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Abstract. A regime of coexistence of asynchronous and clustered dynamics is

analyzed for globally coupled homogeneous and heterogeneous inhibitory networks of

quadratic integrate-and-fire (QIF) neurons subject to Gaussian noise. The analysis is

based on accurate extensive simulations and complemented by a mean-field description

in terms of low-dimensional next generation neural mass models for heterogeneously

distributed synaptic couplings. The asynchronous regime is observable at low noise

and becomes unstable via a sub-critical Hopf bifurcation at sufficiently large noise.

This gives rise to a coexistence region between the asynchronous and the clustered

regime. The clustered phase is characterized by population bursts in the γ-range (30-

120 Hz), where neurons are split in two equally populated clusters firing in alternation.

This clustering behaviour is quite peculiar: despite the global activity being essentially

periodic, single neurons display switching between the two clusters due to heterogeneity

and/or noise.

Keywords: Spiking neural networks, inhibition, noise, neural mass model,

quadratic integrate-and-fire neuron, asynchronous dynamics, cluster synchronization,

γ-oscillations
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1. Introduction

Since the pioneering studies of Winfree synchronization phenomena in biological

populations are usually addressed in the context of coupled oscillators [1]:

synchronization is associated to the emergence of an unique group of oscillators

displaying a coherent dynamics [2]. Besides this phenomenology, one can observe

also clustering phenomena, where the population breaks down in groups of elements

displaying some sort of coherent evolution [3].

A paradigmatic complex system where these phenomena have been largely

investigated are brain circuits. In this framework synchronization among a group of

neurons can induce the emergences of collective oscillations (COs) [4, 5]. In this context,

the existence of inhibitory interactions is fundamental in order to promote fast collective

oscillatory behaviours in several areas of the brain, in particular in the hippocampus

and the neocortex [6, 7].

In real systems, and in particular in brain circuits, noise is unavoidable, therefore

many analyses have been devoted to its influence on coherent dynamics. In particular,

a common noise source can induce synchronization and clustering phenomena, as shown

for globally coupled or even uncoupled limit-cycle oscillators [8, 9, 10, 11]. This peculiar

synchronization induced by common noise is referred in neurophysiology as “reliability”

[12].

But also for the case of independent noise, clustering phenonema have been reported

for heterogenous excitable systems with random coupling strenghts for sufficiently broad

distributions of the couplings [13]. Furthermore, clustering instabilities have been shown

to affect the synchronized regime in homogeneous inhibitory networks of spiking neurons

subject to additive noise [5].

In this paper, we analyze in details the role of noise in promoting a regime of

coexistence among clustered and asynchronous dynamics in spiking neural networks.

This is a particularly relevant regime, since brain dynamics in the awake state is typically

characterized by an asynchronous activity of the neurons. However, oscillations in the

γ-range (30-120 Hz) can occasionally emerge in relation with information processing,

behaviour and learning [14, 15, 16, 17]. In particular, we consider an inhibitory spiking

neural network of quadratic integrate-and-fire (QIF) neurons [18] subject to Gaussian

noise. The QIF model is quite general, since it represents the normal form describing the

dynamics of all class I neurons in proximity to a saddle-node on a limit cycle bifurcation

[19]. Furthermore, for heterogenous QIF networks exact low-dimensional mean-field

(neural mass) models can be derived in terms of experimentally measurable quantities

such as the population firing rate and the average membrane potential [20]. Recently,

this approach has been extended to encompass extrinsic and endogenous sources of

fluctuations (noise) leading to a hierarchy of low-dimensional neural mass models [21].

For his innovation with respect to classical neural mass models (e.g. the Wilson-Cowan

one) this class of mean-field models has been termed next generation neural mass models

(for the many possible applications in neural dynamics see [22]).
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We will combine this mean-field analysis with accurate numerical simulations

[23] to characterize at a macroscopic and microscopic level the coexisting dynamical

regimes, as well as the stability of the asynchronous regime and the bifurcations

associated to the emergence of the clustered state. To be more specific, the paper

is organised as follows. Section 2 is devoted to the introduction of the QIF network

model and the corresponding mean-field reduction methodology. The macroscopic and

microscopic indicators employed to characterize the coherence and regularity of the

neuronal dynamics are presented in Subsection 2.3 together with a new stability criterion

for the asynchronous state in finite networks inspired by the basin stability analysis [24].

The linear stability of the neural mass models is analytically evaluated in Section 3 for

Gaussian and Lorentzian noise. The asynchronous and clustered dynamics are examined

in details for heterogenous synaptic couplings in Subsection 4.1 by combining accurate

network simulations and neural mass results. The investigation is extended in Subsection

4.2 to homogenous couplings but relying only on network simulations. Spectral analysis

of the collective oscillations is reported in Subsection 4.3 and a brief summary of the

obtained results can be found in Section 5. Finally, Appendix A reports details on the

numerical simulations, while Appendix B is devoted to the introduction of a criterion

to select the optimal integration time step in noisy systems.

2. Models and indicators

2.1. Network Model

We consider an inhibitory population of N globally coupled QIF neurons [25], whose

membrane potential evolution is described by the following set of equations

V̇i = V 2
i + ηi +

Ji
N

N∑
j=1

∑
n

δ(t− t
(n)
j ) +

√
2σξi(t) i = 1, . . . , N (1)

where Vi is the membrane potential of the i-th neuron, Ji < 0 the inhibitory synaptic

coupling strenght and ηi the neuronal excitability. Whenever a membrane potential Vj

reaches infinity a spike is emitted and Vj is reset to −∞. The n-th spike-time of neuron

j is denoted by t
(n)
j .

Each neuron is subject to a common synaptic current Jis(t), where

s(t) =
1

N

N∑
j=1

∑
n

δ(t− t
(n)
j ) (2)

represents the activity of the network, as well as to an independent noise term of

amplitude
√
2σ, where ξi(t) is a random Gaussian variable with ⟨ξi(t)ξj(0)⟩ = δijδ(t).

In the absence of synaptic couplings and of external noise, a QIF neuron displays

excitable dynamics for ηi < 0, while it behaves as an oscillator with period Ti = π/
√
ηi

for positive ηi. For sake of simplicity we will assume homogenous excitabilities, by fixing

ηi = η0 = 4.2, thus all the uncoupled neurons will be supra-threshold.
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In the following we will consider either heterogeneous quenched random couplings

following a Lorentzian distribution (LD)

h(Ji) =
1

π

∆J

(Ji − J0)2 +∆2
J

(3)

or homogeneous couplings Ji ≡ J0.

In order to characterize the macroscopic behaviour of the network two indicators

will be essential to allow for a comparison with the mean-field formulation reported in

the next Subsection. One is the mean network activity s(t) (2) and the other the mean

membrane potential, defined as follows

v(t) =
1

N

N∑
i=1

Vi(t) . (4)

The identification of the spike-times is subject to some finite thresholding and the

numerical integration of the set of stochastic differential equations Eq. (1) is explained

in details in Appendix A. The model is dimensionless, however to report the times

(frequencies) in physical units, we will assume as a timescale for our dynamics τm = 10

ms, corresponding to the membrane time constant.

2.2. Next Generation Neural Mass Model

In the recent years, it has been shown that an exact low-dimensional mean-field

formulation can be developed for fully coupled networks of heterogeneous QIF neurons,

with Lorentzian distributed heterogeneities [26, 27, 20]. This mean-field (neural mass)

model describes the macroscopic dynamics of the network in the limit N → ∞ in

terms of the mean membrane potential v (4) and the population firing rate r, which

corresponds to the network activity s(t) (2). The main assumption of this approach is

that the distribution of the membrane potentials is also Lorentzian at any time [20].

This Lorentzian Ansatz (LA) is violated if the neurons are randomly connected

and/or in presence of noise. These more general cases can be treated by introducing

a hierarchy of neural mass models taking in account the distortions to the LD of the

membrane potentials [21]. Here we will briefly report the main steps to derive such

mean-field formulation in the case of fully coupled inhibitory network of QIF neurons

subject to additive noise.

In full generality, we can assume that both parameters ηi (Ji) are distributed

according to a LD g(η) (h(J)) with median η0 (J0) and half width at half maximum

(HWHM) ∆η (∆J). In the thermodynamic limit, the network dynamics Eq. (1) can

be characterized in terms of the probability density function (PDF) p(V, t|x) with

x = (η, J), which obeys the following Fokker–Planck equation (FPE):

∂tp(V, t|x) + ∂V

[
(V 2 + Ix)p(V, t|x)

]
= σ2∂2

V p(V, t|x), (5)
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where Ix ≡ η+ Jr(t). In Ref. [20] the authors assumed that in the absence of noise the

solution of Eq. (5) converges to a LD for any initial PDF p(V, 0|x), i.e., it becomes

p(V, t|x) = ax
[π(a2x + (V − vx)2)]

, (6)

where vx is the mean membrane potential and

rx(t) = lim
V→∞

V 2p(V, t|x) = ax
π

(7)

is the firing rate for the x-subpopulation. The above LA joined with the assumption

that the parameters η and J are independent and Lorentzian distributed lead to

the derivation of exact low-dimensional neural mass models for globally coupled

deterministic QIF networks [20].

Following what was done in [20] and extending it to noisy systems [21], one can

introduce the characteristic function for Vx, i.e. the Fourier transform of its PDF,

namely

Fx(k) = ⟨eikVx⟩ = P.V.

∫ +∞

−∞
eikVxp(Vx, t|x)dVx , (8)

where P.V. indicates the Cauchy principal value. In this framework the FPE Eq. (5)

can be rewritten as

∂tFx = ik[IxFx − ∂2
kFx]− σ2k2Fx . (9)

Under the assumption that Fx(k, t) is an analytic function of the parameters x one can

estimate the characteristic function averaged over the heterogenous population

F (k, t) =

∫
dη

∫
dJFx(k, t)g(η)h(J)

and via the residue theorem the corresponding FPE, namely

∂tF = ik
[
H0F − ∂2

kF
]
− |k|D0F − σ2k2F ; (10)

where H0 = η0 + J0r and D0 = ∆η +∆Jr.

For the logarithm of the characteristic function, Φ(k, t) = ln(F (k, t)), one obtains

the evolution equation

∂tΦ = ik[H0 − ∂2
kΦ− (∂kΦ)

2]− |k|D0 − σ2k2 . (11)

In this context the LA amounts to ΦL = ikv−a|k|. By substituting ΦL in Eq. (11)

for σ = 0 one gets

v̇ = H0 + v2 − a2, ȧ = 2av +D0 , (12)

which coincides with the two dimensional exact MF reported in [20] with r = a/π.

In order to consider deviations from the LD, the authors of Ref. [21] analysed the

following general polynomial form for Φ

Φ = −a|k|+ ikv −
∞∑
n=2

qn|k|n + ipn|k|n−1k

n
. (13)
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and introduced the notion of complex pseudo-cumulants, defined as follows

W1 ≡ a− iv , Wn ≡ qn + ipn . (14)

By inserting the expansion Eq. (13) in the Eq. (11) one gets the evolution equations for

the pseudo-cumulants, namely:

Ẇm = (D0 − iH0)δ1m + 2σ2δ2m + im
(
−mWm+1 +

∑m

n=1
WnWm+1−n

)
, (15)

where δij is the Kronecker delta function and for simplicity we assumed k > 0. It

is important to notice that the time-evolution of Wm depends only on the pseudo-

cumulants up to the order m+ 1, therefore the hierarchy of equations can be easily

truncated at the m-th order by setting Wm+1 = 0. As shown in Ref. [21] the modulus

of the pseudo-cumulants scales as |Wm| ∝ σ2(m−1) with the noise amplitude, therefore

it is justified to consider an expansion limited to the first few pseudo-cumulants.

In this paper, we will consider (15) up to the third order to obtain the corresponding

neural mass model, i.e.

ṙ = 2rv + (∆η +∆Jr + p2)π
−1 (16a)

v̇ = η0 + J0r − π2r2 + v2 + q2 (16b)

q̇2 = 2σ2 + 4(p3 + q2v − πp2r) (16c)

ṗ2 = 4(−q3 + πq2r + p2v) (16d)

q̇3 = 6(q3v − πrp3 − q2p2) (16e)

ṗ3 = 6(πrq3 + p3v) + 3(q22 − p22) , (16f)

with the closure p4 = q4 = 0. The macroscopic variables r and v represent the population

firing rate and the mean membrane potential, while the terms q2, p2, q3, p3 take in account

the dynamical modification of the PDF of the membrane potentials with respect to a

Lorentzian profile. Besides the third-order neural mass models, we will also consider the

second-order one, which can simply be obtained by considering Eqs. (16a,16b,16c,16d)

by setting q3 = p3 ≡ 0

Since Eq. (16) is a set of deterministic ordinary differential equations, one can use

standard numerical methods to integrate them. In particular, we employed a 4th order

Runge-Kutta method [28]. The neural mass results will be compared with network

simulations in the following and employed to initialize the network in an asynchronous

state (see, e.g., Section 2.3.2 and Appendix B).

2.3. Indicators

2.3.1. Macroscopic Indicators The evolution of the membrane potential of a neuron, in

particular in the supra-threshold regime, can be interpreted as the rotation of the phase

of an oscillator and many models have been derived by employing such an analogy.

In terms of these phases the level of synchronization of the oscillators (neurons) can
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be measured in terms of macroscopic order parameters that we will introduce in the

following.

For the QIF model, the membrane potential Vi of the i-th neuron is usually mapped

in the phase θi of an oscillator via the following transformation

θi = 2arctan (Vi) θi ∈ [−π : π) , (17)

that leads from the QIF network Eq. (1) to the equivalent θ-neuron network [18]:

θ̇i = (1− cos(θi)) + (1 + cos(θi)

(
ηi +

Ji
N

N∑
i=1

∑
n

δ(t− t
(n)
j ) +

√
2σξi(t)

)
. (18)

Unfortunately, the distribution of the phases P (θi) is not uniform even for uncoupled

neurons, since P (θi) ∝ 1/θ̇i. This can therefore lead to apparent synchronization

phenomena in the θ-space in noisy enviroments [29, 30].

In order to avoid such a problem, the phase θi of the i-th neuron at a certain time

t can be obtained simply by interpolating linearly between the previous and the next

spike time of the considered neuron, as follows

θi(t) := 2π
t− t

(n)
i

t
(n+1)
i − t

(n)
i

− π with t
(n)
i ≤ t < t

(n+1)
i . (19)

where t
(n)
i is the time at which the n-th spike is emitted by i-th neuron.

Now that the phases have been defined, we can introduce suitable order parameters

to measure the level of phase synchronization in the network [31, 32, 33, 34, 35], in

particular we consider the so-called Kuramoto-Daido order parameters

Zk = zke
iΨk =

∑N
n=1 e

ikθn

N
, (20)

where Zk is a complex number and zk and Ψk are the corresponding modulus and phase.

For k = 1 the usual Kuramoto order parameter [31] is recovered. For a network of N

oscillators one expects z1 ≃ O(1/
√
N) in the asynchronous regime and z1 will be finite

(one) for a partially (fully) synchronized state. Unfortunately, z1 is also exactly zero

when the oscillators are equally divided in 2 perfectly synchronized clusters in anti-phase.

To characterize regimes presenting k clusters, Daido [32] introduced the parameters Zk.

Indeed, zk will be one whenever the system presents k clusters equally spaced in phase

and equally populated, while zk will approach zero for a sufficiently large network if the

phases are evenly distributed over the whole interval.

To denote that the order parameters are estimated by employing the phases defined

in terms of the the spiking times as in Eq. (19) we will use a super-script (s), while the

lack of a super-script will denote the use of the phases defined as in Eq. (17).

In the mean-field framework previously introduced in Section 2.2, Zk can be

obtained as follows [36]

Zk = zke
iΨk =

(
1− W2

2
(∂W1)

2 +
W3

3
(∂W1)

3 +
W 2

2

8
(∂W1)

4 + . . .

)(
1−W1

1 +W1

)k

. (21)
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Note that the corrections obtained from the higher order pseudo cumulants Wj, i.e.

with j > 3, should be negligible. In absence of noise and for the usual Kuramoto order

parameter Z1 this reduces to the following conformal transformation

Z1 =
1−W1

1 +W1

, (22)

as shown in Ref. [20].

Another macroscopic indicator able to distinguish asynchronous regimes from

oscillatory ones characterized by a partial synchrony of the neurons is the variance

Σv of the mean membrane potential v estimated over a certain time window TW . This

quantity is expected to be vanishing small Σv ≃ O(1/
√
N) in the asynchronous regime

and finite whenever COs are present.

In order to identify the asynchronous and partially synchronized regime, since these

are characterized by definitely different values of Σv, we can define a threshold value

Sθ and whenever Σv < Sθ (Σv ≥ Sθ) the dynamics will be identified as asynchronous

(partially synchronized). The threshold value Sθ is usually chosen as the mean of the

values measured in the asynchronous and partially synchronized regimes, however the

identification of the regimes is quite insensitive to the exact value of Sθ.

Also the Kuramoto-Daido order parameter can be employed for this discrimination,

and as we will see in the following for the examined dynamics the most suitable indicator

will be zs2.

2.3.2. Stability Criterion The considered model exhibits in a certain parameter

interval a region of coexistence of two different dynamical regimes: an asynchronous and

a partially synchronous one. Our goal is to quantify the stability of the asynchronous

regime for the finite network by varying the noise intensity. Therefore, we have

introduced the following criterion inspired by the basin stability criterion [24], which

has been applied in many different contexts [37, 38, 39, 40, 41].

The main idea is to consider a solution of a system, perturb this solution several

times with a magnitude that is given by a parameter and let the dynamics evolve each

time. Then one measures the fraction of how often the system evolves back to a desired

solution. Here, we proceed as follows: we initialize the values of the membrane potentials

{Vi} according to

Vi = tan

(
π

2

(2i−N − 1)

N + 1

)
γ∆V + V0 i = {1, 2, . . . , N} , (23)

with V0 = v∗ and ∆V = πr∗, where (v∗, r∗) are the fixed point solution of the third-

order neural mass model Eq. (16). Note that for γ = 1 Eq. (23) will result in the

Lorentzian distribution that is expected for an asynchronous regime at equilibrium,

while the extreme case γ = 0 fixes all the membrane potentials Vi ≡ V0, i.e., it results

in a fully synchronized initial state.

For different values of the parameter γ ≤ 1 we simulate the system for a time Tt,

after which we verify whether the systems is asynchronous or partially synchronized.
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For each value of γ we repeat this procedure M times for different noise realizations

and count how many times Mc the system exhibits its asynchronous state after the

integration time Tt. Thus, we can measure the stability of the asynchronous state of the

chosen configuration via the following indicator

ρ =
Mc

M
. (24)

A completely stable (unstable) asynchronous regime will correspond to ρ = 1 (ρ = 0)

for any value of γ. However, in general ρ will be a function of γ. In the bistable regime,

by decreasing the γ value one will eventually observe a transition towards the partially

synchronized regime. Thus, the value of γ where this “transition” happens is a measure

of the stability of the bistable system.

2.3.3. Characterization of irregular spiking As we will show in the following, the

partially synchronized state is characterized by two clusters of neurons firing in anti-

phase. Furthermore, the neurons in each cluster do not remain in the same cluster over

long time periods. Instead they tend to switch from one cluster to the other, despite

the collective dynamics being always characterized by two clusters of neurons firing

in alternation. Therefore the usual behavior for a neuron is to fire in correspondence

with every second neuronal burst, but with irregularities in this repetition. We want to

introduce a measure of these irregularities in the sequence of spikes of the neurons.

In order to develop this measure we store the sets S = [s1 = (t1, i1), s2 =

(t2, i2), s3 = . . .] of firing times and firing neurons in the network for a certain time

interval, where tj is the firing time and ij ∈ [1, . . . , N ], the index of the firing neuron.

Moreover, we also store the bursting times bk at which the neuronal bursts occur. These

are identified by the maxima in the population firing rate r. As a convention we define

the burst k as the collection of all the spiking events occurring within the time interval

Bk =

[
bk−1 + bk

2
,
bk + bk+1

2

)
. (25)

thus the spike sm is emitted within the burst k if tm ∈ Bk.

The regular behavior for a 2 cluster state would be that a neuron, which fires within

the burst k, would emit its next spike within the burst k + 2. To analyze the eventual

irregularity of the individual neurons we create a ordered list Ki = {k(i)
m } reporting

the bursts within which the considered neuron i has fired during the observation time

interval T . The first two bursts k = 0 and k = 1 are employed to identify if the neuron

belongs to the first or second cluster, i.e. k
(i)
0 = 1 (k

(i)
0 = 0) if the spike of neuron i

occurred within B1 (B0). Then, for each neuron we introduce a counter Ei of “early

spikes” in the following way: We go through the list Ki of bursts to which neuron i has

contributed and we increment Ei by one each time k
(i)
n+1 − k

(i)
n < 2. If we had a total of

B bursts in the considered time interval T , then the fraction of spikes that have been

emitted too early by the neuron i is

λE
i =

Ei

B
. (26)
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In particular if a neuron would fire during each burst we will have λE
i = 1.

Similarly, the fraction of “late delivered spikes” can be calculated by using a second

counter Li that is incremented by one each time k
(i)
n+1 − k

(i)
n > 2, which leads to define

the following fraction of late spiking neurons

λL
i =

Li

B
. (27)

Note that λL
i ≤ 1

3
due to its definition, since the counter is incremented whenever

k
(i)
n+1 − k

(i)
n is at least 3.

In summary, the percentage of times the spikes occur outside of the expected time-

frames, i.e., the percentage of irregular spikes, is

λi =
Ei + Li

B
= λL

i + λE
i (28)

The number of neurons for which λi = 0 until the time t define the surviving

neurons, i.e., those which fire regularly every 2 bursts as expected. The fraction of

surviving neurons S(t) until the time t can be defined as

S(t) =

∑
i∈N δ0,λi(t)

N
, (29)

where δ is the Kronecker delta, and N is the number of non-silent neurons. The silent

neurons should be removed from the count, since one always has λi = 0 for those

neurons: a neuron that never spikes obviously does not have any associated spike time

in an unexpected time interval. For our analysis we considered T = 55 s.

The survival probability S(t) is usually defined as [42] :

S(t) = 1− F (t) ;

where F (t) =
∫ t

0
f(t′)dt′ is the cumulative distribution function and f(t) the PDF of the

neuronal survival times, i.e., the time until which the considered neuron fires regularly

once every two bursts.

3. Linear stability analysis of the asynchronous state

In this Section we analyse the stability of the asynchronous regimes within the neural

mass formulation. For the neural mass model Eq. (16), the asynchronous states

correspond to fixed point solutions (r∗, v∗, q∗2, p
∗
2, q

∗
3, p

∗
3). In particular, we will study

the stability of these solutions by considering the linearization of Eq. (16) in proximity

of the considered fixed points, namely

δṙ = 2(v∗δr + r∗δv) + (∆Jδr + δp2)π
−1 (30a)

δv̇ = (J0 − 2π2r∗)δr + 2v∗δv + δq2 (30b)

δq̇2 = 4(δp3 + q∗2δv + v∗δq2 − πp∗2δr − πr∗δp2) (30c)

δṗ2 = 4(−δq3 + πq∗2δr + πr∗δq2 + p∗2δv + v∗δp2) (30d)

δq̇3 = 6(q∗3δv + v∗δq3 − πr∗δp3 − πp∗3δr − q∗2δp2 − p∗2δq2) (30e)

δṗ3 = 6(πr∗δq3 + πq∗3δr + p∗3δv + v∗δp3 + q∗2δq2 − p∗2δp2) . (30f)
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3.1. Deterministic Case

Let us start from the case in absence of noise. In this case the mean-field equations

reduce to the exact formulation reported in [20]

ṙ = 2rv + (∆η +∆Jr)π
−1 and v̇ = η0 + J0r − π2r2 + v2 . (31)

The fixed point solutions can be obtained by solving the following equations

v∗ = − ∆η

2πr∗
− ∆J

2π
(32)

π2(r∗)4 − J0(r
∗)3 −

(
η0 +

∆2
J

4π2

)
(r∗)2 − 2

∆J∆η

4π2
r∗ −

∆2
η

4π2
= 0 (33)

for the parameter values considered in this paper, namely inhibitory coupling J0 = −20,

η0 = 4.2 and ∆J = 0.02 and 0 ≤ ∆η ≤ 0.30 the system exhibits 2 complex conjugate

and 2 real solutions. Among the real ones only one corresponds to a positive firing rate

r∗ and is therefore physically acceptable.

The stability of such a solution can be obtained by analysing the linear evolution

(δr(t), δv(t)) = eλt(δr(0), δv(0)) in proximity of the physical fixed point solutions

(r∗, v∗). This amounts to solving second order characteristic equations for the eigenvalue

problem associated to Eq. (30) with p2 = q2 = p3 = q3 = 0, which gives the following

result

λ± =

(
2v∗ +

∆J

2π

)
±
√

2J0r∗ − 4π2(r∗)2 +
∆2

J

4π2
. (34)

For the chosen values of the parameters the square root in Eq. (34) is always purely

imaginary. Therefore the fixed point is a focus and, when inserting Eq. (32), the real

part of the eigenvalues is simply given by

Reλ = −∆η

πr∗
− ∆J

2π
. (35)

The focus is always stable, apart from the fully homogenous situation ∆η = ∆J = 0

in which case it becomes marginally stable. The heterogeneities tend to stabilize the

focus solutions. Therefore, even in the case of homogeneous coupling ∆J = 0, a small

heterogeneity in the excitabilities measured by ∆η is sufficient to render the fixed point

stable. This can later be seen for σ = 0 in Fig. 2.

3.2. Gaussian Noise

In presence of additive Gaussian noise of amplitude σ, we always observe a stable focus

for sufficiently small σ. The effect of noise is an increase of the value of the firing rate

r∗(σ) with respect to the case in absence of noise r∗(0). In particular, the correction to

the deterministic solution can be written as r∗(σ) ≃ r∗(σ) + aσα.

For ∆η = 0 and the parameters usually employed in this analysis one obtains

α ≃ 2.5 for the 2nd-order neural mass model, while the growth is even faster for the

third-order model with α ≃ 2.7, as evident from Fig. 1 (a).
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To analyze the stability of the fixed points we have identified the corresponding

eigenvalues by solving the associated characteristic polynomial, that can be of the 4th

(6th) order depending if we consider the neural mass model to the 2nd (3rd) order. The

linear stability analysis reveals that the 4 eigenvalues for the 2nd order neural mass are

two complex conjugate pairs, whose real parts are definitely negative for σ = 0 and ∆η

and/or ∆J not zero, as evident from Eq. (35).

As shown in Fig. 1 (b), noise destabilizes the fixed point, since it leads to an increase

of the real part of the maximal eigenvalues. In particular, these two eigenvalues can

cross the zero axis at a critical noise amplitude σH . Thus indicating that the fixed

point solution becomes unstable via a Hopf bifurcation giving raise to COs. For the

case shown in Fig. 1 (b) we have σH ≃ 0.0243. The third order model displays 3 pairs

of complex conjugates eigenvalues, however the fixed point looses stability exactly at

the same σH value via a Hopf bifurcation (see Fig. 1 (b)). The effect of noise on the

stability of the foci is analogous for a network with homogenous couplings (∆J = 0)

and heterogeneous currents ∆η > 0, as shown in Fig. 2. As we will see in the following

these Hopf bifurcations are sub-critical, thus leading to a coexistence region between

asynchronous dynamics and COs.
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Figure 1. (a) Fixed point solutions for the firing rate r∗ versus the noise amplitude σ

for the 2nd and 3rd-order neural mass models. Fitting to the data with the expression

r(σ) = r(0) + aσα are also reported. (b) Real part of the most unstable eigenvalues

for the 2nd and 3rd-order neural mass model versus σ. Parameters are set to η0 = 4.2,

J0 = −20.0, ∆η = 0, and ∆J = 0.02.

3.3. Lorentzian Noise

It is worth mentioning in this context that, by assuming that the white noise terms

ξi(t) are Lorentzian distributed, it is still possible to obtain the corresponding low-

dimensional neural mass model in an exact manner [43, 44]. In particular, by assuming

that the ξi(t) random term follow a LD centered in zero and with HWHM Γ, one can

obtain the following two-dimensional neural mass model [44]

ṙ = 2rv + (∆η + Γ +∆Jr)π
−1 and v̇ = η0 + J0r − π2r2 + v2 , (36)
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Figure 2. Real part of the most unstable eigenvalues for the 2nd and 3rd order neural

mass model versus σ for different level of heterogeneity ∆η. Parameters are set to

η0 = 4.2, J0 = −20.0 and ∆J = 0.

which is identical to Eq. (31) apart for the Γ term that contributes exactly as the

HWHM ∆η of the neural excitabilities {ηi} to the mean-field dynamics. Therefore, in

the thermodynamic limit the Lorentzian noise can be assimilated to a quenched disorder

in the heterogeneities as shown also in Refs. [43, 44]. In the present context, this implies

that the neural mass model Eq. (36) displays only stable foci solutions as Eq. (31) and

no collective oscillations are observable, contrary to the case where the noise is Gaussian

distributed.

4. Numerical results

In this Section we will analyze and characterize the clustering transition induced by

noise. In particular, we will first investigate heterogenous couplings, where we fix

∆J = 0.02, in this case we will compare the results obtained within the mean-field

approach with network simulations. Successively, we will examine the homogenous

situation, where ∆J = 0, by relying only on network simulations. If not specified

otherwise we fix the parameters to the following values J0 = −20, η0 = 4.2 and ∆η = 0,

and we consider an inhibitory network of size N = 200000 subject to Gaussian additive

noise.

4.1. Heterogeneous synaptic couplings

In Subsection 3.2 we have shown that in the mean-field formulation the asynchrous

regime remains stable up to a noise of amplitude σH ≃ 0.0243, where it destabilizes via

a Hopf bifurcation. In this Subsection we will characterize such a transition and the

observed regimes in full details.
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4.1.1. The clustering transition In order to understand if the transition is super- or

sub-critical, we perform simulations by varying quasi-adiabatically the noise amplitude

σ (for details see Appendix A) and by measuring for each value of σ the variance Σv of

the mean membrane potential.
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Figure 3. Variance Σv of the mean membrane potential v versus noise amplitude

σ obtained via quasi-adiabatic simulations. The decrease or increase of σ performed

during the adiabatic simulations is indicated by the direction of the triangles’ tip.

The dashed lines are meant for visual aid. The parameters for the quasi-adiabatic

simulations are ∆σ = 0.04
19 , tT = 20 s, tS = 25 s, for the neural mass we employed

tT = 100 s to allow the system to better relax, and the network size was fixed to

N = 200000. Other parameters as in Fig. 1.

As shown in Fig. 3, for the 2nd and 3rd order neural mass models we observe that

starting from σ = 0 and by increasing the noise amplitude, the variance Σv remains zero

until a value near σH is reached, as expected for a constant mean membrane potential

(v = v∗). Afterwards it jumps to some finite value due to the emergence of COs. Once

the noise amplitude reaches σ = 0.03 the quasi-adiabatic simulations are then continued

by decreasing σ in steps of ∆σ. In this case Σv stays finite down to values σSN ≃ 0.004

and then at even smaller value of σ returns to zero. This scenario is typical for a sub-

critical Hopf bifurcation, characterized by the coexistence of oscillatory and stationary

behaviours in the range σ ∈ [σSN , σH ]. In particular, at σSN one expects that the

oscillatory solution will disappear via a saddle-node bifurcation of limit cycles.

The network simulations agree quite well with those of the 3rd order neural mass

model, apart some finite-size effects that imply finite values O(1/
√
N) for Σv even in the

asynchronous regime and a backward transition from the oscillatory to the asynchronous

regime occurring at a larger noise amplitude, namely σ ≃ 0.006, instead that at σSN .

In contrast, the 2nd order neural mass model displays clear differences with the 3rd

order one and the network simulations in the oscillatory regime for σ > 0.01 (see black

triangles in Fig. 3). This is probably due to an instability of the 2nd order model at

large noise amplitudes.
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Figure 4. The mean membrane potential v(t) (a and d) and the Kuramoto-Daido

order parameters z1 (b and e) and z2 (c and f) versus time. The data refer to

the coexistence regime, namely σ = 0.00842, the asynchronous (clustered) state are

reported on the left (right). Other parameters as in Fig. 1.

4.1.2. Coexisting regimes Let us now examine the macroscopic properties of the

asynchronous and clustered regimes in the coexistence region in more detail. In order

to gain some insight we report the mean membrane potential v versus time for the two

regimes at σ = 0.00842 in Fig. 4 (a and d). In the asynchronous state v is exactly

constant for the neural mass simulations, while it displays small erratic fluctuations

when obtained from network simulations. This is due to the fact that the stable fixed

point is a focus, therefore the presence of finite-size fluctuations excites continuosly

relaxation oscillations towards the focus. As shown in Fig. 4 (d) v(t) is periodically

oscillating in the clustered regime and in this case the network simulations agree quite

well with the neural mass results obtained for both 2nd and 3rd order models.

It is interesting to examine the level of synchronization in the two regimes as

measured by the Kuramoto order paramters z1 and z2, see Fig. 4 (b,c and e,f). In

the asynchronous state shown in panels (b,c) the neural mass results give a finite value

for z1 and z2, while for an asynchronous regime one would expect zero values in the

mean-field limit. The values of z1 and z2 obtained by the network simulations oscillate

in an irregular fashion slightly around the mean-field value. For what concerns the

clustered regime, the order parameters reveals periodic oscillations with the same period

as v(t) and significant amplitudes. In this case the neural mass and the network results

essentially coincide as shown in panels (e and f).
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In order to understand the reason why z1 and z2 have a finite value in the

asynchronous regime let us investigate the distribution of the phases as defined in

Eq. (17). Histograms of these phases are shown in Fig. 5 for the asynchronous and

clustered regime. In the asynchronous regime the phases are not equally distributed in

[−π; +π] as expected they exhibit a peak around zero instead. This peak is much more

pronounced in the clustered regime, but there is no evidence of the two clusters. This is

due to the fact that the phase definition Eq. (17) is related to the membrane potential

value, whose values also displays similar unimodal PDFs (see the Supplementary

Material for animations of the phase histograms from Fig. 5 and the corresponding

membrane potential histograms), and not to the firing time of the corresponding neuron,

thus making this phase unsuitable to characterize the observed neural dynamics.

0°

90°

180°

270°

asynchronous
clustered

 0

 2000

 4000

 6000

 8000

 10000

θ

 0
 2000
 4000
 6000
 8000

 10000

-π -π/2 0 π/2 π

clustered

θ

 0
 2000
 4000
 6000
 8000

 10000

-π -π/2 0 π/2 π

asynchronous

Figure 5. Snapshots of the phases as calculated via the expression (17) displayed as

a polar plot for asynchronous (blue) and clustered (black) regimes. The insets show

the histograms of the same data done over 100 bins. The data refer to a system size

N = 200000 and σ = 0.00842. Other parameters as in Fig. 1.

Let us now consider the distributions of the phases as obtained by the firing

times via the definition Eq. (19) for the asynchronous and oscillatory regimes. The

results are shown in Fig. 6. Note that animations of these histograms can be found

in the Supplementary Material. In the asynchronous case, as expected, the phases are

uniformly distributed. The results for the oscillatory regimes reveal that the neurons

are arranged in two clusters in phase opposition (at a distance π) from one another. In

this case we expect that the Kuramoto order parameter zs1 (zs2) should be zero (order

one) since the 2 clusters are in phase opposition.

To get some more insight on these two dynamical states, we will examine the

raster plots as a measure of the microscopic network activity joined to the traces of the

Kuramoto-Daido order parameters zk and zsk for the macroscopic counterpart. These

are shown in Fig. 7.

In the asynchronous regime, the raster plot in panel (a) does not display any

structure and the corresponding Kuramoto-Daido order parameters zsk, k = 1, 2

estimated by the firing-times are of O(1/
√
N) as expected (see panel (b)). As shown
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Figure 6. Snapshots of the phases as calculated via the expression (19) displayed as

a polar plot for asynchronous (blue) and clustered (black) regimes. The insets show

the histograms of the same data done over 100 bins. The data refer to a system size

N = 200000 and σ = 0.00842. Other parameters as in Fig. 1.

in panel (b) the values of z1 and z2 are instead definitely finite due to the fact that the

phases obtained via the transformation Eq. (17) are not uniformly distributed, even in

this regime.
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Figure 7. Raster plot (a and d) and the corresponding order parameters zk and zsk
(b and e) versus time. In (c) the membrane potential of three generic neurons are

displayed. The results for the asynchronous (clustered) regime are shown in the left

(right) row. In the raster plot (d) the color of the dots indicates in which cluster the

corresponding neuron is at time t = 0 based on their next spiking event. The data

refer to a system size N = 200000 and σ = 0.00842. Other parameters as in Fig. 1.

In the clustered regime the raster plot (shown in panel (d)) reveals bursts of activity

of the neurons interrupted by a low activity phase. In each population burst roughly

50% of the neurons participate. In the raster plot, the spiking times are visualized by
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red and blue colored dots based on which cluster the corresponding neuron belonged at

time t = 0, for which we used the next spiking event of the corresponding neuron. In

the time window reported in panel (d) the clusters are apparently stable, however on a

longer run the two ensembles will mix up completely despite the macroscopic dynamics

remaining always characterized by two equally populated clusters. To exemplify these

behaviours in panel (c) the membrane potential traces for 3 characteristic neurons have

been reported: the red (blue) neuron is always firing within the red (blue) burst, while

the black one is initially firing within the blue burst but then it skips 2 population bursts

and finally joins the red burst.

In panel (e) we report the corresponding Kuramoto-Daido order parameters versus

time, the parameters z1 and z2 display a periodic behaviour and attain the minimum

value whenever a burst occurs, due to the repulsive nature of the couplings. On the other

hand, zs1 stays always close to zero as expected for two phase clusters in phase opposition,

while z2 has a constant finite value larger than 0.5 indicating that the composition of

the clusters is stable in time.

4.1.3. Stability of the asynchronous regime In this Paragraph we will analyze the

stability of the asynchronous state for increasing noise amplitude. For this we will

employ the stability indicator ρ = ρ(γ) introduced in Eq. (24) as a function of the

parameter γ controlling the initial distribution of the membrane potentials according to

Eq. (23). The value γ = 1 (γ = 0) corresponds to an initialization of the neurons with

membrane potentials distributed according to the LD expected for the asynchronous

case (with identical values of the membrane potentials V0).

We have estimated the stability indicator ρ(λ) for a system size N = 32000 (due to

cpu limits) and the results are reported in Fig. 8 for different noise amplitudes. For the

noise amplitude σ = 0.0025, which is smaller than σSN ≃ 0.004 and therefore outside the

coexisting region, we observe that the asynchronous state is stable for any γ-values, as

expected. For larger noise amplitude σ > σSN , large perturbation of the asynchronous

distribution, as measured by 1− γ, can induce transitions towards the clustered regime

with some finite probability.

At noise amplitudes σ ≥ 0.015, for sufficiently synchronized initial conditions,

namely γ < 0.4, the system has a probability of almost 100% to leave the asynchronous

state, thus indicating a clear coexistence of the 2 regimes. For σ ≥ 0.023 (i.e. in

proximity of the Hopf bifurcation identified in the mean-field formulation σH = 0.0243)

the probability to stay in the asynchronous case is smaller than 100% even for the

unperturbed initial conditions, corresponding to γ = 1, in this case we expect that by

simulating for a longer time period Tt we would actually measure ρ = 0.

In order to identify the critical noise amplitude above which the asynchronous

state is unstable, we measure the value γ̄ for which ρ(γ̄) crosses 1
2
for various noise

amplitudes σ. Thus, this indicates that for γ = γ̄ one has 50% of probability to end

in the asynchronous or in the clustered state. For this we estimated the indicator with

more precision in proximity of ρ(γ̄) ≈ 1
2
To this end we considered M = 384 realizations
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Figure 8. Stability indicator ρ versus 1 − γ, where γ is the factor entering in (23).

For each measurement of ρ we considered M = 192 different realizations and each

time we estimated Σv from a time series of TW = 0.3 s after discarding a transient

Tt = 16 s to evaluate if the system remains asynchronous or becomes clustered. The

dashed line indicates ρ = 0.5, i.e., where the system has an equal probability to move

towards either the asynchronous or the clustered state. The data refer to a system size

N = 32000, other parameters as in Fig. 1.

of the initial perturbed state for each value of γ, and we estimated via an interpolation

the value γ̄. In particular, we expect that the standard deviation of ρ(γ) will be maximal

at exactly one half, therefore we fitted such standard deviation to a Gaussian curve for

different γ value and we extrapolated the value γ̄ where the curve attains its maximum.

In Fig. 9 we show the obtained values γ̄ as a function of noise amplitude σ (violet

crosses), we observe that γ̄ grows with the noise amplitude and approaches the value

γ̄ = 1. To identify the critical noise amplitude σc above which the system always ends

up in the clustered regime for any γ value we have fitted the numerical data with this

function:

f(σ) = 1 + a
(
1− eb(σ−σc)

)
+ c(σ − σc) . (37)

By excluding from the fit the data where the threshold value ρ = 0.5 was not reached

(green points) we obtain the following parameter values a = −0.42(1), b = 376(28),

c = 10.9(8) and σc = 0.02498(6). As you can see the fit works pretty well. The

extrapolated critical value of the noise is in quite good agreement with the mean-field

result obtained from the linear stability analysis of the asynchronous state that indeed

was σH = 0.0243, the difference on the third significative digit can be due to finite-size

and nonlinear effects.

In summary the new method here introduced to study the stability of the

asynchronous regime works reasonably well when compared with the linear stability

analysis, that in the present case is feasible due to the existence of low-dimensional

mean-field formulations, but usually in a high dimensional network is quite difficult

to implement. Therefore, this new method can represent an useful alternative to the
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Figure 9. γ̄ versus the noise amplitude σ. The green circles represent σ values for

which ρ(σ) = 0.5 was never reached. The blue solid line is a fit to the data (violet

crosses) performed via the expression (37), the fit is employed to extrapolate the critical

noise value σc for which ρ(σc, γ̄ = 1) = 0.5. The vertical dashed line shows the mean-

field prediction σH for the onset of COs. Errorbars are omitted since the errors are

smaller than symbol size. Other parameters as in Fig. 8 apart the number of different

realizations, that now is M = 384.

linear stability analysis and it can find applications in many complex network systems.

Furthermore, it gives also information concerning the basins of attraction of the two

regimes in the coexistence region, that the linear stability analysis is unable to provide.

4.1.4. Characterization of the clustered dynamics In this Paragraph we would like to

examine the clustered dynamics of the neurons in more details. In particular, we wish

to characterize the erratic behaviours that lead the neurons to deviate from a perfectly

locked evolution, where the neurons fire every second burst.

We will first examine the evolution in time of the fraction of surviving neurons S(t)

(or survival probability). As shown in Fig. 10, S(t) has an initial decay on the interval

[0 : 30] s very well described by the following function

g1(t) = α1e
−
√
t , (38)

with α1 = 1.65(1). The initial decay of S(t) is followed at later times by an exponential

tail of the form

g2(t) = α2e
−β2t (39)

with α2 = 0.142(2) and β2 = 0.1026(3) Hz. The functions g1 and g2 are part of the

same class of survival probabilities associated to the so-called Weibull PDF [45]

fp(t) = pµptp−1e−(µt)p with p ∈ [0,+∞) µ > 0 ; (40)

where g1 (g2) corresponds to p = 1/2 (p = 1). For p < 1 the failure rate, the rate to

emit a spike in an irregular manner, decreases over time, since the neurons that displays

an irregular spiking are eliminated from the population of the regular spiking ones. The
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neurons remaining after this initial phase have a failure rate β2 that is constant over

time, since their survival probability has an exponential profile, which typically emerges

due to some underlying random Poissonian process.

As we will see in the following for a homogeneous network S(t) is very well described

by Eq. (39) over the whole time interval. Thus suggesting that this decay is likely due to

the action of the noise injected in the system, since this is the only source of irregularity

in the homogeneous case. While the initial decay described by the function g1(t) should

be related to the heterogeneous distribution of the synaptic couplings. In summary,

initially the neurons displaying failures in their periodic activity are the ones with Ji
sufficiently different from J0, while the successive decay involves neurons with coupling

in proximity of Ji = J0. This aspect will be further analyzed in the following, where we

will correlate in more details the irregular evolution of the i-th neuron to its synaptic

coupling Ji.
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Figure 10. Fraction of surviving neurons S(t) versus time in a semi-logarithmic scale.

We fitted the data to the function g1(t) (38) in the time interval [0 : 30] s and to the

function g2(t) (39) in the interval [20 : 55] s. The inset shows the evolution over the

first 10 seconds in a linear scale. In this case we have identified Nnone = 467 silent

neurons. The data refer to a system size N = 200000 and σ = 0.00842 for the clustered

regime. Other parameters as in Fig. 1.

Next, we examine the PDF P (λ) of the fraction λ of irregular spikes (28) emitted

by each neuron. We report P (λ) in Fig. 11 for increasing duration of the simulations

and therefore for an increasing number of population bursts.

From the figure it is evident that the PDF is converging to a limiting profile for

longer duration of the measurements. This asymptotic shape reveals a peak around

λ ≃ 0.0145 corresponding to the neurons with couplings in proximity of Ji = J0 = −20,

i.e. to the maximum of the LD of the synaptic coyplings. Furthermore, P (λ) reveals a

clear discontinuity at λ = 1/3, whose origin will become clear in the following.

Let us now characterize in details how the fraction of irregularly emitted spikes

of neuron i depends on its synaptic coupling Ji. To this aim we have estimated λi,

λE
i and λL

i for each neuron as well as the fraction νi of emitted spikes with respect

to the total number of population bursts (νi in absence of irregularity should be 1
2
).
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Figure 11. Probability distribution function P (λ) of the fraction of irregular spikes

λ for different time durations in semi-logarithmic scale. The inset shows a zoom

around the main peak. In this case we have removed from the estimation of the

PDF Nnone = 467 silent neurons. The data refer to a system size N = 200000 and

σ = 0.00842 for the clustered regime. Other parameters as in Fig. 1.

These quantities are shown versus the corresponding Ji as scatter plots in Fig. 12. It

is important to notice that the scatter plots actually look like smooth functions for all

the considered indicators, not much “scatter” visible. This suggests the existence of

a functional relationship between the measure values and the value J of the synaptic

coupling.

For sufficiently small Ji ≤ −22.73 the neurons appear to be silent on the considered

integration time scale. As shown in panels (a and d), νi is growing with the synaptic

coupling, apart in the locking regions. On the contrary, λL
i and λi have a non monotonic

dependence on Ji, with a maximum at Ji = −21.44 where these parameters reach the

value of exactly 1
3
. λi displays a minimum at Ji = J0 = −20, where it attains extremely

small values (see panels (c and d) and (e and f)). For larger Ji essentially λi ≡ λE
i and

they are both increasing with Ji, again apart the locking intervals. As a general remark

the irregularity in the periodic firing of the neurons is due to early (late) delivered spike

for Ji < J0 (Ji > J0).

Let us now try to understand the non monotonic behaviour of λ. The local

maximum λL
i = λi =

1
3
at Ji ≤ −22.73 corresponds to νi =

1
3
, which means that the

corresponding neurons fire very regularly at every 3rd burst. The origin of the maximum

is due to the fact that for smaller Ji the neurons are firing less and less, thus the value

of λL
i and λi should necessarily decrease, however for larger Ji the two parameters are

also decreasing. This is due to the fact that the regular behaviour occurs whenever

the neurons fire exactly every two spikes, and this state is approached by increasing Ji
towards J0.

Indeed, for Ji = J0 the rate is exactly νi =
1
2
and at the same time λi, λ

L
i and λE

i

become quite small and close to zero (see the semi-logarithmic plots in panel (d)). In

particular, from panel (f) it is evident that the neurons contributing to the peak of P (λ)
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reported in Fig. 11 are those with Ji = J0, see the dashed orange line indicating the

value λ = 0.0145, where P (λ) attains its maximum.

It is interesting to notice that in the interval J ∈ [−15,−4.4] we have a perfect

locking of the activity of these neurons with the population bursting since ν = 1, and

unsurprisingly, also λE = 1. The locking region resembles an Arnold tongue 1:1, for

J > −4.4 the locking is lost and ν and λ continues to increase. We have indications

that another locking region with ν = 2 emerges at quite large J , around 25 ≤ J ≤ 29,

however our system size is too small to have a good statistics there.

Let us now come to the explanation of the discontinuity observed in Fig. 11 for the

PDf P (λ) at λ ≈ 1
3
. This is due to the fact that the maximal value of λL is 1

3
, thus for

λ < 1
3
to the P (λ) contribute both early and late delivered spikes, while for λ > 1

3
the

contribution to the irregularity is due only to early delivered spikes.

Figure 12. Scatter plots for νi (a and b) and for the indicators λi (e and f), λL
i and

λE
i (c and d) , measuring the fraction of irregular spikes, versus the respective synaptic

coupling Ji. The left panels are in linear scale, while the ones on the right side are the

same data reported in semi-logarithmic scale. The measurements corrrespond to the

ones reported in Fig. 11 for a total of 2789 bursts.

To get further insight on the microscopic dynamics induced by the synaptic

couplings, we define a global phase Φ similar to Eq. (19). However, instead of the

spike times of the individual neurons we consider here the population burst times bk:

Φ(t) = 2π
t− bk

bk+1 − bk
+ 2πk with bk ≤ t < bk+1 . (41)

Moreover, Φ(t) can be employed to characterize the activity of the i-th neuron with

respect to the network activity by defining the global phase difference associated to two
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successive spikes of neuron i:

∆Φi(n) = Φ(t
(n+1)
i )− Φ(t

(n)
i ) . (42)

Figure 13. Mean (a) and variance (b) of the global phase difference ∆Φi for each

neuron reported as a scatter plot versus the correpsonding coupling Ji. The data have

been obtained from the same measurements employed in Fig. 11.

In Fig. 13 we report the average and variance of ∆Φi estimated over all the spike

times of neuron i versus the corresponding synaptic coupling Ji. A clear functional

relationship emerges also in this case. As expected, the value of the mean of ∆Φi is 4π

for Ji = −20 indicating that the neurons fire every second burst. For Ji < J0 (Ji > J0)

∆Φi grows (decreases) indicating that the neurons fire slower (faster). Moreover, the

phase locking at ∆Φi = 2π for neurons with Ji ∈ [−15,−4.4] is also evident from panel

(a).

The analysis of the variance of ∆Φi reveals more interesting aspects. A variance

close to zero suggests that the corresponding neuron fires very regularly, i.e., basically

with a constant firing rate. In contrast a high variance indicates a distribution of

the global phase differences ∆Φi exhibiting more peaks. As shown in Fig. 13 (b),

the variance attains its minimal value for Ji = −J0 for the regular firing neurons, for

which ⟨∆Φi⟩ ≃ 4π. Moreover, minima in the variance are observable also whenever

⟨∆Φi⟩ ≃ 6π at J ≈ −21.44, and also at lower Ji where ⟨∆Φi⟩ ≃ 8π. Furthermore,

the variance vanishes in the locking region (J ∈ [−15,−4.4]) where ⟨∆Φi⟩ = 2π. The

maxima in the variance are instead observable when ⟨∆Φi⟩ ≃ (2k + 1)π for k = 0, 1, 2.

For the case ⟨∆Φi⟩ ≃ 3π , we observe that the corresponding neurons emit two spikes

almost in correspondance with two successsive population bursts and then skip one

burst. This amounts to a sequence of phase differences ∆Φi = 2π, 4π, 2π, 4π, . . . , that

gives an average global phase of 3π and a distributions of the phases with two equally

relevant peaks and thus to a high variance.

We can safely affirm that the neurons tend to fire in correspondance of the bursting

activity of the network, in general every two bursts, but as shown above they can present

more complex combinations of locking n : m with the population bursting.
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4.2. Homogeneous synaptic couplings

As we have seen in Subsection 3 for the case with homogeneous couplings, i.e., ∆J =

∆η = 0, the linear stability of the mean-field model predicts that the asynchronous state

is unstable whenever the noise amplitude is finite. However, the mean-field approach is

no more strictly valid in the fully homogenous case, since the Ott-Antonsen manifold is

no more attractive in such a case [46]. Therefore, we will limit to network simulations

in order to numerically investigate the stability of the asynchronous state as well as

possible coexistence regime with a collective oscillatory dynamics.

4.2.1. The clustering transition To this aim we performed quasi-adiabatic simulations

of the QIF network by varying the noise amplitude σ and by evaluating the variance Σv of

the mean membrane potential v, analogously to the analysis done in the heterogeneous

case, whose results have been reported in Fig. 3. In the present case, by increasing

adiabatically σ in the interval [0, 0.015] we observe that the asynchronous regime appears

to remain stable up to noise amplitude σc ≃ 0.011, while for larger noise COs emerge.

Successively, by decreasing σ the oscillatory regime remains stable down to σ = 0, thus

we have a coexistence regime in the whole interval σ ∈ [0, 0.011], as shown in Fig. 14.

Note the contrast with the heterogeneous case where, in the absence of noise, only the

asynchronous regime was observable.

The oscillatory regime is once more a clustered regime, where the neurons fire in

population bursts and each burst involves almost half of the population.
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Figure 14. Variance Σv of the mean membrane potential v versus noise amplitude

σ obtained via quasi-adiabatic simulations. The decrease or increase of the noise

amplitude σ performed during the adiabatic simulations is indicated by the direction

of the triangles’ tip. The dashed lines are simply intended as a visual aid. The

parameters for the quasi-adiabatic simulations are ∆σ = 0.4
19 , tT = 20 s, tS = 25 s.

The other parameters are set as in Fig. 3 with ∆J = 0 for a network size N = 200000.
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4.2.2. Stability of the asynchronous regime Let us now analyze, how the stability of

the asynchronous state depends on the noise amplitude. To perform this analysis we

have employed (as in Subsection 4.1.3) the indicator ρ = ρ(γ) introduced in Eq. (24)

as a function of the parameter γ. The corresponding results are reported in Fig. 15 for

various noise amplitudes σ ∈ [0, 0.015].
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Figure 15. Stability parameter ρ versus 1 − γ, where γ is the modulation factor

entering in (23). For each measurement of ρ we averaged over B = 96 different noise

realizations and each time we estimated Σv from a time series of duration TW = 0.3

s after discarding a transient Tt = 16 s. The dashed line indicates ρ = 0.5, i.e., where

the system has an equal probability to end in the asynchronous or clustered state. The

data refer to a system size N = 32000, other parameters as in Fig. 14.

The main difference with respect to the heterogenous case, is that now even for

the smallest noise amplitude considered, namely σ = 0.0025, for a sufficiently large

distortion of the LD (namely, γ > 0.4) will destabilize the asynchronous state. This is a

further confirmation that the clustered state is always stable, as already shown in Fig.

14. For increasing noise amplitudes the asynchronous state gets destabilized for larger

and larger γ values and for σ > 0.011 even for γ = 1. Thus indicating that this is the

critical noise amplitude above which only the clustered regime can be observed on the

long-time limit.

In analogy to what done in Subsection 4.1.3, to better characterize this transition,

we will estimate for various noise amplitudes the value γ̄ for which ρ(γ̄) crosses 1
2
. In

particular, we measured γ̄ by using B = 192 to obtain a better accuracy. The results are

displayed in Fig. 16, by performing a fit of the data to the function (37) we obtained the

following parameter value a = −0.21(6), b = 376(205), c = 33(6) and σc = 0.0149(3).

Thus obtaining a critical noise amplitude consistent with the previous estimations.

4.2.3. Characterization of the clustered dynamics Analogously to the heterogenous

case the oscillatory dynamics is characterized by neurons firing alternately in the two

population bursts. To measure the irregularity in this dynamics, we have examined, as

in the heterogenous case, the fraction of surviving neurons S(t) defined as in Eq. (29),
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Figure 16. γ̄ versus the noise amplitude σ. The green circles represent σ values

for which ρ(σ) = 0.5 was never reached. The blue solid line is a fit to the data

(violet crosses) performed via the expression (37), the fit is employed to extrapolate

the critical noise value σc for which ρ(σc, γ̄ = 1) = 0.5. Other parameters as in Fig.

15 apart B = 192.

for the same noise amplitude σ = 0.00842. We now observe that S(t) can be well

reproduced by a simple exponential decay Eq. (39) with parameters α2 = 0.853(2) and

β2 = 0.0752(6) Hz, see Fig. 17. The mean lifetime of the periodic regular regime

is now of the order of 13.3 s, definitely longer than in the heterogenous case. Since

the only source of irregularity is now the noise, we confirm that the emergence of the

irregularities in the firing process follows a Poissonian process. Furthermore, in contrast

with the heterogeneous case we we did not observe any silent neurons, since none of the

neurons receive very large inhibitory post-synaptic potentials, because the amplitude of

the synaptic weight is the same for all neurons.

 0.01

 0.1

 1

 0  10  20  30  40  50

S

time [s]

data
g2(t)

0.0
0.2
0.4
0.6
0.8
1.0

 0  5  10  15  20  25

Figure 17. Fraction of surviving neurons S(t) verus time in semi-logarithmic scale.

We also include a fit to the numerical data with the function g2(t) (39) (blue line).

The inset shows the first 25 seconds of the evolution of S(t) in a linear scale. The

parameters are fixed as in Fig. 14 for a noise amplitude σ = 0.00842 and we refer to

the clustered phase.
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Next, we have estimated P (λ), i.e. the PDF of the fraction λ of irregular spikes

obtained for each neuron, this is reported in Fig. 18. We have integrated the network for

the the same time duration as in Fig. 11, however due to the slightly higher frequency

of the COs measured in the homogeneous case we observe more bursts.

In this case the PDF for λE and λL are identical (not shown) and this is clearly due

to the absence of heterogeneity in the network. The noise induces with equal probability

irregularities due to early or late spiking.
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Figure 18. PDF P (λ) of the fraction of irregular spikes λ for different measurement

durations in semi-logarithmic scale. The inset shows a zoom in linear scale. The

parameters are fixed as in Fig. 14 for a noise amplitude σ = 0.00842 and we refer to

the clustered phase.

For increasing duration of the measurements we observe that P (λ) tends to get

more and more localized around the maximum located at λ = λ0 ≈ 0.01. Due to the

central limit theorem we expect that the function P (λ) has a Gaussian profile (limited

to λ > 0) with a standard deviation σ scaling as 1/
√
T , where T is the time duration.

Indeed, by considering only values of λ > λ0 we have verified that lnP (λ) = A+ (λ−λ0)2

2σ2

with σ ∝ T ξ where ξ = −0.52± 0.02 for the data reported in Fig. 18.

4.3. Emergence of γ-oscillations in the clustered state

The clustered state is characterized by population bursts, corresponding to COs.

It is of extreme interest to understand in which frequency range these oscillations

occur. In order to estimate the oscillation frequency we estimate the power spectrum

density (PSD) associated to the time evolution of the mean membrane potential v for

heterogeneous (∆J = 0.02) and homogeneous (∆J = 0) case subject to noise of the same

amplitude, namely σ = 0.00842.

For the heterogenous case, we observe that the two neural mass models and the

network simulations agree quite well among them as evident in Fig. 19. The only

noticeable difference are the positions of the main peak of the PSD, that are slightly

different. The main peak of the 3rd order neural mass model and of the network



Asynchronous and clustered dynamics in noisy inhibitory neural networks 29

simulations are located both around f0 ≈ 50.79 Hz, while the 2nd order neural mass

reveals a peak located at f0 ≈ 50.95 Hz, as visible in the inset of Fig. 19.
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Figure 19. Power spectrum density (PSD) versus the the frequency f of the mean

membrane potential v for the 3rd order neural mass model (red), the 2nd order neural

mass model (orange) and the network simulation of size N = 200000 with ∆J = 0

(black) and ∆J = 0.02 (blue), respectively. The colors are plotted with transparency

to allow the visualization of overlapping parts. The inset shows a zoom around the

global maxima. All the other parameters are fixed as in Fig. 1 and the noise amplitude

to σ = 0.00842. The PSD are measured via a discrete Fourier transform of a time series

measured over 100 seconds with a step size of 2.5× 10−3 ms.

The simulations of the network with homogeneous couplings result in a PSD with a

peak at a higher frequency f0 ≈ 52.8 Hz, still in the vicinity of the heterogenous peaks.

The PSD around the peak is a bit broader for the network simulations compared

to the neural mass results, since the network presents also finite-size fluctuations.

In the network simulations, homogeneous and heterogeneous, we observe also peaks

at combinations of the first two harmonics, not present in the neural mass models,

suggesting that finite-size effects can lead to combinations of these harmonics similar to

the beating phenomenon.

By analyzing the microscopic dynamics of the network for the same parameters in

the homogenous case, we observe that the histogram nν of the single neuron firing rate

νi is extremely localized with a peak around ν0 ≈ 19.27 Hz (ν0 ≈ 26.41 Hz) for the

asynchronous (clustered) state (see Fig. 20). These data confirm that in the clustered

regime the neurons mostly fire every two population bursts, since the frequency of COs

is f0 ≈ 52.8 Hz. In the heterogenous case, the situation is more complex, as shown in

Fig. 20 (b) the histogram of the firing rates has a main peak at f0/2 with symmetric tails

at lower and higher frequencies and a secondary peak at f0, where f0 ≈ 50.79 Hz. These

data confirm the previously reported analysis for the heterogeneous model performed

in Subsection 4.1.4. The heterogeneity in the couplings is essentially responsible for the

distributed firing rates. Furthermore, the most part of the neurons fire every second

bursts, but a small group is locked to the population activity.
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Increasing the noise amplitude only changes the frequency slightly, e.g., a noise of

σ = 0.03 results in a frequency around 52.44 Hz for the 3rd order mean-field neural

mass, this means that we observe γ-oscillations in the whole region of coexistence.
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Figure 20. Histogram nν of the single-neuron firing rate for the homogeneous and

heterogeneous networks for the asynchronous (a) and clustered (b) phases. Black (red)

line refers to homogeneous (heterogenous) networks. All parameters as in Fig. 19.

5. Summary and outlook

We have shown that for a globally coupled inhibitory network of QIF neurons the

presence of independent Gaussian noise promotes the emergence of COs both for

heterogeneous and homogeneous synaptic couplings. The observed oscillations emerge

at some critical noise amplitude σc via a sub-critical Hopf bifurcations giving rise to a

region of coexistence among stationary and oscillatory dynamics. For the homogenous

(heterogenous) case the coexistence is observable from zero (a finite) noise amplitude

up to σc.

In the heterogenous case the analysis is based on the comparison of the results

obtained via a direct integration of large spiking QIF networks and of the corresponding

neural mass models. In the examined noise range we observe a quite good agreement

among network simulations and mean-field results obtained via the pseudo-cumulant

expansion arrested to the third order [21]. The second-order neural mass model fails to

reproduce the simulations for sufficiently large noise amplitudes.

The neural mass model (at the third order) captures well the macroscopic behaviour

of the network induced by noise and heterogeneity, however being a mean-field model

cannot reproduce the microscopic dynamics, for this we should rely on numerical

simulations.

The observed collective oscillations are population bursts, where roughly half of the

neurons fire in alternation in correspondence of each single collective event. However,

there are irregularities to this behavior. In the heterogeneous case we observe that

initially the rate at which the surviving neurons emit a spike in an irregular manner

decreases over time and successively it becomes constant, i.e., it becomes a Poissonian

process in the long run. The origin of the initial behaviour is due to the heterogeneity in
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the synaptic couplings, while the following phase is due to the presence of the Gaussian

noise. Indeed in the homogenous case we observe only the second phase.

Furthermore, for heterogenous couplings we observe that the regular behaviour of

the neurons, i.e. firing every two population bursts, is observable only for synaptic

couplings corresponding to the median of the distribution. For sufficiently large

inhibitory couplings we have silent neurons, while neurons displaying a 1:1 locking with

the population bursts are observable in a wide interval of synaptic couplings.

In order to characterize the stability of the asynchronous regime we have introduced

a new criterion based on the long-term evolution of the system, once the stationary

configuration corresponding to the asynchronous regime has been subject to a non-

infinitesimal global deformation. This criterion allows to identify the basins of attraction

of the two coexisting regimes, therefore resembling the basin stability analysis [24].

Furthermore, the method captures with very good accuracy the Hopf and saddle-

node bifurcation points delimiting the coexistence regime in the heterogenous and

homogenous cases. This criterion can represent a useful alternative to the linear stability

analysis and find application in the context of complex networks for the characterization

of their dynamical regimes.

The nature of the noise is fundamental in order to observe the reported phenomena.

Indeed for Lorentzian distributed white noise it was shown that the corresponding low-

dimensional neural mass model [43, 44] exhibits only a stable foci and no oscillatory

regime, which we have also verified via network simulations.

Clustering phenomena similar to the one here analysed have been reported in [5]

for globally coupled inhibitory homogenous networks for conductance based and current

based neural models in presence of Gaussian noise. However, at variance with our model

the authors considered post-synaptic potentials of finite duration and not instantaneous

synapses, as in the present case. The emergence of COs in absence of a delay or of a

finite synaptic time scale is peculiar of inhibitory QIF networks, as previously shown in

[47].

As we have shown for the chosen parameters the frequency of the COs is in

the γ-band, therefore the present model can be employed to analyze the emergence

of transitory γ-bursts coexisting with asynchronous dynamics observed in many

experiments [14, 15, 16, 17]. In particular, our model can represent a more realistic

alternative to the damped harmonic oscillator driven by noise employed in [16] to

reproduce the emergence of spontaneous γ-cycles in awake primate visual cortex (V1).

Finally, the indicators we have introduced in Paragraph 2.3.3 to characterize the

regularity/irregularity of the single-neuron dynamics with respect to the global activity

can find applications in the analysis of spiking events with respect to the Local Field

Potential evolution in experimental data.
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Appendix A. Implementation of the numerical simulations

For the heterogenous case, in order to compare the results of the network simulations

with the neural mass models [21] we consider synaptic couplings following a LD

h(Ji) with median J0 and half width at half maximum (HWHM) ∆J , that we fix

deterministically as follows

Ji = tan

(
π

2

(2i−N − 1)

N + 1

)
∆J + J0 ∀i ∈ {1, 2, . . . , N} , (A.1)

to avoid spurious effects related to extreme values of the couplings and to allow for a

faster convergence at sufficiently large system sizes towards the corresponding mean-

field results as previously shown e.g. in [20, 48]. It should be noticed that even for a LD

centered at a quite negative value, namely J0 = −20 as in our case, a small number of

positive coupling is expected. For the parameter values used in this paper (∆J = 0.02)

the percentage of excitatory synaptic coupling is 0.032 %, therefore we can consider

their influence on the macroscopic dynamics as negligible.

The initial values of the membrane potentials are deterministically chosen as in Eq.

(23) from the LD expected in the thermodynamic limit (6) for the asynchronous state.

Note that, to avoid correlations between Vi and Ji that would result from the previous

deterministic equations, the list of Ji values is shuffled before creating the initial state

of the network.

In order to analyze the transition from the asynchronous to the partially

synchronized regime due to the noise, we perform simulations where the noise amplitude
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is varied quasi-adiabatically. In particular, we start from some initial noise value,

typically σ = 0, and we simulate the models for a certain time interval tS, after

discarding a transient time tT . The quantities of interest are evaluated only during

the interval tS. Then we increase the noise amplitude by an amount ∆σ and we repeat

the previous procedure by an initial condition that is the last configuration obtained

at the previous step. The noise is increased in steps of amplitude ∆σ up to some

maximal value is reached. Then the procedure is repeated by decreasing the noise at

each simulation step by ∆σ until the initial noise value is recovered.

As already mentioned, for the QIF model the threshold value would be Vth = +∞
and the reset one Vre = −∞, it is possible to take in account exactly the integration

among these extrema in absence of noise if the neurons are supra-threshold by employing

event driven techniques [49, 50]. However, in presence of noise we should perform usual

clock driven simulations by employing finite threshold and reset values as suggested in

[20].

In particular, we implement the finite threshold crossing and the spike emission

as follows. Whenever Vi(t) > Vth, the neuron enter in a refractory period of duration

TR = 2/Vi, after this phase the membrane potential is resetted to Vi(t + TR) = −Vi(t).

Thus employing a variable resetting value related to the neuron evolution, this avoids

spurious synchronization phenomena induced by using the same reset value for all

neurons as suggested in [20]. Furthermore, the neuron i will fire at a time t+TR/2 that

approximately corresponds to the time it would reach +∞ as shown in [20]. Somehow,

the usage of finite thresholds and reset value is less matematically accurate, but it

reflects more the dynamics of real neurons [51].

To simulate the network model we have numerically integrated the stochastic

differential equation Eq. (1) by employing a clock driven scheme. In particular we

have employed the Heun method [52] for its higher accuracy in the treatment of the

determistic part with respect to a standard Euler scheme.

The iterative Heun method [52] applied to our network model reads as :

ki = Jis+∆t

(
(vi(t))

2 + ηi
)

(A.2)

li =
√

2∆tσ2Ξi (A.3)

vi(t+∆t/2) = vi(t) + li + ki (A.4)

vi(t+∆t) = vi(t) +
(
(vi(t+∆t/2))

2 + ηi
) ∆t

2
+

Jis+ ki
2

+ li , (A.5)

where Vi(t) are the membrane potentials, k and l are auxiliary variables, and Ξi is a

Gaussian random number with zero mean and unitary standard deviation that is drawn

separately for each neuron. Morever ∆t is the integration time step, whose choice will

be discussed in the next Appendix, and s represents the network activity and it is the

number of spikes emitted in the network in the interval ∆t divided by N .
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Appendix B. Selection of the integration time step

For the numerical integration of the network model we need to select an optimal time

step ∆t, which should lead to high accuracy in the integration joined to a minimal

computational cost.

In deterministic systems this choice is quite simple, one just select the largest time

step for which the integrated orbits converge to the same value up to some accuracy. In

a stochastic system this cannot happen, therefore we rely on a different concept.

In the present case, we know from the mean-field approach that in the asynchronous

regime for sufficiently small noise values σ < σSN the system should always relax towards

a PDF of the membrane potential that is a LD, namely

p(V ) =
1

π

∆V

∆2
V + (V − V0)2

. (B.1)

with V0 = v∗ and ∆V = πr∗, where (v∗, r∗) are the fixed point solutions of the neural

mass model Eq. (16). Therefore, we considered a small noise value σ = 0.001 < σSN

and for different integration time steps ∆t we have verified if the distribution of the

membrane potentials converge to (B.1) or not.

In particular, we initialized the simulation always with membrane potetials

distributed as in (B.1), then we simulate the system for a time interval of 1.2 secs

and every 0.12 ms we accumulate the instantaneous values of the membrane potentials

in a histogram of 5000 bins with V ∈ [−100, 100]. We do not consider the neurons in

their refractory periods to prevent from unphysical overestimations of large V values.

From the final histogram we obtain the PDFs shown in Fig. B1 for three different

∆t/τm = 1× 10−3; 3× 10−3; 6× 10−3 together with the expected PDF (B.1).

As evident from Fig. B1, the larger time-step leads to clear artifacts in the

estimation of the PDF. Already by considering ∆t/τm = 3× 10−3 leads to a noticeable

improvement, in particular the right inset of Fig. B1 reporting p(V ) in linear scale around

the maximum show essentially no differences among (B.1) and the estimated PDFs with

∆t/τm ≤ 3 × 10−3. However, in the semi-logarithmic scale (left inset and main figure)

the numerically estimated PDF for ∆t/τm = 3× 10−3 still presents numerical artifacts

for sufficiently negative V values.

For a time step ∆t/τm = 1 × 10−3, we cannot notice any artifact and essentially

we have a perfect coincidence with the theoretical PDF (B.1). We can already conclude

that this time step give a sufficient accuracy to the simulations, however to be on the

safe side we opted for ∆t/τm = 2.5× 10−4.
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