
results. The best execution time on the VRP is reached
at higher precision of 192 to 384 bits depending on the
matrix. In other words, augmented precision alleviates the
well-known forward instability of BiCG, which becomes a
reliable and efficient tool for asymmetric problems.

All results presented here use the same tolerance. How-
ever, relaxing this parameter, i.e. using a larger value for
the residual threshold, naturally decreases the number of
iterations. It is our experience that the iteration count is less
sensitive to tolerance in higher precision.
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Fig. 12: Memory accesses modelling

7.4 Energy Benefits

The computation energy is dominated by memory ac-
cesses [40]. This is especially true for iterative linear solvers,
which display a low arithmetic intensity since they essen-
tially consist of vector-vector and matrix-vector operators.
Extending precision does not fundamentally alter this bal-
ance between memory and arithmetic operations, since:

• Multiplication energy grows as the product of the
precision of both operands. However, most multiplica-
tions in linear solvers are done between a 64-bit fixed-
precision operand and a variable precision operand,
making the energy increase linear.

• Addition energy grows linearly as the maximum preci-
sion of both operands.

• Energy of an access to external memory grows linearly
with precision.

• While the cache hit rate decreases when precision in-
creases, this is a second order effect that does not
significantly affect our observation. Below, we justify
this assumption analytically and with simulations.

Even considering the increase of energy needed to per-
form multiplications and additions, together with more
cache accesses and misses, these effects are marginal com-
pared to the energy consumed to access external memory.
Therefore, by reducing the number of linear solvers iter-
ations, extended precision actually reduces the energy-to-
solution. In the following analytical study, we focus on the
matrix-vector multiplication used in all these solvers, as it
dominates the execution time for dense matrices. We then
validate our analysis with memory hierarchy simulations
while running full solvers.

Analytical GEMV evaluation: y = Ax matrix-vector
multiplication requires N2 64 bits processor loads to fetch a
N ×N dense matrix A and a fraction N2

β of vector x loads
(β represents the register blocking factor). As the matrix is
generally too large to fit in on-chip caches, it is streamed
from memory during each matrix-vector multiplication. On
the contrary, the vector may fit in the on-chip caches and
is then fetched only once from memory resulting in O(N)
external memory accesses. If not, software blocking of the

matrix-vector multiplication can be employed, so that most
of these variable precision accesses are served by on-chip
caches with a high hit rate.

Given Pv the vector precision, the number of
external 64-bit memory accesses to the vectors is
about V P mem read = vec miss rate(Pv)

β · N2, where
vec miss rate(Pv) is the relationship between the
on-chip cache miss rate and precision. We expect
vec miss rate(Pv)

β � 1 for considered precisions as on-chip
caches of current machines can reach tens of megabytes.
Additionally, V P mem write = Pv

64 · N 64-bit memory
writes occur to save the y result vector. Thus total 64-bit
memory accesses, including matrix streaming, is roughly
independent of vector precision:

mem rw ≈ ((1+
vec miss rate(Pv)

β
) ·N2+

Pv
64
·N) ≈ N2

Solver memory accesses simulation: We illustrate
the previous analysis in Fig. 12a where we simulated the
execution of a single conjugate gradient iteration on a
16384×16384 matrix with a blocked GEMV implementation.
A 256kB write-back and write-allocate Last-Level Cache
(LLC) is connected at the output of the VRP to emulate a
realistic memory hierarchy. We can conclude that:

• While all kinds of cache accesses grow linearly with the
precision, the number of external memory reads (solid
blue in Fig. 12a around 1.7× 1010 bits) is independent
of the vector precision and consistent with our previous
calculus (N2 × 64 = 1.7 × 1010). As these external
memory reads are numerous, and are energy-hungry
with respect to cache accesses, they account for most of
the energy consumption [40].

• When taking into account the full execution of solvers
on benchmark matrices, as shown in Fig. 12b, total
memory accesses are reduced significantly with higher
precision. The benefit of reducing the number of iter-
ations by increasing precision, as seen in Section 7.3,
thus directly translates to proportionally less energy
consumed to obtain the solution.

We have cross-validated these modeling results by counting
memory read requests on our FPGA platform and observe
fewer requests as the iteration count is reduced at higher
precision. The measured reductions are consistent with our
simulation results when accounting for implementation dif-
ferences.

Extension of this analysis to sparse matrix-vector multi-
plication (and solvers) would require more refined memory
and energy models to take into account the variety of sparse
matrix structures: number of non-zero elements per line,
temporal and spatial locality.

8 CONCLUSION AND FUTURE WORKS

We propose Xvpfloat, a RISC-V extended precision ISA ex-
tension, and a hardware implementation based on the CVA6
64-bit RISC-V core in an ASIC in TSMC 7 nm technology. We
show that the hardware overhead of this implementation is
limited (61% increase over a vanilla CVA6 core), primar-
ily due to the chunk-based mantissa processing. By using
multiple pipelines, the IPC is improved and the impact

This article has been accepted for publication in IEEE Transactions on Computers. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TC.2024.3383964

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



13

of extended precision on the dense matrix-vector multi-
plication throughput is reduced. We have demonstrated
that hardware-accelerated augmented precision is beneficial
for linear solvers: it reduces both the iteration and cycle
counts for matrices that already converged with 64-bit pre-
cision, and more importantly, it makes it possible to find
solutions for problems that would not otherwise converge.
We believe that increasing precision of computation can
improve energy efficiency of solvers due to the accelerated
convergence. In addition, we developed a software integra-
tion scheme which facilitates implementing legacy scientific
computing with extended precision.

Future work will focus on improving our support
for sparse datasets. This includes optimizing our current
prefetcher and memory system, and improving multiplica-
tion throughput at high precision. We also plan to study pre-
cision beyond 512 bits, which may benefit some problems or
applications.

Currently, a large fraction of the compute time on super-
computers is dedicated to mitigating numeric stability is-
sues, and we have shown that effective hardware accelera-
tion for extended precision results in lower time to solution
and lower energy consumption.
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[8] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann,
“MPFR: A multiple-precision binary floating-point library with
correct rounding,” ACM Trans. Math. Softw., vol. 33, no. 2, Jun.
2007. doi: 10.1145/1236463.1236468

[9] GCC contributors, “GCC libquadmath,” https://gcc.gnu.org/
onlinedocs/libquadmath/.

[10] F. Zaruba and L. Benini, “The Cost of Application-Class Process-
ing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz
64-Bit RISC-V Core in 22-nm FDSOI Technology,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11,
pp. 2629–2640, Jul. 2019. doi: 10.1109/TVLSI.2019.2926114

[11] C. Fuguet, “HPDcache: Open-source high-performance L1 data
cache for RISC-V cores,” 20th ACM International Conference
on Computing Frontiers, p. 385, May 2023. [Online]. Available:
https://hal-cea.archives-ouvertes.fr/cea-04110679

[12] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Englewood
Cliffs: Prentice-Hall, 1964.

[13] M. S. Cohen, T. E. Hull, and V. C. Hamacher, “CADAC: A
controlled-precision decimal arithmetic unit,” IEEE Transactions on
Computers, vol. C-32, pp. 370–377, Apr. 1983. doi: 10.1109/TC.1983.
1676238

[14] T. Carter, “Cascade: hardware for high/variable precision arith-
metic,” in Proceedings of 9th Symposium on Computer Arithmetic
(ARITH), Sep. 1989. doi: 10.1109/ARITH.1989.72825 pp. 184–191.

[15] R. Parthasarathi, E. Raman, K. Sankaranarayanan, and L. Chakra-
pani, “A reconfigurable co-processor for variable long preci-
sion arithmetic using indian algorithms,” in The 9th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’01), 2001. doi: 10.1109/fccm.2001.5 pp. 71–80.

[16] C. Lichtenau, S. Carlough, and S. M. Mueller, “Quad precision
floating point on the ibm z13,” in IEEE 23nd Symposium on Com-
puter Arithmetic (ARITH), Jul. 2016. doi: 10.1109/ARITH.2016.26
pp. 87–94.

[17] Y. Lei, Y. Dou, J. Zhou, and S. Wang, “VPFPAP: A special-purpose
VLIW processor for variable-precision floating-point arithmetic,”
in 21st International Conference on Field Programmable Logic and
Applications, Sep. 2011. doi: 10.1109/FPL.2011.51 pp. 252–257.

[18] F. Glaser, S. Mach, A. Rahimi, F. K. Gurkaynak, Q. Huang, and
L. Benini, “An 826 MOPS, 210uW/MHz Unum ALU in 65 nm,” in
Proceedings - IEEE International Symposium on Circuits and Systems.
Institute of Electrical and Electronics Engineers Inc., May 2018.
doi: 10.1109/ISCAS.2018.8351546

[19] A. Bocco, Y. Durand, and F. De Dinechin, “SMURF: Scalar
multiple-precision Unum RISC-V floating-point accelerator for
scientific computing,” in Proceedings of the Conference for Next
Generation Arithmetic 2019, ser. CoNGA’19, Mar. 2019. doi: 10.1145/
3316279.3316280
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